ArgumentPromotion.cpp revision 38deef9ce58b33dba34515f23fb7dbde02164c77
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// by default it refuses to scalarize aggregates which would require passing in
21// more than three operands to the function, because passing thousands of
22// operands for a large array or structure is unprofitable! This limit can be
23// configured or disabled, however.
24//
25// Note that this transformation could also be done for arguments that are only
26// stored to (returning the value instead), but does not currently.  This case
27// would be best handled when and if LLVM begins supporting multiple return
28// values from functions.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "argpromotion"
33#include "llvm/Transforms/IPO.h"
34#include "llvm/Constants.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/CallGraphSCCPass.h"
38#include "llvm/Instructions.h"
39#include "llvm/Analysis/AliasAnalysis.h"
40#include "llvm/Analysis/CallGraph.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/ADT/DepthFirstIterator.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/Support/Compiler.h"
49#include <set>
50using namespace llvm;
51
52STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
53STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
54STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
55STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
56
57namespace {
58  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
59  ///
60  struct VISIBILITY_HIDDEN ArgPromotion : public CallGraphSCCPass {
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.addRequired<AliasAnalysis>();
63      AU.addRequired<TargetData>();
64      CallGraphSCCPass::getAnalysisUsage(AU);
65    }
66
67    virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
68    static char ID; // Pass identification, replacement for typeid
69    explicit ArgPromotion(unsigned maxElements = 3)
70      : CallGraphSCCPass(&ID), maxElements(maxElements) {}
71
72    /// A vector used to hold the indices of a single GEP instruction
73    typedef std::vector<uint64_t> IndicesVector;
74
75  private:
76    bool PromoteArguments(CallGraphNode *CGN);
77    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
78    Function *DoPromotion(Function *F,
79                          SmallPtrSet<Argument*, 8> &ArgsToPromote,
80                          SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
81    /// The maximum number of elements to expand, or 0 for unlimited.
82    unsigned maxElements;
83  };
84}
85
86char ArgPromotion::ID = 0;
87static RegisterPass<ArgPromotion>
88X("argpromotion", "Promote 'by reference' arguments to scalars");
89
90Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
91  return new ArgPromotion(maxElements);
92}
93
94bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
95  bool Changed = false, LocalChange;
96
97  do {  // Iterate until we stop promoting from this SCC.
98    LocalChange = false;
99    // Attempt to promote arguments from all functions in this SCC.
100    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
101      LocalChange |= PromoteArguments(SCC[i]);
102    Changed |= LocalChange;               // Remember that we changed something.
103  } while (LocalChange);
104
105  return Changed;
106}
107
108/// PromoteArguments - This method checks the specified function to see if there
109/// are any promotable arguments and if it is safe to promote the function (for
110/// example, all callers are direct).  If safe to promote some arguments, it
111/// calls the DoPromotion method.
112///
113bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
114  Function *F = CGN->getFunction();
115
116  // Make sure that it is local to this module.
117  if (!F || !F->hasLocalLinkage()) return false;
118
119  // First check: see if there are any pointer arguments!  If not, quick exit.
120  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
121  unsigned ArgNo = 0;
122  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
123       I != E; ++I, ++ArgNo)
124    if (isa<PointerType>(I->getType()))
125      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
126  if (PointerArgs.empty()) return false;
127
128  // Second check: make sure that all callers are direct callers.  We can't
129  // transform functions that have indirect callers.
130  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
131       UI != E; ++UI) {
132    CallSite CS = CallSite::get(*UI);
133    if (!CS.getInstruction())       // "Taking the address" of the function
134      return false;
135
136    // Ensure that this call site is CALLING the function, not passing it as
137    // an argument.
138    if (!CS.isCallee(UI))
139      return false;
140  }
141
142  // Check to see which arguments are promotable.  If an argument is promotable,
143  // add it to ArgsToPromote.
144  SmallPtrSet<Argument*, 8> ArgsToPromote;
145  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
146  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
147    bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
148
149    // If this is a byval argument, and if the aggregate type is small, just
150    // pass the elements, which is always safe.
151    Argument *PtrArg = PointerArgs[i].first;
152    if (isByVal) {
153      const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
154      if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
155        if (maxElements > 0 && STy->getNumElements() > maxElements) {
156          DOUT << "argpromotion disable promoting argument '"
157               << PtrArg->getName() << "' because it would require adding more "
158               << "than " << maxElements << " arguments to the function.\n";
159        } else {
160          // If all the elements are single-value types, we can promote it.
161          bool AllSimple = true;
162          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
163            if (!STy->getElementType(i)->isSingleValueType()) {
164              AllSimple = false;
165              break;
166            }
167
168          // Safe to transform, don't even bother trying to "promote" it.
169          // Passing the elements as a scalar will allow scalarrepl to hack on
170          // the new alloca we introduce.
171          if (AllSimple) {
172            ByValArgsToTransform.insert(PtrArg);
173            continue;
174          }
175        }
176      }
177    }
178
179    // Otherwise, see if we can promote the pointer to its value.
180    if (isSafeToPromoteArgument(PtrArg, isByVal))
181      ArgsToPromote.insert(PtrArg);
182  }
183
184  // No promotable pointer arguments.
185  if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) return false;
186
187  Function *NewF = DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
188
189  // Update the call graph to know that the function has been transformed.
190  getAnalysis<CallGraph>().changeFunction(F, NewF);
191  return true;
192}
193
194/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
195/// to load.
196static bool IsAlwaysValidPointer(Value *V) {
197  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
198  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
199    return IsAlwaysValidPointer(GEP->getOperand(0));
200  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
201    if (CE->getOpcode() == Instruction::GetElementPtr)
202      return IsAlwaysValidPointer(CE->getOperand(0));
203
204  return false;
205}
206
207/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
208/// all callees pass in a valid pointer for the specified function argument.
209static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
210  Function *Callee = Arg->getParent();
211
212  unsigned ArgNo = std::distance(Callee->arg_begin(),
213                                 Function::arg_iterator(Arg));
214
215  // Look at all call sites of the function.  At this pointer we know we only
216  // have direct callees.
217  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
218       UI != E; ++UI) {
219    CallSite CS = CallSite::get(*UI);
220    assert(CS.getInstruction() && "Should only have direct calls!");
221
222    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
223      return false;
224  }
225  return true;
226}
227
228/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
229/// that is greater than or equal to the size of prefix, and each of the
230/// elements in Prefix is the same as the corresponding elements in Longer.
231///
232/// This means it also returns true when Prefix and Longer are equal!
233static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
234                     const ArgPromotion::IndicesVector &Longer) {
235  if (Prefix.size() > Longer.size())
236    return false;
237  for (unsigned i = 0, e = Prefix.size(); i != e; ++i)
238    if (Prefix[i] != Longer[i])
239      return false;
240  return true;
241}
242
243
244/// Checks if Indices, or a prefix of Indices, is in Set.
245static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
246                     std::set<ArgPromotion::IndicesVector> &Set) {
247    std::set<ArgPromotion::IndicesVector>::iterator Low;
248    Low = Set.upper_bound(Indices);
249    if (Low != Set.begin())
250      Low--;
251    // Low is now the last element smaller than or equal to Indices. This means
252    // it points to a prefix of Indices (possibly Indices itself), if such
253    // prefix exists.
254    //
255    // This load is safe if any prefix of its operands is safe to load.
256    return Low != Set.end() && IsPrefix(*Low, Indices);
257}
258
259/// Mark the given indices (ToMark) as safe in the the given set of indices
260/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
261/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
262/// already. Furthermore, any indices that Indices is itself a prefix of, are
263/// removed from Safe (since they are implicitely safe because of Indices now).
264static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
265                            std::set<ArgPromotion::IndicesVector> &Safe) {
266  std::set<ArgPromotion::IndicesVector>::iterator Low;
267  Low = Safe.upper_bound(ToMark);
268  // Guard against the case where Safe is empty
269  if (Low != Safe.begin())
270    Low--;
271  // Low is now the last element smaller than or equal to Indices. This
272  // means it points to a prefix of Indices (possibly Indices itself), if
273  // such prefix exists.
274  if (Low != Safe.end()) {
275    if (IsPrefix(*Low, ToMark))
276      // If there is already a prefix of these indices (or exactly these
277      // indices) marked a safe, don't bother adding these indices
278      return;
279
280    // Increment Low, so we can use it as a "insert before" hint
281    ++Low;
282  }
283  // Insert
284  Low = Safe.insert(Low, ToMark);
285  ++Low;
286  // If there we're a prefix of longer index list(s), remove those
287  std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
288  while (Low != End && IsPrefix(ToMark, *Low)) {
289    std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
290    ++Low;
291    Safe.erase(Remove);
292  }
293}
294
295/// isSafeToPromoteArgument - As you might guess from the name of this method,
296/// it checks to see if it is both safe and useful to promote the argument.
297/// This method limits promotion of aggregates to only promote up to three
298/// elements of the aggregate in order to avoid exploding the number of
299/// arguments passed in.
300bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
301  typedef std::set<IndicesVector> GEPIndicesSet;
302
303  // Quick exit for unused arguments
304  if (Arg->use_empty())
305    return true;
306
307  // We can only promote this argument if all of the uses are loads, or are GEP
308  // instructions (with constant indices) that are subsequently loaded.
309  //
310  // Promoting the argument causes it to be loaded in the caller
311  // unconditionally. This is only safe if we can prove that either the load
312  // would have happened in the callee anyway (ie, there is a load in the entry
313  // block) or the pointer passed in at every call site is guaranteed to be
314  // valid.
315  // In the former case, invalid loads can happen, but would have happened
316  // anyway, in the latter case, invalid loads won't happen. This prevents us
317  // from introducing an invalid load that wouldn't have happened in the
318  // original code.
319  //
320  // This set will contain all sets of indices that are loaded in the entry
321  // block, and thus are safe to unconditionally load in the caller.
322  GEPIndicesSet SafeToUnconditionallyLoad;
323
324  // This set contains all the sets of indices that we are planning to promote.
325  // This makes it possible to limit the number of arguments added.
326  GEPIndicesSet ToPromote;
327
328  // If the pointer is always valid, any load with first index 0 is valid.
329  if(isByVal || AllCalleesPassInValidPointerForArgument(Arg))
330    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
331
332  // First, iterate the entry block and mark loads of (geps of) arguments as
333  // safe.
334  BasicBlock *EntryBlock = Arg->getParent()->begin();
335  // Declare this here so we can reuse it
336  IndicesVector Indices;
337  for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
338       I != E; ++I)
339    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
340      Value *V = LI->getPointerOperand();
341      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
342        V = GEP->getPointerOperand();
343        if (V == Arg) {
344          // This load actually loads (part of) Arg? Check the indices then.
345          Indices.reserve(GEP->getNumIndices());
346          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
347               II != IE; ++II)
348            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
349              Indices.push_back(CI->getSExtValue());
350            else
351              // We found a non-constant GEP index for this argument? Bail out
352              // right away, can't promote this argument at all.
353              return false;
354
355          // Indices checked out, mark them as safe
356          MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
357          Indices.clear();
358        }
359      } else if (V == Arg) {
360        // Direct loads are equivalent to a GEP with a single 0 index.
361        MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
362      }
363    }
364
365  // Now, iterate all uses of the argument to see if there are any uses that are
366  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
367  SmallVector<LoadInst*, 16> Loads;
368  IndicesVector Operands;
369  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
370       UI != E; ++UI) {
371    Operands.clear();
372    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
373      if (LI->isVolatile()) return false;  // Don't hack volatile loads
374      Loads.push_back(LI);
375      // Direct loads are equivalent to a GEP with a zero index and then a load.
376      Operands.push_back(0);
377    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
378      if (GEP->use_empty()) {
379        // Dead GEP's cause trouble later.  Just remove them if we run into
380        // them.
381        getAnalysis<AliasAnalysis>().deleteValue(GEP);
382        GEP->eraseFromParent();
383        // TODO: This runs the above loop over and over again for dead GEPS
384        // Couldn't we just do increment the UI iterator earlier and erase the
385        // use?
386        return isSafeToPromoteArgument(Arg, isByVal);
387      }
388
389      // Ensure that all of the indices are constants.
390      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
391        i != e; ++i)
392        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
393          Operands.push_back(C->getSExtValue());
394        else
395          return false;  // Not a constant operand GEP!
396
397      // Ensure that the only users of the GEP are load instructions.
398      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
399           UI != E; ++UI)
400        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
401          if (LI->isVolatile()) return false;  // Don't hack volatile loads
402          Loads.push_back(LI);
403        } else {
404          // Other uses than load?
405          return false;
406        }
407    } else {
408      return false;  // Not a load or a GEP.
409    }
410
411    // Now, see if it is safe to promote this load / loads of this GEP. Loading
412    // is safe if Operands, or a prefix of Operands, is marked as safe.
413    if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
414      return false;
415
416    // See if we are already promoting a load with these indices. If not, check
417    // to make sure that we aren't promoting too many elements.  If so, nothing
418    // to do.
419    if (ToPromote.find(Operands) == ToPromote.end()) {
420      if (maxElements > 0 && ToPromote.size() == maxElements) {
421        DOUT << "argpromotion not promoting argument '"
422             << Arg->getName() << "' because it would require adding more "
423             << "than " << maxElements << " arguments to the function.\n";
424        // We limit aggregate promotion to only promoting up to a fixed number
425        // of elements of the aggregate.
426        return false;
427      }
428      ToPromote.insert(Operands);
429    }
430  }
431
432  if (Loads.empty()) return true;  // No users, this is a dead argument.
433
434  // Okay, now we know that the argument is only used by load instructions and
435  // it is safe to unconditionally perform all of them. Use alias analysis to
436  // check to see if the pointer is guaranteed to not be modified from entry of
437  // the function to each of the load instructions.
438
439  // Because there could be several/many load instructions, remember which
440  // blocks we know to be transparent to the load.
441  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
442
443  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
444  TargetData &TD = getAnalysis<TargetData>();
445
446  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
447    // Check to see if the load is invalidated from the start of the block to
448    // the load itself.
449    LoadInst *Load = Loads[i];
450    BasicBlock *BB = Load->getParent();
451
452    const PointerType *LoadTy =
453      cast<PointerType>(Load->getPointerOperand()->getType());
454    unsigned LoadSize = (unsigned)TD.getTypeStoreSize(LoadTy->getElementType());
455
456    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
457      return false;  // Pointer is invalidated!
458
459    // Now check every path from the entry block to the load for transparency.
460    // To do this, we perform a depth first search on the inverse CFG from the
461    // loading block.
462    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
463      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
464             I = idf_ext_begin(*PI, TranspBlocks),
465             E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
466        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
467          return false;
468  }
469
470  // If the path from the entry of the function to each load is free of
471  // instructions that potentially invalidate the load, we can make the
472  // transformation!
473  return true;
474}
475
476/// DoPromotion - This method actually performs the promotion of the specified
477/// arguments, and returns the new function.  At this point, we know that it's
478/// safe to do so.
479Function *ArgPromotion::DoPromotion(Function *F,
480                                    SmallPtrSet<Argument*, 8> &ArgsToPromote,
481                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
482
483  // Start by computing a new prototype for the function, which is the same as
484  // the old function, but has modified arguments.
485  const FunctionType *FTy = F->getFunctionType();
486  std::vector<const Type*> Params;
487
488  typedef std::set<IndicesVector> ScalarizeTable;
489
490  // ScalarizedElements - If we are promoting a pointer that has elements
491  // accessed out of it, keep track of which elements are accessed so that we
492  // can add one argument for each.
493  //
494  // Arguments that are directly loaded will have a zero element value here, to
495  // handle cases where there are both a direct load and GEP accesses.
496  //
497  std::map<Argument*, ScalarizeTable> ScalarizedElements;
498
499  // OriginalLoads - Keep track of a representative load instruction from the
500  // original function so that we can tell the alias analysis implementation
501  // what the new GEP/Load instructions we are inserting look like.
502  std::map<IndicesVector, LoadInst*> OriginalLoads;
503
504  // Attributes - Keep track of the parameter attributes for the arguments
505  // that we are *not* promoting. For the ones that we do promote, the parameter
506  // attributes are lost
507  SmallVector<AttributeWithIndex, 8> AttributesVec;
508  const AttrListPtr &PAL = F->getAttributes();
509
510  // Add any return attributes.
511  if (Attributes attrs = PAL.getRetAttributes())
512    AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
513
514  // First, determine the new argument list
515  unsigned ArgIndex = 1;
516  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
517       ++I, ++ArgIndex) {
518    if (ByValArgsToTransform.count(I)) {
519      // Simple byval argument? Just add all the struct element types.
520      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
521      const StructType *STy = cast<StructType>(AgTy);
522      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
523        Params.push_back(STy->getElementType(i));
524      ++NumByValArgsPromoted;
525    } else if (!ArgsToPromote.count(I)) {
526      // Unchanged argument
527      Params.push_back(I->getType());
528      if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
529        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
530    } else if (I->use_empty()) {
531      // Dead argument (which are always marked as promotable)
532      ++NumArgumentsDead;
533    } else {
534      // Okay, this is being promoted. This means that the only uses are loads
535      // or GEPs which are only used by loads
536
537      // In this table, we will track which indices are loaded from the argument
538      // (where direct loads are tracked as no indices).
539      ScalarizeTable &ArgIndices = ScalarizedElements[I];
540      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
541           ++UI) {
542        Instruction *User = cast<Instruction>(*UI);
543        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
544        IndicesVector Indices;
545        Indices.reserve(User->getNumOperands() - 1);
546        // Since loads will only have a single operand, and GEPs only a single
547        // non-index operand, this will record direct loads without any indices,
548        // and gep+loads with the GEP indices.
549        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
550             II != IE; ++II)
551          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
552        // GEPs with a single 0 index can be merged with direct loads
553        if (Indices.size() == 1 && Indices.front() == 0)
554          Indices.clear();
555        ArgIndices.insert(Indices);
556        LoadInst *OrigLoad;
557        if (LoadInst *L = dyn_cast<LoadInst>(User))
558          OrigLoad = L;
559        else
560          // Take any load, we will use it only to update Alias Analysis
561          OrigLoad = cast<LoadInst>(User->use_back());
562        OriginalLoads[Indices] = OrigLoad;
563      }
564
565      // Add a parameter to the function for each element passed in.
566      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
567             E = ArgIndices.end(); SI != E; ++SI) {
568        unsigned num = SI->size();
569        // not allowed to dereference ->begin() if size() is 0
570        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
571                                                           num ? &*SI->begin(): 0,
572                                                           num));
573        assert(Params.back());
574      }
575
576      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
577        ++NumArgumentsPromoted;
578      else
579        ++NumAggregatesPromoted;
580    }
581  }
582
583  // Add any function attributes.
584  if (Attributes attrs = PAL.getFnAttributes())
585    AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
586
587  const Type *RetTy = FTy->getReturnType();
588
589  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
590  // have zero fixed arguments.
591  bool ExtraArgHack = false;
592  if (Params.empty() && FTy->isVarArg()) {
593    ExtraArgHack = true;
594    Params.push_back(Type::Int32Ty);
595  }
596
597  // Construct the new function type using the new arguments.
598  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
599
600  // Create the new function body and insert it into the module...
601  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
602  NF->copyAttributesFrom(F);
603
604  // Recompute the parameter attributes list based on the new arguments for
605  // the function.
606  NF->setAttributes(AttrListPtr::get(AttributesVec.begin(), AttributesVec.end()));
607  AttributesVec.clear();
608
609  F->getParent()->getFunctionList().insert(F, NF);
610  NF->takeName(F);
611
612  // Get the alias analysis information that we need to update to reflect our
613  // changes.
614  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
615
616  // Get the callgraph information that we need to update to reflect our
617  // changes.
618  CallGraph &CG = getAnalysis<CallGraph>();
619
620  // Loop over all of the callers of the function, transforming the call sites
621  // to pass in the loaded pointers.
622  //
623  SmallVector<Value*, 16> Args;
624  while (!F->use_empty()) {
625    CallSite CS = CallSite::get(F->use_back());
626    Instruction *Call = CS.getInstruction();
627    const AttrListPtr &CallPAL = CS.getAttributes();
628
629    // Add any return attributes.
630    if (Attributes attrs = CallPAL.getRetAttributes())
631      AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
632
633    // Loop over the operands, inserting GEP and loads in the caller as
634    // appropriate.
635    CallSite::arg_iterator AI = CS.arg_begin();
636    ArgIndex = 1;
637    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
638         I != E; ++I, ++AI, ++ArgIndex)
639      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
640        Args.push_back(*AI);          // Unmodified argument
641
642        if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
643          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
644
645      } else if (ByValArgsToTransform.count(I)) {
646        // Emit a GEP and load for each element of the struct.
647        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
648        const StructType *STy = cast<StructType>(AgTy);
649        Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
650        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
651          Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
652          Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
653                                                 (*AI)->getName()+"."+utostr(i),
654                                                 Call);
655          // TODO: Tell AA about the new values?
656          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
657        }
658      } else if (!I->use_empty()) {
659        // Non-dead argument: insert GEPs and loads as appropriate.
660        ScalarizeTable &ArgIndices = ScalarizedElements[I];
661        // Store the Value* version of the indices in here, but declare it now
662        // for reuse
663        std::vector<Value*> Ops;
664        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
665               E = ArgIndices.end(); SI != E; ++SI) {
666          Value *V = *AI;
667          LoadInst *OrigLoad = OriginalLoads[*SI];
668          if (!SI->empty()) {
669            Ops.reserve(SI->size());
670            const Type *ElTy = V->getType();
671            for (IndicesVector::const_iterator II = SI->begin(),
672                 IE = SI->end(); II != IE; ++II) {
673              // Use i32 to index structs, and i64 for others (pointers/arrays).
674              // This satisfies GEP constraints.
675              const Type *IdxTy = (isa<StructType>(ElTy) ? Type::Int32Ty : Type::Int64Ty);
676              Ops.push_back(ConstantInt::get(IdxTy, *II));
677              // Keep track of the type we're currently indexing
678              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
679            }
680            // And create a GEP to extract those indices
681            V = GetElementPtrInst::Create(V, Ops.begin(), Ops.end(),
682                                          V->getName()+".idx", Call);
683            Ops.clear();
684            AA.copyValue(OrigLoad->getOperand(0), V);
685          }
686          Args.push_back(new LoadInst(V, V->getName()+".val", Call));
687          AA.copyValue(OrigLoad, Args.back());
688        }
689      }
690
691    if (ExtraArgHack)
692      Args.push_back(Constant::getNullValue(Type::Int32Ty));
693
694    // Push any varargs arguments on the list
695    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
696      Args.push_back(*AI);
697      if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
698        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
699    }
700
701    // Add any function attributes.
702    if (Attributes attrs = CallPAL.getFnAttributes())
703      AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
704
705    Instruction *New;
706    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
707      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
708                               Args.begin(), Args.end(), "", Call);
709      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
710      cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
711                                                          AttributesVec.end()));
712    } else {
713      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
714      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
715      cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
716                                                        AttributesVec.end()));
717      if (cast<CallInst>(Call)->isTailCall())
718        cast<CallInst>(New)->setTailCall();
719    }
720    Args.clear();
721    AttributesVec.clear();
722
723    // Update the alias analysis implementation to know that we are replacing
724    // the old call with a new one.
725    AA.replaceWithNewValue(Call, New);
726
727    // Update the callgraph to know that the callsite has been transformed.
728    CG[Call->getParent()->getParent()]->replaceCallSite(Call, New);
729
730    if (!Call->use_empty()) {
731      Call->replaceAllUsesWith(New);
732      New->takeName(Call);
733    }
734
735    // Finally, remove the old call from the program, reducing the use-count of
736    // F.
737    Call->eraseFromParent();
738  }
739
740  // Since we have now created the new function, splice the body of the old
741  // function right into the new function, leaving the old rotting hulk of the
742  // function empty.
743  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
744
745  // Loop over the argument list, transfering uses of the old arguments over to
746  // the new arguments, also transfering over the names as well.
747  //
748  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
749       I2 = NF->arg_begin(); I != E; ++I) {
750    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
751      // If this is an unmodified argument, move the name and users over to the
752      // new version.
753      I->replaceAllUsesWith(I2);
754      I2->takeName(I);
755      AA.replaceWithNewValue(I, I2);
756      ++I2;
757      continue;
758    }
759
760    if (ByValArgsToTransform.count(I)) {
761      // In the callee, we create an alloca, and store each of the new incoming
762      // arguments into the alloca.
763      Instruction *InsertPt = NF->begin()->begin();
764
765      // Just add all the struct element types.
766      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
767      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
768      const StructType *STy = cast<StructType>(AgTy);
769      Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
770
771      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
772        Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
773        std::string Name = TheAlloca->getName()+"."+utostr(i);
774        Value *Idx = GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
775                                               Name, InsertPt);
776        I2->setName(I->getName()+"."+utostr(i));
777        new StoreInst(I2++, Idx, InsertPt);
778      }
779
780      // Anything that used the arg should now use the alloca.
781      I->replaceAllUsesWith(TheAlloca);
782      TheAlloca->takeName(I);
783      AA.replaceWithNewValue(I, TheAlloca);
784      continue;
785    }
786
787    if (I->use_empty()) {
788      AA.deleteValue(I);
789      continue;
790    }
791
792    // Otherwise, if we promoted this argument, then all users are load
793    // instructions (or GEPs with only load users), and all loads should be
794    // using the new argument that we added.
795    ScalarizeTable &ArgIndices = ScalarizedElements[I];
796
797    while (!I->use_empty()) {
798      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
799        assert(ArgIndices.begin()->empty() &&
800               "Load element should sort to front!");
801        I2->setName(I->getName()+".val");
802        LI->replaceAllUsesWith(I2);
803        AA.replaceWithNewValue(LI, I2);
804        LI->eraseFromParent();
805        DOUT << "*** Promoted load of argument '" << I->getName()
806             << "' in function '" << F->getName() << "'\n";
807      } else {
808        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
809        IndicesVector Operands;
810        Operands.reserve(GEP->getNumIndices());
811        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
812             II != IE; ++II)
813          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
814
815        // GEPs with a single 0 index can be merged with direct loads
816        if (Operands.size() == 1 && Operands.front() == 0)
817          Operands.clear();
818
819        Function::arg_iterator TheArg = I2;
820        for (ScalarizeTable::iterator It = ArgIndices.begin();
821             *It != Operands; ++It, ++TheArg) {
822          assert(It != ArgIndices.end() && "GEP not handled??");
823        }
824
825        std::string NewName = I->getName();
826        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
827            NewName += "." + utostr(Operands[i]);
828        }
829        NewName += ".val";
830        TheArg->setName(NewName);
831
832        DOUT << "*** Promoted agg argument '" << TheArg->getName()
833             << "' of function '" << NF->getName() << "'\n";
834
835        // All of the uses must be load instructions.  Replace them all with
836        // the argument specified by ArgNo.
837        while (!GEP->use_empty()) {
838          LoadInst *L = cast<LoadInst>(GEP->use_back());
839          L->replaceAllUsesWith(TheArg);
840          AA.replaceWithNewValue(L, TheArg);
841          L->eraseFromParent();
842        }
843        AA.deleteValue(GEP);
844        GEP->eraseFromParent();
845      }
846    }
847
848    // Increment I2 past all of the arguments added for this promoted pointer.
849    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
850      ++I2;
851  }
852
853  // Notify the alias analysis implementation that we inserted a new argument.
854  if (ExtraArgHack)
855    AA.copyValue(Constant::getNullValue(Type::Int32Ty), NF->arg_begin());
856
857
858  // Tell the alias analysis that the old function is about to disappear.
859  AA.replaceWithNewValue(F, NF);
860
861  // Now that the old function is dead, delete it.
862  F->eraseFromParent();
863  return NF;
864}
865