ArgumentPromotion.cpp revision 5095e3d1d1caef8d573534d369e37277c623064c
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// by default it refuses to scalarize aggregates which would require passing in
21// more than three operands to the function, because passing thousands of
22// operands for a large array or structure is unprofitable! This limit can be
23// configured or disabled, however.
24//
25// Note that this transformation could also be done for arguments that are only
26// stored to (returning the value instead), but does not currently.  This case
27// would be best handled when and if LLVM begins supporting multiple return
28// values from functions.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "argpromotion"
33#include "llvm/Transforms/IPO.h"
34#include "llvm/Constants.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/CallGraphSCCPass.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/CallGraph.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Support/CallSite.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/CFG.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/ADT/DepthFirstIterator.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/ADT/StringExtras.h"
51#include <set>
52using namespace llvm;
53
54STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
55STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
56STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
57STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
58
59namespace {
60  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
61  ///
62  struct VISIBILITY_HIDDEN ArgPromotion : public CallGraphSCCPass {
63    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64      AU.addRequired<AliasAnalysis>();
65      CallGraphSCCPass::getAnalysisUsage(AU);
66    }
67
68    virtual bool runOnSCC(std::vector<CallGraphNode *> &SCC);
69    static char ID; // Pass identification, replacement for typeid
70    explicit ArgPromotion(unsigned maxElements = 3)
71      : CallGraphSCCPass(&ID), maxElements(maxElements) {}
72
73    /// A vector used to hold the indices of a single GEP instruction
74    typedef std::vector<uint64_t> IndicesVector;
75
76  private:
77    CallGraphNode *PromoteArguments(CallGraphNode *CGN);
78    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
79    CallGraphNode *DoPromotion(Function *F,
80                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
81                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
82    /// The maximum number of elements to expand, or 0 for unlimited.
83    unsigned maxElements;
84  };
85}
86
87char ArgPromotion::ID = 0;
88static RegisterPass<ArgPromotion>
89X("argpromotion", "Promote 'by reference' arguments to scalars");
90
91Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
92  return new ArgPromotion(maxElements);
93}
94
95bool ArgPromotion::runOnSCC(std::vector<CallGraphNode *> &SCC) {
96  bool Changed = false, LocalChange;
97
98  do {  // Iterate until we stop promoting from this SCC.
99    LocalChange = false;
100    // Attempt to promote arguments from all functions in this SCC.
101    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
102      if (CallGraphNode *CGN = PromoteArguments(SCC[i])) {
103        LocalChange = true;
104        SCC[i] = CGN;
105      }
106    Changed |= LocalChange;               // Remember that we changed something.
107  } while (LocalChange);
108
109  return Changed;
110}
111
112/// PromoteArguments - This method checks the specified function to see if there
113/// are any promotable arguments and if it is safe to promote the function (for
114/// example, all callers are direct).  If safe to promote some arguments, it
115/// calls the DoPromotion method.
116///
117CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
118  Function *F = CGN->getFunction();
119
120  // Make sure that it is local to this module.
121  if (!F || !F->hasLocalLinkage()) return 0;
122
123  // First check: see if there are any pointer arguments!  If not, quick exit.
124  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
125  unsigned ArgNo = 0;
126  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
127       I != E; ++I, ++ArgNo)
128    if (isa<PointerType>(I->getType()))
129      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
130  if (PointerArgs.empty()) return 0;
131
132  // Second check: make sure that all callers are direct callers.  We can't
133  // transform functions that have indirect callers.
134  if (F->hasAddressTaken())
135    return 0;
136
137  // Check to see which arguments are promotable.  If an argument is promotable,
138  // add it to ArgsToPromote.
139  SmallPtrSet<Argument*, 8> ArgsToPromote;
140  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
141  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
142    bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
143
144    // If this is a byval argument, and if the aggregate type is small, just
145    // pass the elements, which is always safe.
146    Argument *PtrArg = PointerArgs[i].first;
147    if (isByVal) {
148      const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
149      if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
150        if (maxElements > 0 && STy->getNumElements() > maxElements) {
151          DEBUG(errs() << "argpromotion disable promoting argument '"
152                << PtrArg->getName() << "' because it would require adding more"
153                << " than " << maxElements << " arguments to the function.\n");
154        } else {
155          // If all the elements are single-value types, we can promote it.
156          bool AllSimple = true;
157          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
158            if (!STy->getElementType(i)->isSingleValueType()) {
159              AllSimple = false;
160              break;
161            }
162
163          // Safe to transform, don't even bother trying to "promote" it.
164          // Passing the elements as a scalar will allow scalarrepl to hack on
165          // the new alloca we introduce.
166          if (AllSimple) {
167            ByValArgsToTransform.insert(PtrArg);
168            continue;
169          }
170        }
171      }
172    }
173
174    // Otherwise, see if we can promote the pointer to its value.
175    if (isSafeToPromoteArgument(PtrArg, isByVal))
176      ArgsToPromote.insert(PtrArg);
177  }
178
179  // No promotable pointer arguments.
180  if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
181    return 0;
182
183  return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
184}
185
186/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
187/// to load.
188static bool IsAlwaysValidPointer(Value *V) {
189  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
190  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
191    return IsAlwaysValidPointer(GEP->getOperand(0));
192  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
193    if (CE->getOpcode() == Instruction::GetElementPtr)
194      return IsAlwaysValidPointer(CE->getOperand(0));
195
196  return false;
197}
198
199/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
200/// all callees pass in a valid pointer for the specified function argument.
201static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
202  Function *Callee = Arg->getParent();
203
204  unsigned ArgNo = std::distance(Callee->arg_begin(),
205                                 Function::arg_iterator(Arg));
206
207  // Look at all call sites of the function.  At this pointer we know we only
208  // have direct callees.
209  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
210       UI != E; ++UI) {
211    CallSite CS = CallSite::get(*UI);
212    assert(CS.getInstruction() && "Should only have direct calls!");
213
214    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
215      return false;
216  }
217  return true;
218}
219
220/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
221/// that is greater than or equal to the size of prefix, and each of the
222/// elements in Prefix is the same as the corresponding elements in Longer.
223///
224/// This means it also returns true when Prefix and Longer are equal!
225static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
226                     const ArgPromotion::IndicesVector &Longer) {
227  if (Prefix.size() > Longer.size())
228    return false;
229  for (unsigned i = 0, e = Prefix.size(); i != e; ++i)
230    if (Prefix[i] != Longer[i])
231      return false;
232  return true;
233}
234
235
236/// Checks if Indices, or a prefix of Indices, is in Set.
237static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
238                     std::set<ArgPromotion::IndicesVector> &Set) {
239    std::set<ArgPromotion::IndicesVector>::iterator Low;
240    Low = Set.upper_bound(Indices);
241    if (Low != Set.begin())
242      Low--;
243    // Low is now the last element smaller than or equal to Indices. This means
244    // it points to a prefix of Indices (possibly Indices itself), if such
245    // prefix exists.
246    //
247    // This load is safe if any prefix of its operands is safe to load.
248    return Low != Set.end() && IsPrefix(*Low, Indices);
249}
250
251/// Mark the given indices (ToMark) as safe in the the given set of indices
252/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
253/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
254/// already. Furthermore, any indices that Indices is itself a prefix of, are
255/// removed from Safe (since they are implicitely safe because of Indices now).
256static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
257                            std::set<ArgPromotion::IndicesVector> &Safe) {
258  std::set<ArgPromotion::IndicesVector>::iterator Low;
259  Low = Safe.upper_bound(ToMark);
260  // Guard against the case where Safe is empty
261  if (Low != Safe.begin())
262    Low--;
263  // Low is now the last element smaller than or equal to Indices. This
264  // means it points to a prefix of Indices (possibly Indices itself), if
265  // such prefix exists.
266  if (Low != Safe.end()) {
267    if (IsPrefix(*Low, ToMark))
268      // If there is already a prefix of these indices (or exactly these
269      // indices) marked a safe, don't bother adding these indices
270      return;
271
272    // Increment Low, so we can use it as a "insert before" hint
273    ++Low;
274  }
275  // Insert
276  Low = Safe.insert(Low, ToMark);
277  ++Low;
278  // If there we're a prefix of longer index list(s), remove those
279  std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
280  while (Low != End && IsPrefix(ToMark, *Low)) {
281    std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
282    ++Low;
283    Safe.erase(Remove);
284  }
285}
286
287/// isSafeToPromoteArgument - As you might guess from the name of this method,
288/// it checks to see if it is both safe and useful to promote the argument.
289/// This method limits promotion of aggregates to only promote up to three
290/// elements of the aggregate in order to avoid exploding the number of
291/// arguments passed in.
292bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
293  typedef std::set<IndicesVector> GEPIndicesSet;
294
295  // Quick exit for unused arguments
296  if (Arg->use_empty())
297    return true;
298
299  // We can only promote this argument if all of the uses are loads, or are GEP
300  // instructions (with constant indices) that are subsequently loaded.
301  //
302  // Promoting the argument causes it to be loaded in the caller
303  // unconditionally. This is only safe if we can prove that either the load
304  // would have happened in the callee anyway (ie, there is a load in the entry
305  // block) or the pointer passed in at every call site is guaranteed to be
306  // valid.
307  // In the former case, invalid loads can happen, but would have happened
308  // anyway, in the latter case, invalid loads won't happen. This prevents us
309  // from introducing an invalid load that wouldn't have happened in the
310  // original code.
311  //
312  // This set will contain all sets of indices that are loaded in the entry
313  // block, and thus are safe to unconditionally load in the caller.
314  GEPIndicesSet SafeToUnconditionallyLoad;
315
316  // This set contains all the sets of indices that we are planning to promote.
317  // This makes it possible to limit the number of arguments added.
318  GEPIndicesSet ToPromote;
319
320  // If the pointer is always valid, any load with first index 0 is valid.
321  if(isByVal || AllCalleesPassInValidPointerForArgument(Arg))
322    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
323
324  // First, iterate the entry block and mark loads of (geps of) arguments as
325  // safe.
326  BasicBlock *EntryBlock = Arg->getParent()->begin();
327  // Declare this here so we can reuse it
328  IndicesVector Indices;
329  for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
330       I != E; ++I)
331    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
332      Value *V = LI->getPointerOperand();
333      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
334        V = GEP->getPointerOperand();
335        if (V == Arg) {
336          // This load actually loads (part of) Arg? Check the indices then.
337          Indices.reserve(GEP->getNumIndices());
338          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
339               II != IE; ++II)
340            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
341              Indices.push_back(CI->getSExtValue());
342            else
343              // We found a non-constant GEP index for this argument? Bail out
344              // right away, can't promote this argument at all.
345              return false;
346
347          // Indices checked out, mark them as safe
348          MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
349          Indices.clear();
350        }
351      } else if (V == Arg) {
352        // Direct loads are equivalent to a GEP with a single 0 index.
353        MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
354      }
355    }
356
357  // Now, iterate all uses of the argument to see if there are any uses that are
358  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
359  SmallVector<LoadInst*, 16> Loads;
360  IndicesVector Operands;
361  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
362       UI != E; ++UI) {
363    Operands.clear();
364    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
365      if (LI->isVolatile()) return false;  // Don't hack volatile loads
366      Loads.push_back(LI);
367      // Direct loads are equivalent to a GEP with a zero index and then a load.
368      Operands.push_back(0);
369    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
370      if (GEP->use_empty()) {
371        // Dead GEP's cause trouble later.  Just remove them if we run into
372        // them.
373        getAnalysis<AliasAnalysis>().deleteValue(GEP);
374        GEP->eraseFromParent();
375        // TODO: This runs the above loop over and over again for dead GEPS
376        // Couldn't we just do increment the UI iterator earlier and erase the
377        // use?
378        return isSafeToPromoteArgument(Arg, isByVal);
379      }
380
381      // Ensure that all of the indices are constants.
382      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
383        i != e; ++i)
384        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
385          Operands.push_back(C->getSExtValue());
386        else
387          return false;  // Not a constant operand GEP!
388
389      // Ensure that the only users of the GEP are load instructions.
390      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
391           UI != E; ++UI)
392        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
393          if (LI->isVolatile()) return false;  // Don't hack volatile loads
394          Loads.push_back(LI);
395        } else {
396          // Other uses than load?
397          return false;
398        }
399    } else {
400      return false;  // Not a load or a GEP.
401    }
402
403    // Now, see if it is safe to promote this load / loads of this GEP. Loading
404    // is safe if Operands, or a prefix of Operands, is marked as safe.
405    if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
406      return false;
407
408    // See if we are already promoting a load with these indices. If not, check
409    // to make sure that we aren't promoting too many elements.  If so, nothing
410    // to do.
411    if (ToPromote.find(Operands) == ToPromote.end()) {
412      if (maxElements > 0 && ToPromote.size() == maxElements) {
413        DEBUG(errs() << "argpromotion not promoting argument '"
414              << Arg->getName() << "' because it would require adding more "
415              << "than " << maxElements << " arguments to the function.\n");
416        // We limit aggregate promotion to only promoting up to a fixed number
417        // of elements of the aggregate.
418        return false;
419      }
420      ToPromote.insert(Operands);
421    }
422  }
423
424  if (Loads.empty()) return true;  // No users, this is a dead argument.
425
426  // Okay, now we know that the argument is only used by load instructions and
427  // it is safe to unconditionally perform all of them. Use alias analysis to
428  // check to see if the pointer is guaranteed to not be modified from entry of
429  // the function to each of the load instructions.
430
431  // Because there could be several/many load instructions, remember which
432  // blocks we know to be transparent to the load.
433  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
434
435  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
436  TargetData *TD = getAnalysisIfAvailable<TargetData>();
437  if (!TD) return false; // Without TargetData, assume the worst.
438
439  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
440    // Check to see if the load is invalidated from the start of the block to
441    // the load itself.
442    LoadInst *Load = Loads[i];
443    BasicBlock *BB = Load->getParent();
444
445    const PointerType *LoadTy =
446      cast<PointerType>(Load->getPointerOperand()->getType());
447    unsigned LoadSize =(unsigned)TD->getTypeStoreSize(LoadTy->getElementType());
448
449    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
450      return false;  // Pointer is invalidated!
451
452    // Now check every path from the entry block to the load for transparency.
453    // To do this, we perform a depth first search on the inverse CFG from the
454    // loading block.
455    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
456      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
457             I = idf_ext_begin(*PI, TranspBlocks),
458             E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
459        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
460          return false;
461  }
462
463  // If the path from the entry of the function to each load is free of
464  // instructions that potentially invalidate the load, we can make the
465  // transformation!
466  return true;
467}
468
469/// DoPromotion - This method actually performs the promotion of the specified
470/// arguments, and returns the new function.  At this point, we know that it's
471/// safe to do so.
472CallGraphNode *ArgPromotion::DoPromotion(Function *F,
473                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
474                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
475
476  // Start by computing a new prototype for the function, which is the same as
477  // the old function, but has modified arguments.
478  const FunctionType *FTy = F->getFunctionType();
479  std::vector<const Type*> Params;
480
481  typedef std::set<IndicesVector> ScalarizeTable;
482
483  // ScalarizedElements - If we are promoting a pointer that has elements
484  // accessed out of it, keep track of which elements are accessed so that we
485  // can add one argument for each.
486  //
487  // Arguments that are directly loaded will have a zero element value here, to
488  // handle cases where there are both a direct load and GEP accesses.
489  //
490  std::map<Argument*, ScalarizeTable> ScalarizedElements;
491
492  // OriginalLoads - Keep track of a representative load instruction from the
493  // original function so that we can tell the alias analysis implementation
494  // what the new GEP/Load instructions we are inserting look like.
495  std::map<IndicesVector, LoadInst*> OriginalLoads;
496
497  // Attributes - Keep track of the parameter attributes for the arguments
498  // that we are *not* promoting. For the ones that we do promote, the parameter
499  // attributes are lost
500  SmallVector<AttributeWithIndex, 8> AttributesVec;
501  const AttrListPtr &PAL = F->getAttributes();
502
503  // Add any return attributes.
504  if (Attributes attrs = PAL.getRetAttributes())
505    AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
506
507  // First, determine the new argument list
508  unsigned ArgIndex = 1;
509  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
510       ++I, ++ArgIndex) {
511    if (ByValArgsToTransform.count(I)) {
512      // Simple byval argument? Just add all the struct element types.
513      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
514      const StructType *STy = cast<StructType>(AgTy);
515      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
516        Params.push_back(STy->getElementType(i));
517      ++NumByValArgsPromoted;
518    } else if (!ArgsToPromote.count(I)) {
519      // Unchanged argument
520      Params.push_back(I->getType());
521      if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
522        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
523    } else if (I->use_empty()) {
524      // Dead argument (which are always marked as promotable)
525      ++NumArgumentsDead;
526    } else {
527      // Okay, this is being promoted. This means that the only uses are loads
528      // or GEPs which are only used by loads
529
530      // In this table, we will track which indices are loaded from the argument
531      // (where direct loads are tracked as no indices).
532      ScalarizeTable &ArgIndices = ScalarizedElements[I];
533      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
534           ++UI) {
535        Instruction *User = cast<Instruction>(*UI);
536        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
537        IndicesVector Indices;
538        Indices.reserve(User->getNumOperands() - 1);
539        // Since loads will only have a single operand, and GEPs only a single
540        // non-index operand, this will record direct loads without any indices,
541        // and gep+loads with the GEP indices.
542        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
543             II != IE; ++II)
544          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
545        // GEPs with a single 0 index can be merged with direct loads
546        if (Indices.size() == 1 && Indices.front() == 0)
547          Indices.clear();
548        ArgIndices.insert(Indices);
549        LoadInst *OrigLoad;
550        if (LoadInst *L = dyn_cast<LoadInst>(User))
551          OrigLoad = L;
552        else
553          // Take any load, we will use it only to update Alias Analysis
554          OrigLoad = cast<LoadInst>(User->use_back());
555        OriginalLoads[Indices] = OrigLoad;
556      }
557
558      // Add a parameter to the function for each element passed in.
559      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
560             E = ArgIndices.end(); SI != E; ++SI) {
561        // not allowed to dereference ->begin() if size() is 0
562        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
563                                                           SI->begin(),
564                                                           SI->end()));
565        assert(Params.back());
566      }
567
568      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
569        ++NumArgumentsPromoted;
570      else
571        ++NumAggregatesPromoted;
572    }
573  }
574
575  // Add any function attributes.
576  if (Attributes attrs = PAL.getFnAttributes())
577    AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
578
579  const Type *RetTy = FTy->getReturnType();
580
581  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
582  // have zero fixed arguments.
583  bool ExtraArgHack = false;
584  if (Params.empty() && FTy->isVarArg()) {
585    ExtraArgHack = true;
586    Params.push_back(Type::getInt32Ty(F->getContext()));
587  }
588
589  // Construct the new function type using the new arguments.
590  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
591
592  // Create the new function body and insert it into the module...
593  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
594  NF->copyAttributesFrom(F);
595
596  // Recompute the parameter attributes list based on the new arguments for
597  // the function.
598  NF->setAttributes(AttrListPtr::get(AttributesVec.begin(), AttributesVec.end()));
599  AttributesVec.clear();
600
601  F->getParent()->getFunctionList().insert(F, NF);
602  NF->takeName(F);
603
604  // Get the alias analysis information that we need to update to reflect our
605  // changes.
606  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
607
608  // Get the callgraph information that we need to update to reflect our
609  // changes.
610  CallGraph &CG = getAnalysis<CallGraph>();
611
612  // Get a new callgraph node for NF.
613  CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
614
615
616  // Loop over all of the callers of the function, transforming the call sites
617  // to pass in the loaded pointers.
618  //
619  SmallVector<Value*, 16> Args;
620  while (!F->use_empty()) {
621    CallSite CS = CallSite::get(F->use_back());
622    Instruction *Call = CS.getInstruction();
623    const AttrListPtr &CallPAL = CS.getAttributes();
624
625    // Add any return attributes.
626    if (Attributes attrs = CallPAL.getRetAttributes())
627      AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
628
629    // Loop over the operands, inserting GEP and loads in the caller as
630    // appropriate.
631    CallSite::arg_iterator AI = CS.arg_begin();
632    ArgIndex = 1;
633    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
634         I != E; ++I, ++AI, ++ArgIndex)
635      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
636        Args.push_back(*AI);          // Unmodified argument
637
638        if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
639          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
640
641      } else if (ByValArgsToTransform.count(I)) {
642        // Emit a GEP and load for each element of the struct.
643        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
644        const StructType *STy = cast<StructType>(AgTy);
645        Value *Idxs[2] = {
646              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
647        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
648          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
649          Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
650                                                 (*AI)->getName()+"."+utostr(i),
651                                                 Call);
652          // TODO: Tell AA about the new values?
653          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
654        }
655      } else if (!I->use_empty()) {
656        // Non-dead argument: insert GEPs and loads as appropriate.
657        ScalarizeTable &ArgIndices = ScalarizedElements[I];
658        // Store the Value* version of the indices in here, but declare it now
659        // for reuse
660        std::vector<Value*> Ops;
661        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
662               E = ArgIndices.end(); SI != E; ++SI) {
663          Value *V = *AI;
664          LoadInst *OrigLoad = OriginalLoads[*SI];
665          if (!SI->empty()) {
666            Ops.reserve(SI->size());
667            const Type *ElTy = V->getType();
668            for (IndicesVector::const_iterator II = SI->begin(),
669                 IE = SI->end(); II != IE; ++II) {
670              // Use i32 to index structs, and i64 for others (pointers/arrays).
671              // This satisfies GEP constraints.
672              const Type *IdxTy = (isa<StructType>(ElTy) ?
673                    Type::getInt32Ty(F->getContext()) :
674                    Type::getInt64Ty(F->getContext()));
675              Ops.push_back(ConstantInt::get(IdxTy, *II));
676              // Keep track of the type we're currently indexing
677              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
678            }
679            // And create a GEP to extract those indices
680            V = GetElementPtrInst::Create(V, Ops.begin(), Ops.end(),
681                                          V->getName()+".idx", Call);
682            Ops.clear();
683            AA.copyValue(OrigLoad->getOperand(0), V);
684          }
685          Args.push_back(new LoadInst(V, V->getName()+".val", Call));
686          AA.copyValue(OrigLoad, Args.back());
687        }
688      }
689
690    if (ExtraArgHack)
691      Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
692
693    // Push any varargs arguments on the list
694    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
695      Args.push_back(*AI);
696      if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
697        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
698    }
699
700    // Add any function attributes.
701    if (Attributes attrs = CallPAL.getFnAttributes())
702      AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
703
704    Instruction *New;
705    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
706      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
707                               Args.begin(), Args.end(), "", Call);
708      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
709      cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
710                                                          AttributesVec.end()));
711    } else {
712      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
713      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
714      cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
715                                                        AttributesVec.end()));
716      if (cast<CallInst>(Call)->isTailCall())
717        cast<CallInst>(New)->setTailCall();
718    }
719    Args.clear();
720    AttributesVec.clear();
721
722    // Update the alias analysis implementation to know that we are replacing
723    // the old call with a new one.
724    AA.replaceWithNewValue(Call, New);
725
726    // Update the callgraph to know that the callsite has been transformed.
727    CG[Call->getParent()->getParent()]->replaceCallSite(Call, New, NF_CGN);
728
729    if (!Call->use_empty()) {
730      Call->replaceAllUsesWith(New);
731      New->takeName(Call);
732    }
733
734    // Finally, remove the old call from the program, reducing the use-count of
735    // F.
736    Call->eraseFromParent();
737  }
738
739  // Since we have now created the new function, splice the body of the old
740  // function right into the new function, leaving the old rotting hulk of the
741  // function empty.
742  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
743
744  // Loop over the argument list, transfering uses of the old arguments over to
745  // the new arguments, also transfering over the names as well.
746  //
747  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
748       I2 = NF->arg_begin(); I != E; ++I) {
749    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
750      // If this is an unmodified argument, move the name and users over to the
751      // new version.
752      I->replaceAllUsesWith(I2);
753      I2->takeName(I);
754      AA.replaceWithNewValue(I, I2);
755      ++I2;
756      continue;
757    }
758
759    if (ByValArgsToTransform.count(I)) {
760      // In the callee, we create an alloca, and store each of the new incoming
761      // arguments into the alloca.
762      Instruction *InsertPt = NF->begin()->begin();
763
764      // Just add all the struct element types.
765      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
766      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
767      const StructType *STy = cast<StructType>(AgTy);
768      Value *Idxs[2] = {
769            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
770
771      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
772        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
773        Value *Idx =
774          GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
775                                    TheAlloca->getName()+"."+Twine(i),
776                                    InsertPt);
777        I2->setName(I->getName()+"."+Twine(i));
778        new StoreInst(I2++, Idx, InsertPt);
779      }
780
781      // Anything that used the arg should now use the alloca.
782      I->replaceAllUsesWith(TheAlloca);
783      TheAlloca->takeName(I);
784      AA.replaceWithNewValue(I, TheAlloca);
785      continue;
786    }
787
788    if (I->use_empty()) {
789      AA.deleteValue(I);
790      continue;
791    }
792
793    // Otherwise, if we promoted this argument, then all users are load
794    // instructions (or GEPs with only load users), and all loads should be
795    // using the new argument that we added.
796    ScalarizeTable &ArgIndices = ScalarizedElements[I];
797
798    while (!I->use_empty()) {
799      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
800        assert(ArgIndices.begin()->empty() &&
801               "Load element should sort to front!");
802        I2->setName(I->getName()+".val");
803        LI->replaceAllUsesWith(I2);
804        AA.replaceWithNewValue(LI, I2);
805        LI->eraseFromParent();
806        DEBUG(errs() << "*** Promoted load of argument '" << I->getName()
807              << "' in function '" << F->getName() << "'\n");
808      } else {
809        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
810        IndicesVector Operands;
811        Operands.reserve(GEP->getNumIndices());
812        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
813             II != IE; ++II)
814          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
815
816        // GEPs with a single 0 index can be merged with direct loads
817        if (Operands.size() == 1 && Operands.front() == 0)
818          Operands.clear();
819
820        Function::arg_iterator TheArg = I2;
821        for (ScalarizeTable::iterator It = ArgIndices.begin();
822             *It != Operands; ++It, ++TheArg) {
823          assert(It != ArgIndices.end() && "GEP not handled??");
824        }
825
826        std::string NewName = I->getName();
827        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
828            NewName += "." + utostr(Operands[i]);
829        }
830        NewName += ".val";
831        TheArg->setName(NewName);
832
833        DEBUG(errs() << "*** Promoted agg argument '" << TheArg->getName()
834              << "' of function '" << NF->getName() << "'\n");
835
836        // All of the uses must be load instructions.  Replace them all with
837        // the argument specified by ArgNo.
838        while (!GEP->use_empty()) {
839          LoadInst *L = cast<LoadInst>(GEP->use_back());
840          L->replaceAllUsesWith(TheArg);
841          AA.replaceWithNewValue(L, TheArg);
842          L->eraseFromParent();
843        }
844        AA.deleteValue(GEP);
845        GEP->eraseFromParent();
846      }
847    }
848
849    // Increment I2 past all of the arguments added for this promoted pointer.
850    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
851      ++I2;
852  }
853
854  // Notify the alias analysis implementation that we inserted a new argument.
855  if (ExtraArgHack)
856    AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())),
857                 NF->arg_begin());
858
859
860  // Tell the alias analysis that the old function is about to disappear.
861  AA.replaceWithNewValue(F, NF);
862
863
864  NF_CGN->stealCalledFunctionsFrom(CG[F]);
865
866  // Now that the old function is dead, delete it.
867  delete CG.removeFunctionFromModule(F);
868
869  return NF_CGN;
870}
871