X86DisassemblerDecoder.c revision f41ab77847251f1ca88142b4e9cba597f9c094a8
1/*===- X86DisassemblerDecoder.c - Disassembler decoder -------------*- C -*-==*
2 *
3 *                     The LLVM Compiler Infrastructure
4 *
5 * This file is distributed under the University of Illinois Open Source
6 * License. See LICENSE.TXT for details.
7 *
8 *===----------------------------------------------------------------------===*
9 *
10 * This file is part of the X86 Disassembler.
11 * It contains the implementation of the instruction decoder.
12 * Documentation for the disassembler can be found in X86Disassembler.h.
13 *
14 *===----------------------------------------------------------------------===*/
15
16#include <stdarg.h>   /* for va_*()       */
17#include <stdio.h>    /* for vsnprintf()  */
18#include <stdlib.h>   /* for exit()       */
19#include <string.h>   /* for memset()     */
20
21#include "X86DisassemblerDecoder.h"
22
23#include "X86GenDisassemblerTables.inc"
24
25#define TRUE  1
26#define FALSE 0
27
28typedef int8_t bool;
29
30#ifndef NDEBUG
31#define debug(s) do { x86DisassemblerDebug(__FILE__, __LINE__, s); } while (0)
32#else
33#define debug(s) do { } while (0)
34#endif
35
36
37/*
38 * contextForAttrs - Client for the instruction context table.  Takes a set of
39 *   attributes and returns the appropriate decode context.
40 *
41 * @param attrMask  - Attributes, from the enumeration attributeBits.
42 * @return          - The InstructionContext to use when looking up an
43 *                    an instruction with these attributes.
44 */
45static InstructionContext contextForAttrs(uint8_t attrMask) {
46  return CONTEXTS_SYM[attrMask];
47}
48
49/*
50 * modRMRequired - Reads the appropriate instruction table to determine whether
51 *   the ModR/M byte is required to decode a particular instruction.
52 *
53 * @param type        - The opcode type (i.e., how many bytes it has).
54 * @param insnContext - The context for the instruction, as returned by
55 *                      contextForAttrs.
56 * @param opcode      - The last byte of the instruction's opcode, not counting
57 *                      ModR/M extensions and escapes.
58 * @return            - TRUE if the ModR/M byte is required, FALSE otherwise.
59 */
60static int modRMRequired(OpcodeType type,
61                         InstructionContext insnContext,
62                         uint8_t opcode) {
63  const struct ContextDecision* decision = 0;
64
65  switch (type) {
66  case ONEBYTE:
67    decision = &ONEBYTE_SYM;
68    break;
69  case TWOBYTE:
70    decision = &TWOBYTE_SYM;
71    break;
72  case THREEBYTE_38:
73    decision = &THREEBYTE38_SYM;
74    break;
75  case THREEBYTE_3A:
76    decision = &THREEBYTE3A_SYM;
77    break;
78  case THREEBYTE_A6:
79    decision = &THREEBYTEA6_SYM;
80    break;
81  case THREEBYTE_A7:
82    decision = &THREEBYTEA7_SYM;
83    break;
84  }
85
86  return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
87    modrm_type != MODRM_ONEENTRY;
88
89  return 0;
90}
91
92/*
93 * decode - Reads the appropriate instruction table to obtain the unique ID of
94 *   an instruction.
95 *
96 * @param type        - See modRMRequired().
97 * @param insnContext - See modRMRequired().
98 * @param opcode      - See modRMRequired().
99 * @param modRM       - The ModR/M byte if required, or any value if not.
100 * @return            - The UID of the instruction, or 0 on failure.
101 */
102static InstrUID decode(OpcodeType type,
103                       InstructionContext insnContext,
104                       uint8_t opcode,
105                       uint8_t modRM) {
106  const struct ModRMDecision* dec = 0;
107
108  switch (type) {
109  case ONEBYTE:
110    dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
111    break;
112  case TWOBYTE:
113    dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
114    break;
115  case THREEBYTE_38:
116    dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
117    break;
118  case THREEBYTE_3A:
119    dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
120    break;
121  case THREEBYTE_A6:
122    dec = &THREEBYTEA6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
123    break;
124  case THREEBYTE_A7:
125    dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
126    break;
127  }
128
129  switch (dec->modrm_type) {
130  default:
131    debug("Corrupt table!  Unknown modrm_type");
132    return 0;
133  case MODRM_ONEENTRY:
134    return modRMTable[dec->instructionIDs];
135  case MODRM_SPLITRM:
136    if (modFromModRM(modRM) == 0x3)
137      return modRMTable[dec->instructionIDs+1];
138    return modRMTable[dec->instructionIDs];
139  case MODRM_SPLITREG:
140    if (modFromModRM(modRM) == 0x3)
141      return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
142    return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
143  case MODRM_FULL:
144    return modRMTable[dec->instructionIDs+modRM];
145  }
146}
147
148/*
149 * specifierForUID - Given a UID, returns the name and operand specification for
150 *   that instruction.
151 *
152 * @param uid - The unique ID for the instruction.  This should be returned by
153 *              decode(); specifierForUID will not check bounds.
154 * @return    - A pointer to the specification for that instruction.
155 */
156static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
157  return &INSTRUCTIONS_SYM[uid];
158}
159
160/*
161 * consumeByte - Uses the reader function provided by the user to consume one
162 *   byte from the instruction's memory and advance the cursor.
163 *
164 * @param insn  - The instruction with the reader function to use.  The cursor
165 *                for this instruction is advanced.
166 * @param byte  - A pointer to a pre-allocated memory buffer to be populated
167 *                with the data read.
168 * @return      - 0 if the read was successful; nonzero otherwise.
169 */
170static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
171  int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
172
173  if (!ret)
174    ++(insn->readerCursor);
175
176  return ret;
177}
178
179/*
180 * lookAtByte - Like consumeByte, but does not advance the cursor.
181 *
182 * @param insn  - See consumeByte().
183 * @param byte  - See consumeByte().
184 * @return      - See consumeByte().
185 */
186static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
187  return insn->reader(insn->readerArg, byte, insn->readerCursor);
188}
189
190static void unconsumeByte(struct InternalInstruction* insn) {
191  insn->readerCursor--;
192}
193
194#define CONSUME_FUNC(name, type)                                  \
195  static int name(struct InternalInstruction* insn, type* ptr) {  \
196    type combined = 0;                                            \
197    unsigned offset;                                              \
198    for (offset = 0; offset < sizeof(type); ++offset) {           \
199      uint8_t byte;                                               \
200      int ret = insn->reader(insn->readerArg,                     \
201                             &byte,                               \
202                             insn->readerCursor + offset);        \
203      if (ret)                                                    \
204        return ret;                                               \
205      combined = combined | ((type)byte << ((type)offset * 8));   \
206    }                                                             \
207    *ptr = combined;                                              \
208    insn->readerCursor += sizeof(type);                           \
209    return 0;                                                     \
210  }
211
212/*
213 * consume* - Use the reader function provided by the user to consume data
214 *   values of various sizes from the instruction's memory and advance the
215 *   cursor appropriately.  These readers perform endian conversion.
216 *
217 * @param insn    - See consumeByte().
218 * @param ptr     - A pointer to a pre-allocated memory of appropriate size to
219 *                  be populated with the data read.
220 * @return        - See consumeByte().
221 */
222CONSUME_FUNC(consumeInt8, int8_t)
223CONSUME_FUNC(consumeInt16, int16_t)
224CONSUME_FUNC(consumeInt32, int32_t)
225CONSUME_FUNC(consumeUInt16, uint16_t)
226CONSUME_FUNC(consumeUInt32, uint32_t)
227CONSUME_FUNC(consumeUInt64, uint64_t)
228
229/*
230 * dbgprintf - Uses the logging function provided by the user to log a single
231 *   message, typically without a carriage-return.
232 *
233 * @param insn    - The instruction containing the logging function.
234 * @param format  - See printf().
235 * @param ...     - See printf().
236 */
237static void dbgprintf(struct InternalInstruction* insn,
238                      const char* format,
239                      ...) {
240  char buffer[256];
241  va_list ap;
242
243  if (!insn->dlog)
244    return;
245
246  va_start(ap, format);
247  (void)vsnprintf(buffer, sizeof(buffer), format, ap);
248  va_end(ap);
249
250  insn->dlog(insn->dlogArg, buffer);
251
252  return;
253}
254
255/*
256 * setPrefixPresent - Marks that a particular prefix is present at a particular
257 *   location.
258 *
259 * @param insn      - The instruction to be marked as having the prefix.
260 * @param prefix    - The prefix that is present.
261 * @param location  - The location where the prefix is located (in the address
262 *                    space of the instruction's reader).
263 */
264static void setPrefixPresent(struct InternalInstruction* insn,
265                                    uint8_t prefix,
266                                    uint64_t location)
267{
268  insn->prefixPresent[prefix] = 1;
269  insn->prefixLocations[prefix] = location;
270}
271
272/*
273 * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
274 *   present at a given location.
275 *
276 * @param insn      - The instruction to be queried.
277 * @param prefix    - The prefix.
278 * @param location  - The location to query.
279 * @return          - Whether the prefix is at that location.
280 */
281static BOOL isPrefixAtLocation(struct InternalInstruction* insn,
282                               uint8_t prefix,
283                               uint64_t location)
284{
285  if (insn->prefixPresent[prefix] == 1 &&
286     insn->prefixLocations[prefix] == location)
287    return TRUE;
288  else
289    return FALSE;
290}
291
292/*
293 * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
294 *   instruction as having them.  Also sets the instruction's default operand,
295 *   address, and other relevant data sizes to report operands correctly.
296 *
297 * @param insn  - The instruction whose prefixes are to be read.
298 * @return      - 0 if the instruction could be read until the end of the prefix
299 *                bytes, and no prefixes conflicted; nonzero otherwise.
300 */
301static int readPrefixes(struct InternalInstruction* insn) {
302  BOOL isPrefix = TRUE;
303  BOOL prefixGroups[4] = { FALSE };
304  uint64_t prefixLocation;
305  uint8_t byte = 0;
306
307  BOOL hasAdSize = FALSE;
308  BOOL hasOpSize = FALSE;
309
310  dbgprintf(insn, "readPrefixes()");
311
312  while (isPrefix) {
313    prefixLocation = insn->readerCursor;
314
315    if (consumeByte(insn, &byte))
316      return -1;
317
318    switch (byte) {
319    case 0xf0:  /* LOCK */
320    case 0xf2:  /* REPNE/REPNZ */
321    case 0xf3:  /* REP or REPE/REPZ */
322      if (prefixGroups[0])
323        dbgprintf(insn, "Redundant Group 1 prefix");
324      prefixGroups[0] = TRUE;
325      setPrefixPresent(insn, byte, prefixLocation);
326      break;
327    case 0x2e:  /* CS segment override -OR- Branch not taken */
328    case 0x36:  /* SS segment override -OR- Branch taken */
329    case 0x3e:  /* DS segment override */
330    case 0x26:  /* ES segment override */
331    case 0x64:  /* FS segment override */
332    case 0x65:  /* GS segment override */
333      switch (byte) {
334      case 0x2e:
335        insn->segmentOverride = SEG_OVERRIDE_CS;
336        break;
337      case 0x36:
338        insn->segmentOverride = SEG_OVERRIDE_SS;
339        break;
340      case 0x3e:
341        insn->segmentOverride = SEG_OVERRIDE_DS;
342        break;
343      case 0x26:
344        insn->segmentOverride = SEG_OVERRIDE_ES;
345        break;
346      case 0x64:
347        insn->segmentOverride = SEG_OVERRIDE_FS;
348        break;
349      case 0x65:
350        insn->segmentOverride = SEG_OVERRIDE_GS;
351        break;
352      default:
353        debug("Unhandled override");
354        return -1;
355      }
356      if (prefixGroups[1])
357        dbgprintf(insn, "Redundant Group 2 prefix");
358      prefixGroups[1] = TRUE;
359      setPrefixPresent(insn, byte, prefixLocation);
360      break;
361    case 0x66:  /* Operand-size override */
362      if (prefixGroups[2])
363        dbgprintf(insn, "Redundant Group 3 prefix");
364      prefixGroups[2] = TRUE;
365      hasOpSize = TRUE;
366      setPrefixPresent(insn, byte, prefixLocation);
367      break;
368    case 0x67:  /* Address-size override */
369      if (prefixGroups[3])
370        dbgprintf(insn, "Redundant Group 4 prefix");
371      prefixGroups[3] = TRUE;
372      hasAdSize = TRUE;
373      setPrefixPresent(insn, byte, prefixLocation);
374      break;
375    default:    /* Not a prefix byte */
376      isPrefix = FALSE;
377      break;
378    }
379
380    if (isPrefix)
381      dbgprintf(insn, "Found prefix 0x%hhx", byte);
382  }
383
384  insn->vexSize = 0;
385
386  if (byte == 0xc4) {
387    uint8_t byte1;
388
389    if (lookAtByte(insn, &byte1)) {
390      dbgprintf(insn, "Couldn't read second byte of VEX");
391      return -1;
392    }
393
394    if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
395      insn->vexSize = 3;
396      insn->necessaryPrefixLocation = insn->readerCursor - 1;
397    }
398    else {
399      unconsumeByte(insn);
400      insn->necessaryPrefixLocation = insn->readerCursor - 1;
401    }
402
403    if (insn->vexSize == 3) {
404      insn->vexPrefix[0] = byte;
405      consumeByte(insn, &insn->vexPrefix[1]);
406      consumeByte(insn, &insn->vexPrefix[2]);
407
408      /* We simulate the REX prefix for simplicity's sake */
409
410      if (insn->mode == MODE_64BIT) {
411        insn->rexPrefix = 0x40
412                        | (wFromVEX3of3(insn->vexPrefix[2]) << 3)
413                        | (rFromVEX2of3(insn->vexPrefix[1]) << 2)
414                        | (xFromVEX2of3(insn->vexPrefix[1]) << 1)
415                        | (bFromVEX2of3(insn->vexPrefix[1]) << 0);
416      }
417
418      switch (ppFromVEX3of3(insn->vexPrefix[2]))
419      {
420      default:
421        break;
422      case VEX_PREFIX_66:
423        hasOpSize = TRUE;
424        break;
425      }
426
427      dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1], insn->vexPrefix[2]);
428    }
429  }
430  else if (byte == 0xc5) {
431    uint8_t byte1;
432
433    if (lookAtByte(insn, &byte1)) {
434      dbgprintf(insn, "Couldn't read second byte of VEX");
435      return -1;
436    }
437
438    if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
439      insn->vexSize = 2;
440    }
441    else {
442      unconsumeByte(insn);
443    }
444
445    if (insn->vexSize == 2) {
446      insn->vexPrefix[0] = byte;
447      consumeByte(insn, &insn->vexPrefix[1]);
448
449      if (insn->mode == MODE_64BIT) {
450        insn->rexPrefix = 0x40
451                        | (rFromVEX2of2(insn->vexPrefix[1]) << 2);
452      }
453
454      switch (ppFromVEX2of2(insn->vexPrefix[1]))
455      {
456      default:
457        break;
458      case VEX_PREFIX_66:
459        hasOpSize = TRUE;
460        break;
461      }
462
463      dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1]);
464    }
465  }
466  else {
467    if (insn->mode == MODE_64BIT) {
468      if ((byte & 0xf0) == 0x40) {
469        uint8_t opcodeByte;
470
471        if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
472          dbgprintf(insn, "Redundant REX prefix");
473          return -1;
474        }
475
476        insn->rexPrefix = byte;
477        insn->necessaryPrefixLocation = insn->readerCursor - 2;
478
479        dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
480      } else {
481        unconsumeByte(insn);
482        insn->necessaryPrefixLocation = insn->readerCursor - 1;
483      }
484    } else {
485      unconsumeByte(insn);
486      insn->necessaryPrefixLocation = insn->readerCursor - 1;
487    }
488  }
489
490  if (insn->mode == MODE_16BIT) {
491    insn->registerSize       = (hasOpSize ? 4 : 2);
492    insn->addressSize        = (hasAdSize ? 4 : 2);
493    insn->displacementSize   = (hasAdSize ? 4 : 2);
494    insn->immediateSize      = (hasOpSize ? 4 : 2);
495  } else if (insn->mode == MODE_32BIT) {
496    insn->registerSize       = (hasOpSize ? 2 : 4);
497    insn->addressSize        = (hasAdSize ? 2 : 4);
498    insn->displacementSize   = (hasAdSize ? 2 : 4);
499    insn->immediateSize      = (hasOpSize ? 2 : 4);
500  } else if (insn->mode == MODE_64BIT) {
501    if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
502      insn->registerSize       = 8;
503      insn->addressSize        = (hasAdSize ? 4 : 8);
504      insn->displacementSize   = 4;
505      insn->immediateSize      = 4;
506    } else if (insn->rexPrefix) {
507      insn->registerSize       = (hasOpSize ? 2 : 4);
508      insn->addressSize        = (hasAdSize ? 4 : 8);
509      insn->displacementSize   = (hasOpSize ? 2 : 4);
510      insn->immediateSize      = (hasOpSize ? 2 : 4);
511    } else {
512      insn->registerSize       = (hasOpSize ? 2 : 4);
513      insn->addressSize        = (hasAdSize ? 4 : 8);
514      insn->displacementSize   = (hasOpSize ? 2 : 4);
515      insn->immediateSize      = (hasOpSize ? 2 : 4);
516    }
517  }
518
519  return 0;
520}
521
522/*
523 * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
524 *   extended or escape opcodes).
525 *
526 * @param insn  - The instruction whose opcode is to be read.
527 * @return      - 0 if the opcode could be read successfully; nonzero otherwise.
528 */
529static int readOpcode(struct InternalInstruction* insn) {
530  /* Determine the length of the primary opcode */
531
532  uint8_t current;
533
534  dbgprintf(insn, "readOpcode()");
535
536  insn->opcodeType = ONEBYTE;
537
538  if (insn->vexSize == 3)
539  {
540    switch (mmmmmFromVEX2of3(insn->vexPrefix[1]))
541    {
542    default:
543      dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", mmmmmFromVEX2of3(insn->vexPrefix[1]));
544      return -1;
545    case 0:
546      break;
547    case VEX_LOB_0F:
548      insn->twoByteEscape = 0x0f;
549      insn->opcodeType = TWOBYTE;
550      return consumeByte(insn, &insn->opcode);
551    case VEX_LOB_0F38:
552      insn->twoByteEscape = 0x0f;
553      insn->threeByteEscape = 0x38;
554      insn->opcodeType = THREEBYTE_38;
555      return consumeByte(insn, &insn->opcode);
556    case VEX_LOB_0F3A:
557      insn->twoByteEscape = 0x0f;
558      insn->threeByteEscape = 0x3a;
559      insn->opcodeType = THREEBYTE_3A;
560      return consumeByte(insn, &insn->opcode);
561    }
562  }
563  else if (insn->vexSize == 2)
564  {
565    insn->twoByteEscape = 0x0f;
566    insn->opcodeType = TWOBYTE;
567    return consumeByte(insn, &insn->opcode);
568  }
569
570  if (consumeByte(insn, &current))
571    return -1;
572
573  if (current == 0x0f) {
574    dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
575
576    insn->twoByteEscape = current;
577
578    if (consumeByte(insn, &current))
579      return -1;
580
581    if (current == 0x38) {
582      dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
583
584      insn->threeByteEscape = current;
585
586      if (consumeByte(insn, &current))
587        return -1;
588
589      insn->opcodeType = THREEBYTE_38;
590    } else if (current == 0x3a) {
591      dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
592
593      insn->threeByteEscape = current;
594
595      if (consumeByte(insn, &current))
596        return -1;
597
598      insn->opcodeType = THREEBYTE_3A;
599    } else if (current == 0xa6) {
600      dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
601
602      insn->threeByteEscape = current;
603
604      if (consumeByte(insn, &current))
605        return -1;
606
607      insn->opcodeType = THREEBYTE_A6;
608    } else if (current == 0xa7) {
609      dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
610
611      insn->threeByteEscape = current;
612
613      if (consumeByte(insn, &current))
614        return -1;
615
616      insn->opcodeType = THREEBYTE_A7;
617    } else {
618      dbgprintf(insn, "Didn't find a three-byte escape prefix");
619
620      insn->opcodeType = TWOBYTE;
621    }
622  }
623
624  /*
625   * At this point we have consumed the full opcode.
626   * Anything we consume from here on must be unconsumed.
627   */
628
629  insn->opcode = current;
630
631  return 0;
632}
633
634static int readModRM(struct InternalInstruction* insn);
635
636/*
637 * getIDWithAttrMask - Determines the ID of an instruction, consuming
638 *   the ModR/M byte as appropriate for extended and escape opcodes,
639 *   and using a supplied attribute mask.
640 *
641 * @param instructionID - A pointer whose target is filled in with the ID of the
642 *                        instruction.
643 * @param insn          - The instruction whose ID is to be determined.
644 * @param attrMask      - The attribute mask to search.
645 * @return              - 0 if the ModR/M could be read when needed or was not
646 *                        needed; nonzero otherwise.
647 */
648static int getIDWithAttrMask(uint16_t* instructionID,
649                             struct InternalInstruction* insn,
650                             uint8_t attrMask) {
651  BOOL hasModRMExtension;
652
653  uint8_t instructionClass;
654
655  instructionClass = contextForAttrs(attrMask);
656
657  hasModRMExtension = modRMRequired(insn->opcodeType,
658                                    instructionClass,
659                                    insn->opcode);
660
661  if (hasModRMExtension) {
662    if (readModRM(insn))
663      return -1;
664
665    *instructionID = decode(insn->opcodeType,
666                            instructionClass,
667                            insn->opcode,
668                            insn->modRM);
669  } else {
670    *instructionID = decode(insn->opcodeType,
671                            instructionClass,
672                            insn->opcode,
673                            0);
674  }
675
676  return 0;
677}
678
679/*
680 * is16BitEquivalent - Determines whether two instruction names refer to
681 * equivalent instructions but one is 16-bit whereas the other is not.
682 *
683 * @param orig  - The instruction that is not 16-bit
684 * @param equiv - The instruction that is 16-bit
685 */
686static BOOL is16BitEquvalent(const char* orig, const char* equiv) {
687  off_t i;
688
689  for (i = 0;; i++) {
690    if (orig[i] == '\0' && equiv[i] == '\0')
691      return TRUE;
692    if (orig[i] == '\0' || equiv[i] == '\0')
693      return FALSE;
694    if (orig[i] != equiv[i]) {
695      if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
696        continue;
697      if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
698        continue;
699      if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
700        continue;
701      return FALSE;
702    }
703  }
704}
705
706/*
707 * getID - Determines the ID of an instruction, consuming the ModR/M byte as
708 *   appropriate for extended and escape opcodes.  Determines the attributes and
709 *   context for the instruction before doing so.
710 *
711 * @param insn  - The instruction whose ID is to be determined.
712 * @return      - 0 if the ModR/M could be read when needed or was not needed;
713 *                nonzero otherwise.
714 */
715static int getID(struct InternalInstruction* insn) {
716  uint8_t attrMask;
717  uint16_t instructionID;
718
719  dbgprintf(insn, "getID()");
720
721  attrMask = ATTR_NONE;
722
723  if (insn->mode == MODE_64BIT)
724    attrMask |= ATTR_64BIT;
725
726  if (insn->vexSize) {
727    attrMask |= ATTR_VEX;
728
729    if (insn->vexSize == 3) {
730      switch (ppFromVEX3of3(insn->vexPrefix[2])) {
731      case VEX_PREFIX_66:
732        attrMask |= ATTR_OPSIZE;
733        break;
734      case VEX_PREFIX_F3:
735        attrMask |= ATTR_XS;
736        break;
737      case VEX_PREFIX_F2:
738        attrMask |= ATTR_XD;
739        break;
740      }
741
742      if (lFromVEX3of3(insn->vexPrefix[2]))
743        attrMask |= ATTR_VEXL;
744    }
745    else if (insn->vexSize == 2) {
746      switch (ppFromVEX2of2(insn->vexPrefix[1])) {
747      case VEX_PREFIX_66:
748        attrMask |= ATTR_OPSIZE;
749        break;
750      case VEX_PREFIX_F3:
751        attrMask |= ATTR_XS;
752        break;
753      case VEX_PREFIX_F2:
754        attrMask |= ATTR_XD;
755        break;
756      }
757
758      if (lFromVEX2of2(insn->vexPrefix[1]))
759        attrMask |= ATTR_VEXL;
760    }
761    else {
762      return -1;
763    }
764  }
765  else {
766    if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
767      attrMask |= ATTR_OPSIZE;
768    else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
769      attrMask |= ATTR_XS;
770    else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
771      attrMask |= ATTR_XD;
772  }
773
774  if (insn->rexPrefix & 0x08)
775    attrMask |= ATTR_REXW;
776
777  if (getIDWithAttrMask(&instructionID, insn, attrMask))
778    return -1;
779
780  /* The following clauses compensate for limitations of the tables. */
781
782  if ((attrMask & ATTR_VEXL) && (attrMask & ATTR_REXW) &&
783      !(attrMask & ATTR_OPSIZE)) {
784    /*
785     * Some VEX instructions ignore the L-bit, but use the W-bit. Normally L-bit
786     * has precedence since there are no L-bit with W-bit entries in the tables.
787     * So if the L-bit isn't significant we should use the W-bit instead.
788     * We only need to do this if the instruction doesn't specify OpSize since
789     * there is a VEX_L_W_OPSIZE table.
790     */
791
792    const struct InstructionSpecifier *spec;
793    uint16_t instructionIDWithWBit;
794    const struct InstructionSpecifier *specWithWBit;
795
796    spec = specifierForUID(instructionID);
797
798    if (getIDWithAttrMask(&instructionIDWithWBit,
799                          insn,
800                          (attrMask & (~ATTR_VEXL)) | ATTR_REXW)) {
801      insn->instructionID = instructionID;
802      insn->spec = spec;
803      return 0;
804    }
805
806    specWithWBit = specifierForUID(instructionIDWithWBit);
807
808    if (instructionID != instructionIDWithWBit) {
809      insn->instructionID = instructionIDWithWBit;
810      insn->spec = specWithWBit;
811    } else {
812      insn->instructionID = instructionID;
813      insn->spec = spec;
814    }
815    return 0;
816  }
817
818  if (insn->prefixPresent[0x66] && !(attrMask & ATTR_OPSIZE)) {
819    /*
820     * The instruction tables make no distinction between instructions that
821     * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
822     * particular spot (i.e., many MMX operations).  In general we're
823     * conservative, but in the specific case where OpSize is present but not
824     * in the right place we check if there's a 16-bit operation.
825     */
826
827    const struct InstructionSpecifier *spec;
828    uint16_t instructionIDWithOpsize;
829    const struct InstructionSpecifier *specWithOpsize;
830
831    spec = specifierForUID(instructionID);
832
833    if (getIDWithAttrMask(&instructionIDWithOpsize,
834                          insn,
835                          attrMask | ATTR_OPSIZE)) {
836      /*
837       * ModRM required with OpSize but not present; give up and return version
838       * without OpSize set
839       */
840
841      insn->instructionID = instructionID;
842      insn->spec = spec;
843      return 0;
844    }
845
846    specWithOpsize = specifierForUID(instructionIDWithOpsize);
847
848    if (is16BitEquvalent(spec->name, specWithOpsize->name)) {
849      insn->instructionID = instructionIDWithOpsize;
850      insn->spec = specWithOpsize;
851    } else {
852      insn->instructionID = instructionID;
853      insn->spec = spec;
854    }
855    return 0;
856  }
857
858  if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
859      insn->rexPrefix & 0x01) {
860    /*
861     * NOOP shouldn't decode as NOOP if REX.b is set. Instead
862     * it should decode as XCHG %r8, %eax.
863     */
864
865    const struct InstructionSpecifier *spec;
866    uint16_t instructionIDWithNewOpcode;
867    const struct InstructionSpecifier *specWithNewOpcode;
868
869    spec = specifierForUID(instructionID);
870
871    /* Borrow opcode from one of the other XCHGar opcodes */
872    insn->opcode = 0x91;
873
874    if (getIDWithAttrMask(&instructionIDWithNewOpcode,
875                          insn,
876                          attrMask)) {
877      insn->opcode = 0x90;
878
879      insn->instructionID = instructionID;
880      insn->spec = spec;
881      return 0;
882    }
883
884    specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
885
886    /* Change back */
887    insn->opcode = 0x90;
888
889    insn->instructionID = instructionIDWithNewOpcode;
890    insn->spec = specWithNewOpcode;
891
892    return 0;
893  }
894
895  insn->instructionID = instructionID;
896  insn->spec = specifierForUID(insn->instructionID);
897
898  return 0;
899}
900
901/*
902 * readSIB - Consumes the SIB byte to determine addressing information for an
903 *   instruction.
904 *
905 * @param insn  - The instruction whose SIB byte is to be read.
906 * @return      - 0 if the SIB byte was successfully read; nonzero otherwise.
907 */
908static int readSIB(struct InternalInstruction* insn) {
909  SIBIndex sibIndexBase = 0;
910  SIBBase sibBaseBase = 0;
911  uint8_t index, base;
912
913  dbgprintf(insn, "readSIB()");
914
915  if (insn->consumedSIB)
916    return 0;
917
918  insn->consumedSIB = TRUE;
919
920  switch (insn->addressSize) {
921  case 2:
922    dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
923    return -1;
924    break;
925  case 4:
926    sibIndexBase = SIB_INDEX_EAX;
927    sibBaseBase = SIB_BASE_EAX;
928    break;
929  case 8:
930    sibIndexBase = SIB_INDEX_RAX;
931    sibBaseBase = SIB_BASE_RAX;
932    break;
933  }
934
935  if (consumeByte(insn, &insn->sib))
936    return -1;
937
938  index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
939
940  switch (index) {
941  case 0x4:
942    insn->sibIndex = SIB_INDEX_NONE;
943    break;
944  default:
945    insn->sibIndex = (SIBIndex)(sibIndexBase + index);
946    if (insn->sibIndex == SIB_INDEX_sib ||
947        insn->sibIndex == SIB_INDEX_sib64)
948      insn->sibIndex = SIB_INDEX_NONE;
949    break;
950  }
951
952  switch (scaleFromSIB(insn->sib)) {
953  case 0:
954    insn->sibScale = 1;
955    break;
956  case 1:
957    insn->sibScale = 2;
958    break;
959  case 2:
960    insn->sibScale = 4;
961    break;
962  case 3:
963    insn->sibScale = 8;
964    break;
965  }
966
967  base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
968
969  switch (base) {
970  case 0x5:
971    switch (modFromModRM(insn->modRM)) {
972    case 0x0:
973      insn->eaDisplacement = EA_DISP_32;
974      insn->sibBase = SIB_BASE_NONE;
975      break;
976    case 0x1:
977      insn->eaDisplacement = EA_DISP_8;
978      insn->sibBase = (insn->addressSize == 4 ?
979                       SIB_BASE_EBP : SIB_BASE_RBP);
980      break;
981    case 0x2:
982      insn->eaDisplacement = EA_DISP_32;
983      insn->sibBase = (insn->addressSize == 4 ?
984                       SIB_BASE_EBP : SIB_BASE_RBP);
985      break;
986    case 0x3:
987      debug("Cannot have Mod = 0b11 and a SIB byte");
988      return -1;
989    }
990    break;
991  default:
992    insn->sibBase = (SIBBase)(sibBaseBase + base);
993    break;
994  }
995
996  return 0;
997}
998
999/*
1000 * readDisplacement - Consumes the displacement of an instruction.
1001 *
1002 * @param insn  - The instruction whose displacement is to be read.
1003 * @return      - 0 if the displacement byte was successfully read; nonzero
1004 *                otherwise.
1005 */
1006static int readDisplacement(struct InternalInstruction* insn) {
1007  int8_t d8;
1008  int16_t d16;
1009  int32_t d32;
1010
1011  dbgprintf(insn, "readDisplacement()");
1012
1013  if (insn->consumedDisplacement)
1014    return 0;
1015
1016  insn->consumedDisplacement = TRUE;
1017
1018  switch (insn->eaDisplacement) {
1019  case EA_DISP_NONE:
1020    insn->consumedDisplacement = FALSE;
1021    break;
1022  case EA_DISP_8:
1023    if (consumeInt8(insn, &d8))
1024      return -1;
1025    insn->displacement = d8;
1026    break;
1027  case EA_DISP_16:
1028    if (consumeInt16(insn, &d16))
1029      return -1;
1030    insn->displacement = d16;
1031    break;
1032  case EA_DISP_32:
1033    if (consumeInt32(insn, &d32))
1034      return -1;
1035    insn->displacement = d32;
1036    break;
1037  }
1038
1039  insn->consumedDisplacement = TRUE;
1040  return 0;
1041}
1042
1043/*
1044 * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1045 *   displacement) for an instruction and interprets it.
1046 *
1047 * @param insn  - The instruction whose addressing information is to be read.
1048 * @return      - 0 if the information was successfully read; nonzero otherwise.
1049 */
1050static int readModRM(struct InternalInstruction* insn) {
1051  uint8_t mod, rm, reg;
1052
1053  dbgprintf(insn, "readModRM()");
1054
1055  if (insn->consumedModRM)
1056    return 0;
1057
1058  if (consumeByte(insn, &insn->modRM))
1059    return -1;
1060  insn->consumedModRM = TRUE;
1061
1062  mod     = modFromModRM(insn->modRM);
1063  rm      = rmFromModRM(insn->modRM);
1064  reg     = regFromModRM(insn->modRM);
1065
1066  /*
1067   * This goes by insn->registerSize to pick the correct register, which messes
1068   * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in
1069   * fixupReg().
1070   */
1071  switch (insn->registerSize) {
1072  case 2:
1073    insn->regBase = MODRM_REG_AX;
1074    insn->eaRegBase = EA_REG_AX;
1075    break;
1076  case 4:
1077    insn->regBase = MODRM_REG_EAX;
1078    insn->eaRegBase = EA_REG_EAX;
1079    break;
1080  case 8:
1081    insn->regBase = MODRM_REG_RAX;
1082    insn->eaRegBase = EA_REG_RAX;
1083    break;
1084  }
1085
1086  reg |= rFromREX(insn->rexPrefix) << 3;
1087  rm  |= bFromREX(insn->rexPrefix) << 3;
1088
1089  insn->reg = (Reg)(insn->regBase + reg);
1090
1091  switch (insn->addressSize) {
1092  case 2:
1093    insn->eaBaseBase = EA_BASE_BX_SI;
1094
1095    switch (mod) {
1096    case 0x0:
1097      if (rm == 0x6) {
1098        insn->eaBase = EA_BASE_NONE;
1099        insn->eaDisplacement = EA_DISP_16;
1100        if (readDisplacement(insn))
1101          return -1;
1102      } else {
1103        insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1104        insn->eaDisplacement = EA_DISP_NONE;
1105      }
1106      break;
1107    case 0x1:
1108      insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1109      insn->eaDisplacement = EA_DISP_8;
1110      if (readDisplacement(insn))
1111        return -1;
1112      break;
1113    case 0x2:
1114      insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1115      insn->eaDisplacement = EA_DISP_16;
1116      if (readDisplacement(insn))
1117        return -1;
1118      break;
1119    case 0x3:
1120      insn->eaBase = (EABase)(insn->eaRegBase + rm);
1121      if (readDisplacement(insn))
1122        return -1;
1123      break;
1124    }
1125    break;
1126  case 4:
1127  case 8:
1128    insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1129
1130    switch (mod) {
1131    case 0x0:
1132      insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1133      switch (rm) {
1134      case 0x4:
1135      case 0xc:   /* in case REXW.b is set */
1136        insn->eaBase = (insn->addressSize == 4 ?
1137                        EA_BASE_sib : EA_BASE_sib64);
1138        readSIB(insn);
1139        if (readDisplacement(insn))
1140          return -1;
1141        break;
1142      case 0x5:
1143        insn->eaBase = EA_BASE_NONE;
1144        insn->eaDisplacement = EA_DISP_32;
1145        if (readDisplacement(insn))
1146          return -1;
1147        break;
1148      default:
1149        insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1150        break;
1151      }
1152      break;
1153    case 0x1:
1154    case 0x2:
1155      insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1156      switch (rm) {
1157      case 0x4:
1158      case 0xc:   /* in case REXW.b is set */
1159        insn->eaBase = EA_BASE_sib;
1160        readSIB(insn);
1161        if (readDisplacement(insn))
1162          return -1;
1163        break;
1164      default:
1165        insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1166        if (readDisplacement(insn))
1167          return -1;
1168        break;
1169      }
1170      break;
1171    case 0x3:
1172      insn->eaDisplacement = EA_DISP_NONE;
1173      insn->eaBase = (EABase)(insn->eaRegBase + rm);
1174      break;
1175    }
1176    break;
1177  } /* switch (insn->addressSize) */
1178
1179  return 0;
1180}
1181
1182#define GENERIC_FIXUP_FUNC(name, base, prefix)            \
1183  static uint8_t name(struct InternalInstruction *insn,   \
1184                      OperandType type,                   \
1185                      uint8_t index,                      \
1186                      uint8_t *valid) {                   \
1187    *valid = 1;                                           \
1188    switch (type) {                                       \
1189    default:                                              \
1190      debug("Unhandled register type");                   \
1191      *valid = 0;                                         \
1192      return 0;                                           \
1193    case TYPE_Rv:                                         \
1194      return base + index;                                \
1195    case TYPE_R8:                                         \
1196      if (insn->rexPrefix &&                              \
1197         index >= 4 && index <= 7) {                      \
1198        return prefix##_SPL + (index - 4);                \
1199      } else {                                            \
1200        return prefix##_AL + index;                       \
1201      }                                                   \
1202    case TYPE_R16:                                        \
1203      return prefix##_AX + index;                         \
1204    case TYPE_R32:                                        \
1205      return prefix##_EAX + index;                        \
1206    case TYPE_R64:                                        \
1207      return prefix##_RAX + index;                        \
1208    case TYPE_XMM256:                                     \
1209      return prefix##_YMM0 + index;                       \
1210    case TYPE_XMM128:                                     \
1211    case TYPE_XMM64:                                      \
1212    case TYPE_XMM32:                                      \
1213    case TYPE_XMM:                                        \
1214      return prefix##_XMM0 + index;                       \
1215    case TYPE_MM64:                                       \
1216    case TYPE_MM32:                                       \
1217    case TYPE_MM:                                         \
1218      if (index > 7)                                      \
1219        *valid = 0;                                       \
1220      return prefix##_MM0 + index;                        \
1221    case TYPE_SEGMENTREG:                                 \
1222      if (index > 5)                                      \
1223        *valid = 0;                                       \
1224      return prefix##_ES + index;                         \
1225    case TYPE_DEBUGREG:                                   \
1226      if (index > 7)                                      \
1227        *valid = 0;                                       \
1228      return prefix##_DR0 + index;                        \
1229    case TYPE_CONTROLREG:                                 \
1230      if (index > 8)                                      \
1231        *valid = 0;                                       \
1232      return prefix##_CR0 + index;                        \
1233    }                                                     \
1234  }
1235
1236/*
1237 * fixup*Value - Consults an operand type to determine the meaning of the
1238 *   reg or R/M field.  If the operand is an XMM operand, for example, an
1239 *   operand would be XMM0 instead of AX, which readModRM() would otherwise
1240 *   misinterpret it as.
1241 *
1242 * @param insn  - The instruction containing the operand.
1243 * @param type  - The operand type.
1244 * @param index - The existing value of the field as reported by readModRM().
1245 * @param valid - The address of a uint8_t.  The target is set to 1 if the
1246 *                field is valid for the register class; 0 if not.
1247 * @return      - The proper value.
1248 */
1249GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase,    MODRM_REG)
1250GENERIC_FIXUP_FUNC(fixupRMValue,  insn->eaRegBase,  EA_REG)
1251
1252/*
1253 * fixupReg - Consults an operand specifier to determine which of the
1254 *   fixup*Value functions to use in correcting readModRM()'ss interpretation.
1255 *
1256 * @param insn  - See fixup*Value().
1257 * @param op    - The operand specifier.
1258 * @return      - 0 if fixup was successful; -1 if the register returned was
1259 *                invalid for its class.
1260 */
1261static int fixupReg(struct InternalInstruction *insn,
1262                    const struct OperandSpecifier *op) {
1263  uint8_t valid;
1264
1265  dbgprintf(insn, "fixupReg()");
1266
1267  switch ((OperandEncoding)op->encoding) {
1268  default:
1269    debug("Expected a REG or R/M encoding in fixupReg");
1270    return -1;
1271  case ENCODING_VVVV:
1272    insn->vvvv = (Reg)fixupRegValue(insn,
1273                                    (OperandType)op->type,
1274                                    insn->vvvv,
1275                                    &valid);
1276    if (!valid)
1277      return -1;
1278    break;
1279  case ENCODING_REG:
1280    insn->reg = (Reg)fixupRegValue(insn,
1281                                   (OperandType)op->type,
1282                                   insn->reg - insn->regBase,
1283                                   &valid);
1284    if (!valid)
1285      return -1;
1286    break;
1287  case ENCODING_RM:
1288    if (insn->eaBase >= insn->eaRegBase) {
1289      insn->eaBase = (EABase)fixupRMValue(insn,
1290                                          (OperandType)op->type,
1291                                          insn->eaBase - insn->eaRegBase,
1292                                          &valid);
1293      if (!valid)
1294        return -1;
1295    }
1296    break;
1297  }
1298
1299  return 0;
1300}
1301
1302/*
1303 * readOpcodeModifier - Reads an operand from the opcode field of an
1304 *   instruction.  Handles AddRegFrm instructions.
1305 *
1306 * @param insn    - The instruction whose opcode field is to be read.
1307 * @param inModRM - Indicates that the opcode field is to be read from the
1308 *                  ModR/M extension; useful for escape opcodes
1309 * @return        - 0 on success; nonzero otherwise.
1310 */
1311static int readOpcodeModifier(struct InternalInstruction* insn) {
1312  dbgprintf(insn, "readOpcodeModifier()");
1313
1314  if (insn->consumedOpcodeModifier)
1315    return 0;
1316
1317  insn->consumedOpcodeModifier = TRUE;
1318
1319  switch (insn->spec->modifierType) {
1320  default:
1321    debug("Unknown modifier type.");
1322    return -1;
1323  case MODIFIER_NONE:
1324    debug("No modifier but an operand expects one.");
1325    return -1;
1326  case MODIFIER_OPCODE:
1327    insn->opcodeModifier = insn->opcode - insn->spec->modifierBase;
1328    return 0;
1329  case MODIFIER_MODRM:
1330    insn->opcodeModifier = insn->modRM - insn->spec->modifierBase;
1331    return 0;
1332  }
1333}
1334
1335/*
1336 * readOpcodeRegister - Reads an operand from the opcode field of an
1337 *   instruction and interprets it appropriately given the operand width.
1338 *   Handles AddRegFrm instructions.
1339 *
1340 * @param insn  - See readOpcodeModifier().
1341 * @param size  - The width (in bytes) of the register being specified.
1342 *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1343 *                RAX.
1344 * @return      - 0 on success; nonzero otherwise.
1345 */
1346static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1347  dbgprintf(insn, "readOpcodeRegister()");
1348
1349  if (readOpcodeModifier(insn))
1350    return -1;
1351
1352  if (size == 0)
1353    size = insn->registerSize;
1354
1355  switch (size) {
1356  case 1:
1357    insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1358                                                  | insn->opcodeModifier));
1359    if (insn->rexPrefix &&
1360        insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1361        insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1362      insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1363                                   + (insn->opcodeRegister - MODRM_REG_AL - 4));
1364    }
1365
1366    break;
1367  case 2:
1368    insn->opcodeRegister = (Reg)(MODRM_REG_AX
1369                                 + ((bFromREX(insn->rexPrefix) << 3)
1370                                    | insn->opcodeModifier));
1371    break;
1372  case 4:
1373    insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1374                                 + ((bFromREX(insn->rexPrefix) << 3)
1375                                    | insn->opcodeModifier));
1376    break;
1377  case 8:
1378    insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1379                                 + ((bFromREX(insn->rexPrefix) << 3)
1380                                    | insn->opcodeModifier));
1381    break;
1382  }
1383
1384  return 0;
1385}
1386
1387/*
1388 * readImmediate - Consumes an immediate operand from an instruction, given the
1389 *   desired operand size.
1390 *
1391 * @param insn  - The instruction whose operand is to be read.
1392 * @param size  - The width (in bytes) of the operand.
1393 * @return      - 0 if the immediate was successfully consumed; nonzero
1394 *                otherwise.
1395 */
1396static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1397  uint8_t imm8;
1398  uint16_t imm16;
1399  uint32_t imm32;
1400  uint64_t imm64;
1401
1402  dbgprintf(insn, "readImmediate()");
1403
1404  if (insn->numImmediatesConsumed == 2) {
1405    debug("Already consumed two immediates");
1406    return -1;
1407  }
1408
1409  if (size == 0)
1410    size = insn->immediateSize;
1411  else
1412    insn->immediateSize = size;
1413
1414  switch (size) {
1415  case 1:
1416    if (consumeByte(insn, &imm8))
1417      return -1;
1418    insn->immediates[insn->numImmediatesConsumed] = imm8;
1419    break;
1420  case 2:
1421    if (consumeUInt16(insn, &imm16))
1422      return -1;
1423    insn->immediates[insn->numImmediatesConsumed] = imm16;
1424    break;
1425  case 4:
1426    if (consumeUInt32(insn, &imm32))
1427      return -1;
1428    insn->immediates[insn->numImmediatesConsumed] = imm32;
1429    break;
1430  case 8:
1431    if (consumeUInt64(insn, &imm64))
1432      return -1;
1433    insn->immediates[insn->numImmediatesConsumed] = imm64;
1434    break;
1435  }
1436
1437  insn->numImmediatesConsumed++;
1438
1439  return 0;
1440}
1441
1442/*
1443 * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1444 *
1445 * @param insn  - The instruction whose operand is to be read.
1446 * @return      - 0 if the vvvv was successfully consumed; nonzero
1447 *                otherwise.
1448 */
1449static int readVVVV(struct InternalInstruction* insn) {
1450  dbgprintf(insn, "readVVVV()");
1451
1452  if (insn->vexSize == 3)
1453    insn->vvvv = vvvvFromVEX3of3(insn->vexPrefix[2]);
1454  else if (insn->vexSize == 2)
1455    insn->vvvv = vvvvFromVEX2of2(insn->vexPrefix[1]);
1456  else
1457    return -1;
1458
1459  if (insn->mode != MODE_64BIT)
1460    insn->vvvv &= 0x7;
1461
1462  return 0;
1463}
1464
1465/*
1466 * readOperands - Consults the specifier for an instruction and consumes all
1467 *   operands for that instruction, interpreting them as it goes.
1468 *
1469 * @param insn  - The instruction whose operands are to be read and interpreted.
1470 * @return      - 0 if all operands could be read; nonzero otherwise.
1471 */
1472static int readOperands(struct InternalInstruction* insn) {
1473  int index;
1474  int hasVVVV, needVVVV;
1475  int sawRegImm = 0;
1476
1477  dbgprintf(insn, "readOperands()");
1478
1479  /* If non-zero vvvv specified, need to make sure one of the operands
1480     uses it. */
1481  hasVVVV = !readVVVV(insn);
1482  needVVVV = hasVVVV && (insn->vvvv != 0);
1483
1484  for (index = 0; index < X86_MAX_OPERANDS; ++index) {
1485    switch (insn->spec->operands[index].encoding) {
1486    case ENCODING_NONE:
1487      break;
1488    case ENCODING_REG:
1489    case ENCODING_RM:
1490      if (readModRM(insn))
1491        return -1;
1492      if (fixupReg(insn, &insn->spec->operands[index]))
1493        return -1;
1494      break;
1495    case ENCODING_CB:
1496    case ENCODING_CW:
1497    case ENCODING_CD:
1498    case ENCODING_CP:
1499    case ENCODING_CO:
1500    case ENCODING_CT:
1501      dbgprintf(insn, "We currently don't hande code-offset encodings");
1502      return -1;
1503    case ENCODING_IB:
1504      if (sawRegImm) {
1505        /* Saw a register immediate so don't read again and instead split the
1506           previous immediate.  FIXME: This is a hack. */
1507        insn->immediates[insn->numImmediatesConsumed] =
1508          insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1509        ++insn->numImmediatesConsumed;
1510        break;
1511      }
1512      if (readImmediate(insn, 1))
1513        return -1;
1514      if (insn->spec->operands[index].type == TYPE_IMM3 &&
1515          insn->immediates[insn->numImmediatesConsumed - 1] > 7)
1516        return -1;
1517      if (insn->spec->operands[index].type == TYPE_XMM128 ||
1518          insn->spec->operands[index].type == TYPE_XMM256)
1519        sawRegImm = 1;
1520      break;
1521    case ENCODING_IW:
1522      if (readImmediate(insn, 2))
1523        return -1;
1524      break;
1525    case ENCODING_ID:
1526      if (readImmediate(insn, 4))
1527        return -1;
1528      break;
1529    case ENCODING_IO:
1530      if (readImmediate(insn, 8))
1531        return -1;
1532      break;
1533    case ENCODING_Iv:
1534      if (readImmediate(insn, insn->immediateSize))
1535        return -1;
1536      break;
1537    case ENCODING_Ia:
1538      if (readImmediate(insn, insn->addressSize))
1539        return -1;
1540      break;
1541    case ENCODING_RB:
1542      if (readOpcodeRegister(insn, 1))
1543        return -1;
1544      break;
1545    case ENCODING_RW:
1546      if (readOpcodeRegister(insn, 2))
1547        return -1;
1548      break;
1549    case ENCODING_RD:
1550      if (readOpcodeRegister(insn, 4))
1551        return -1;
1552      break;
1553    case ENCODING_RO:
1554      if (readOpcodeRegister(insn, 8))
1555        return -1;
1556      break;
1557    case ENCODING_Rv:
1558      if (readOpcodeRegister(insn, 0))
1559        return -1;
1560      break;
1561    case ENCODING_I:
1562      if (readOpcodeModifier(insn))
1563        return -1;
1564      break;
1565    case ENCODING_VVVV:
1566      needVVVV = 0; /* Mark that we have found a VVVV operand. */
1567      if (!hasVVVV)
1568        return -1;
1569      if (fixupReg(insn, &insn->spec->operands[index]))
1570        return -1;
1571      break;
1572    case ENCODING_DUP:
1573      break;
1574    default:
1575      dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1576      return -1;
1577    }
1578  }
1579
1580  /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1581  if (needVVVV) return -1;
1582
1583  return 0;
1584}
1585
1586/*
1587 * decodeInstruction - Reads and interprets a full instruction provided by the
1588 *   user.
1589 *
1590 * @param insn      - A pointer to the instruction to be populated.  Must be
1591 *                    pre-allocated.
1592 * @param reader    - The function to be used to read the instruction's bytes.
1593 * @param readerArg - A generic argument to be passed to the reader to store
1594 *                    any internal state.
1595 * @param logger    - If non-NULL, the function to be used to write log messages
1596 *                    and warnings.
1597 * @param loggerArg - A generic argument to be passed to the logger to store
1598 *                    any internal state.
1599 * @param startLoc  - The address (in the reader's address space) of the first
1600 *                    byte in the instruction.
1601 * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1602 *                    decode the instruction in.
1603 * @return          - 0 if the instruction's memory could be read; nonzero if
1604 *                    not.
1605 */
1606int decodeInstruction(struct InternalInstruction* insn,
1607                      byteReader_t reader,
1608                      void* readerArg,
1609                      dlog_t logger,
1610                      void* loggerArg,
1611                      uint64_t startLoc,
1612                      DisassemblerMode mode) {
1613  memset(insn, 0, sizeof(struct InternalInstruction));
1614
1615  insn->reader = reader;
1616  insn->readerArg = readerArg;
1617  insn->dlog = logger;
1618  insn->dlogArg = loggerArg;
1619  insn->startLocation = startLoc;
1620  insn->readerCursor = startLoc;
1621  insn->mode = mode;
1622  insn->numImmediatesConsumed = 0;
1623
1624  if (readPrefixes(insn)       ||
1625      readOpcode(insn)         ||
1626      getID(insn)              ||
1627      insn->instructionID == 0 ||
1628      readOperands(insn))
1629    return -1;
1630
1631  insn->length = insn->readerCursor - insn->startLocation;
1632
1633  dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1634            startLoc, insn->readerCursor, insn->length);
1635
1636  if (insn->length > 15)
1637    dbgprintf(insn, "Instruction exceeds 15-byte limit");
1638
1639  return 0;
1640}
1641