ArgumentPromotion.cpp revision 5e46321d665d6b1f445aff70d8eabb4870a6cf0e
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// by default it refuses to scalarize aggregates which would require passing in more than
21// three operands to the function, because passing thousands of operands for a
22// large array or structure is unprofitable! This limit is can be configured or
23// disabled, however.
24//
25// Note that this transformation could also be done for arguments that are only
26// stored to (returning the value instead), but does not currently.  This case
27// would be best handled when and if LLVM begins supporting multiple return
28// values from functions.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "argpromotion"
33#include "llvm/Transforms/IPO.h"
34#include "llvm/Constants.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/CallGraphSCCPass.h"
38#include "llvm/Instructions.h"
39#include "llvm/Analysis/AliasAnalysis.h"
40#include "llvm/Analysis/CallGraph.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/ADT/DepthFirstIterator.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/Support/Compiler.h"
49#include <set>
50using namespace llvm;
51
52STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
53STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
54STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
55STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
56
57namespace {
58  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
59  ///
60  struct VISIBILITY_HIDDEN ArgPromotion : public CallGraphSCCPass {
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.addRequired<AliasAnalysis>();
63      AU.addRequired<TargetData>();
64      CallGraphSCCPass::getAnalysisUsage(AU);
65    }
66
67    virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
68    static char ID; // Pass identification, replacement for typeid
69    ArgPromotion(unsigned maxElements = 3) : CallGraphSCCPass((intptr_t)&ID),
70                                             maxElements(maxElements) {}
71
72  private:
73    bool PromoteArguments(CallGraphNode *CGN);
74    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
75    Function *DoPromotion(Function *F,
76                          SmallPtrSet<Argument*, 8> &ArgsToPromote,
77                          SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
78    /// The maximum number of elements to expand, or 0 for unlimited.
79    unsigned maxElements;
80  };
81}
82
83char ArgPromotion::ID = 0;
84static RegisterPass<ArgPromotion>
85X("argpromotion", "Promote 'by reference' arguments to scalars");
86
87Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
88  return new ArgPromotion(maxElements);
89}
90
91bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
92  bool Changed = false, LocalChange;
93
94  do {  // Iterate until we stop promoting from this SCC.
95    LocalChange = false;
96    // Attempt to promote arguments from all functions in this SCC.
97    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
98      LocalChange |= PromoteArguments(SCC[i]);
99    Changed |= LocalChange;               // Remember that we changed something.
100  } while (LocalChange);
101
102  return Changed;
103}
104
105/// PromoteArguments - This method checks the specified function to see if there
106/// are any promotable arguments and if it is safe to promote the function (for
107/// example, all callers are direct).  If safe to promote some arguments, it
108/// calls the DoPromotion method.
109///
110bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
111  Function *F = CGN->getFunction();
112
113  // Make sure that it is local to this module.
114  if (!F || !F->hasInternalLinkage()) return false;
115
116  // First check: see if there are any pointer arguments!  If not, quick exit.
117  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
118  unsigned ArgNo = 0;
119  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
120       I != E; ++I, ++ArgNo)
121    if (isa<PointerType>(I->getType()))
122      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
123  if (PointerArgs.empty()) return false;
124
125  // Second check: make sure that all callers are direct callers.  We can't
126  // transform functions that have indirect callers.
127  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
128       UI != E; ++UI) {
129    CallSite CS = CallSite::get(*UI);
130    if (!CS.getInstruction())       // "Taking the address" of the function
131      return false;
132
133    // Ensure that this call site is CALLING the function, not passing it as
134    // an argument.
135    if (UI.getOperandNo() != 0)
136      return false;
137  }
138
139  // Check to see which arguments are promotable.  If an argument is promotable,
140  // add it to ArgsToPromote.
141  SmallPtrSet<Argument*, 8> ArgsToPromote;
142  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
143  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
144    bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, ParamAttr::ByVal);
145
146    // If this is a byval argument, and if the aggregate type is small, just
147    // pass the elements, which is always safe.
148    Argument *PtrArg = PointerArgs[i].first;
149    if (isByVal) {
150      const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
151      if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
152        if (maxElements > 0 && STy->getNumElements() > maxElements) {
153          DOUT << "argpromotion disable promoting argument '"
154               << PtrArg->getName() << "' because it would require adding more "
155               << "than " << maxElements << " arguments to the function.\n";
156        } else {
157          // If all the elements are single-value types, we can promote it.
158          bool AllSimple = true;
159          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
160            if (!STy->getElementType(i)->isSingleValueType()) {
161              AllSimple = false;
162              break;
163            }
164
165          // Safe to transform, don't even bother trying to "promote" it.
166          // Passing the elements as a scalar will allow scalarrepl to hack on
167          // the new alloca we introduce.
168          if (AllSimple) {
169            ByValArgsToTransform.insert(PtrArg);
170            continue;
171          }
172        }
173      }
174    }
175
176    // Otherwise, see if we can promote the pointer to its value.
177    if (isSafeToPromoteArgument(PtrArg, isByVal))
178      ArgsToPromote.insert(PtrArg);
179  }
180
181  // No promotable pointer arguments.
182  if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) return false;
183
184  Function *NewF = DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
185
186  // Update the call graph to know that the function has been transformed.
187  getAnalysis<CallGraph>().changeFunction(F, NewF);
188  return true;
189}
190
191/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
192/// to load.
193static bool IsAlwaysValidPointer(Value *V) {
194  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
195  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
196    return IsAlwaysValidPointer(GEP->getOperand(0));
197  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
198    if (CE->getOpcode() == Instruction::GetElementPtr)
199      return IsAlwaysValidPointer(CE->getOperand(0));
200
201  return false;
202}
203
204/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
205/// all callees pass in a valid pointer for the specified function argument.
206static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
207  Function *Callee = Arg->getParent();
208
209  unsigned ArgNo = std::distance(Callee->arg_begin(),
210                                 Function::arg_iterator(Arg));
211
212  // Look at all call sites of the function.  At this pointer we know we only
213  // have direct callees.
214  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
215       UI != E; ++UI) {
216    CallSite CS = CallSite::get(*UI);
217    assert(CS.getInstruction() && "Should only have direct calls!");
218
219    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
220      return false;
221  }
222  return true;
223}
224
225
226/// isSafeToPromoteArgument - As you might guess from the name of this method,
227/// it checks to see if it is both safe and useful to promote the argument.
228/// This method limits promotion of aggregates to only promote up to three
229/// elements of the aggregate in order to avoid exploding the number of
230/// arguments passed in.
231bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
232  // We can only promote this argument if all of the uses are loads, or are GEP
233  // instructions (with constant indices) that are subsequently loaded.
234
235  // We can also only promote the load if we can guarantee that it will happen.
236  // Promoting a load causes the load to be unconditionally executed in the
237  // caller, so we can't turn a conditional load into an unconditional load in
238  // general.
239  bool SafeToUnconditionallyLoad = false;
240  if (isByVal)   // ByVal arguments are always safe to load from.
241    SafeToUnconditionallyLoad = true;
242
243  BasicBlock *EntryBlock = Arg->getParent()->begin();
244  SmallVector<LoadInst*, 16> Loads;
245  std::vector<SmallVector<ConstantInt*, 8> > GEPIndices;
246  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
247       UI != E; ++UI)
248    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
249      if (LI->isVolatile()) return false;  // Don't hack volatile loads
250      Loads.push_back(LI);
251
252      // If this load occurs in the entry block, then the pointer is
253      // unconditionally loaded.
254      SafeToUnconditionallyLoad |= LI->getParent() == EntryBlock;
255    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
256      if (GEP->use_empty()) {
257        // Dead GEP's cause trouble later.  Just remove them if we run into
258        // them.
259        getAnalysis<AliasAnalysis>().deleteValue(GEP);
260        GEP->eraseFromParent();
261        return isSafeToPromoteArgument(Arg, isByVal);
262      }
263      // Ensure that all of the indices are constants.
264      SmallVector<ConstantInt*, 8> Operands;
265      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
266	   i != e; ++i)
267        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
268          Operands.push_back(C);
269        else
270          return false;  // Not a constant operand GEP!
271
272      // Ensure that the only users of the GEP are load instructions.
273      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
274           UI != E; ++UI)
275        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
276          if (LI->isVolatile()) return false;  // Don't hack volatile loads
277          Loads.push_back(LI);
278
279          // If this load occurs in the entry block, then the pointer is
280          // unconditionally loaded.
281          SafeToUnconditionallyLoad |= LI->getParent() == EntryBlock;
282        } else {
283          return false;
284        }
285
286      // See if there is already a GEP with these indices.  If not, check to
287      // make sure that we aren't promoting too many elements.  If so, nothing
288      // to do.
289      if (std::find(GEPIndices.begin(), GEPIndices.end(), Operands) ==
290          GEPIndices.end()) {
291        if (maxElements > 0 && GEPIndices.size() == maxElements) {
292          DOUT << "argpromotion disable promoting argument '"
293               << Arg->getName() << "' because it would require adding more "
294               << "than " << maxElements << " arguments to the function.\n";
295          // We limit aggregate promotion to only promoting up to a fixed number
296          // of elements of the aggregate.
297          return false;
298        }
299        GEPIndices.push_back(Operands);
300      }
301    } else {
302      return false;  // Not a load or a GEP.
303    }
304
305  if (Loads.empty()) return true;  // No users, this is a dead argument.
306
307  // If we decide that we want to promote this argument, the value is going to
308  // be unconditionally loaded in all callees.  This is only safe to do if the
309  // pointer was going to be unconditionally loaded anyway (i.e. there is a load
310  // of the pointer in the entry block of the function) or if we can prove that
311  // all pointers passed in are always to legal locations (for example, no null
312  // pointers are passed in, no pointers to free'd memory, etc).
313  if (!SafeToUnconditionallyLoad &&
314      !AllCalleesPassInValidPointerForArgument(Arg))
315    return false;   // Cannot prove that this is safe!!
316
317  // Okay, now we know that the argument is only used by load instructions and
318  // it is safe to unconditionally load the pointer.  Use alias analysis to
319  // check to see if the pointer is guaranteed to not be modified from entry of
320  // the function to each of the load instructions.
321
322  // Because there could be several/many load instructions, remember which
323  // blocks we know to be transparent to the load.
324  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
325
326  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
327  TargetData &TD = getAnalysis<TargetData>();
328
329  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
330    // Check to see if the load is invalidated from the start of the block to
331    // the load itself.
332    LoadInst *Load = Loads[i];
333    BasicBlock *BB = Load->getParent();
334
335    const PointerType *LoadTy =
336      cast<PointerType>(Load->getOperand(0)->getType());
337    unsigned LoadSize = (unsigned)TD.getTypeStoreSize(LoadTy->getElementType());
338
339    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
340      return false;  // Pointer is invalidated!
341
342    // Now check every path from the entry block to the load for transparency.
343    // To do this, we perform a depth first search on the inverse CFG from the
344    // loading block.
345    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
346      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
347             I = idf_ext_begin(*PI, TranspBlocks),
348             E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
349        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
350          return false;
351  }
352
353  // If the path from the entry of the function to each load is free of
354  // instructions that potentially invalidate the load, we can make the
355  // transformation!
356  return true;
357}
358
359namespace {
360  /// GEPIdxComparator - Provide a strong ordering for GEP indices.  All Value*
361  /// elements are instances of ConstantInt.
362  ///
363  struct GEPIdxComparator {
364    bool operator()(const std::vector<Value*> &LHS,
365                    const std::vector<Value*> &RHS) const {
366      unsigned idx = 0;
367      for (; idx < LHS.size() && idx < RHS.size(); ++idx) {
368        if (LHS[idx] != RHS[idx]) {
369          return cast<ConstantInt>(LHS[idx])->getZExtValue() <
370                 cast<ConstantInt>(RHS[idx])->getZExtValue();
371        }
372      }
373
374      // Return less than if we ran out of stuff in LHS and we didn't run out of
375      // stuff in RHS.
376      return idx == LHS.size() && idx != RHS.size();
377    }
378  };
379}
380
381
382/// DoPromotion - This method actually performs the promotion of the specified
383/// arguments, and returns the new function.  At this point, we know that it's
384/// safe to do so.
385Function *ArgPromotion::DoPromotion(Function *F,
386                                    SmallPtrSet<Argument*, 8> &ArgsToPromote,
387                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
388
389  // Start by computing a new prototype for the function, which is the same as
390  // the old function, but has modified arguments.
391  const FunctionType *FTy = F->getFunctionType();
392  std::vector<const Type*> Params;
393
394  typedef std::set<std::vector<Value*>, GEPIdxComparator> ScalarizeTable;
395
396  // ScalarizedElements - If we are promoting a pointer that has elements
397  // accessed out of it, keep track of which elements are accessed so that we
398  // can add one argument for each.
399  //
400  // Arguments that are directly loaded will have a zero element value here, to
401  // handle cases where there are both a direct load and GEP accesses.
402  //
403  std::map<Argument*, ScalarizeTable> ScalarizedElements;
404
405  // OriginalLoads - Keep track of a representative load instruction from the
406  // original function so that we can tell the alias analysis implementation
407  // what the new GEP/Load instructions we are inserting look like.
408  std::map<std::vector<Value*>, LoadInst*> OriginalLoads;
409
410  // ParamAttrs - Keep track of the parameter attributes for the arguments
411  // that we are *not* promoting. For the ones that we do promote, the parameter
412  // attributes are lost
413  SmallVector<ParamAttrsWithIndex, 8> ParamAttrsVec;
414  const PAListPtr &PAL = F->getParamAttrs();
415
416  // Add any return attributes.
417  if (ParameterAttributes attrs = PAL.getParamAttrs(0))
418    ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, attrs));
419
420  unsigned ArgIndex = 1;
421  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
422       ++I, ++ArgIndex) {
423    if (ByValArgsToTransform.count(I)) {
424      // Just add all the struct element types.
425      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
426      const StructType *STy = cast<StructType>(AgTy);
427      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
428        Params.push_back(STy->getElementType(i));
429      ++NumByValArgsPromoted;
430    } else if (!ArgsToPromote.count(I)) {
431      Params.push_back(I->getType());
432      if (ParameterAttributes attrs = PAL.getParamAttrs(ArgIndex))
433        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), attrs));
434    } else if (I->use_empty()) {
435      ++NumArgumentsDead;
436    } else {
437      // Okay, this is being promoted.  Check to see if there are any GEP uses
438      // of the argument.
439      ScalarizeTable &ArgIndices = ScalarizedElements[I];
440      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
441           ++UI) {
442        Instruction *User = cast<Instruction>(*UI);
443        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
444        std::vector<Value*> Indices(User->op_begin()+1, User->op_end());
445        ArgIndices.insert(Indices);
446        LoadInst *OrigLoad;
447        if (LoadInst *L = dyn_cast<LoadInst>(User))
448          OrigLoad = L;
449        else
450          OrigLoad = cast<LoadInst>(User->use_back());
451        OriginalLoads[Indices] = OrigLoad;
452      }
453
454      // Add a parameter to the function for each element passed in.
455      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
456             E = ArgIndices.end(); SI != E; ++SI)
457        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
458                                                           SI->begin(),
459                                                           SI->end()));
460
461      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
462        ++NumArgumentsPromoted;
463      else
464        ++NumAggregatesPromoted;
465    }
466  }
467
468  const Type *RetTy = FTy->getReturnType();
469
470  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
471  // have zero fixed arguments.
472  bool ExtraArgHack = false;
473  if (Params.empty() && FTy->isVarArg()) {
474    ExtraArgHack = true;
475    Params.push_back(Type::Int32Ty);
476  }
477
478  // Construct the new function type using the new arguments.
479  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
480
481  // Create the new function body and insert it into the module...
482  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
483  NF->copyAttributesFrom(F);
484
485  // Recompute the parameter attributes list based on the new arguments for
486  // the function.
487  NF->setParamAttrs(PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end()));
488  ParamAttrsVec.clear();
489
490  F->getParent()->getFunctionList().insert(F, NF);
491  NF->takeName(F);
492
493  // Get the alias analysis information that we need to update to reflect our
494  // changes.
495  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
496
497  // Loop over all of the callers of the function, transforming the call sites
498  // to pass in the loaded pointers.
499  //
500  SmallVector<Value*, 16> Args;
501  while (!F->use_empty()) {
502    CallSite CS = CallSite::get(F->use_back());
503    Instruction *Call = CS.getInstruction();
504    const PAListPtr &CallPAL = CS.getParamAttrs();
505
506    // Add any return attributes.
507    if (ParameterAttributes attrs = CallPAL.getParamAttrs(0))
508      ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, attrs));
509
510    // Loop over the operands, inserting GEP and loads in the caller as
511    // appropriate.
512    CallSite::arg_iterator AI = CS.arg_begin();
513    ArgIndex = 1;
514    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
515         I != E; ++I, ++AI, ++ArgIndex)
516      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
517        Args.push_back(*AI);          // Unmodified argument
518
519        if (ParameterAttributes Attrs = CallPAL.getParamAttrs(ArgIndex))
520          ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
521
522      } else if (ByValArgsToTransform.count(I)) {
523        // Emit a GEP and load for each element of the struct.
524        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
525        const StructType *STy = cast<StructType>(AgTy);
526        Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
527        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
528          Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
529          Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
530                                                 (*AI)->getName()+"."+utostr(i),
531                                                 Call);
532          // TODO: Tell AA about the new values?
533          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
534        }
535      } else if (!I->use_empty()) {
536        // Non-dead argument: insert GEPs and loads as appropriate.
537        ScalarizeTable &ArgIndices = ScalarizedElements[I];
538        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
539               E = ArgIndices.end(); SI != E; ++SI) {
540          Value *V = *AI;
541          LoadInst *OrigLoad = OriginalLoads[*SI];
542          if (!SI->empty()) {
543            V = GetElementPtrInst::Create(V, SI->begin(), SI->end(),
544                                          V->getName()+".idx", Call);
545            AA.copyValue(OrigLoad->getOperand(0), V);
546          }
547          Args.push_back(new LoadInst(V, V->getName()+".val", Call));
548          AA.copyValue(OrigLoad, Args.back());
549        }
550      }
551
552    if (ExtraArgHack)
553      Args.push_back(Constant::getNullValue(Type::Int32Ty));
554
555    // Push any varargs arguments on the list
556    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
557      Args.push_back(*AI);
558      if (ParameterAttributes Attrs = CallPAL.getParamAttrs(ArgIndex))
559        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
560    }
561
562    Instruction *New;
563    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
564      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
565                               Args.begin(), Args.end(), "", Call);
566      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
567      cast<InvokeInst>(New)->setParamAttrs(PAListPtr::get(ParamAttrsVec.begin(),
568                                                          ParamAttrsVec.end()));
569    } else {
570      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
571      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
572      cast<CallInst>(New)->setParamAttrs(PAListPtr::get(ParamAttrsVec.begin(),
573                                                        ParamAttrsVec.end()));
574      if (cast<CallInst>(Call)->isTailCall())
575        cast<CallInst>(New)->setTailCall();
576    }
577    Args.clear();
578    ParamAttrsVec.clear();
579
580    // Update the alias analysis implementation to know that we are replacing
581    // the old call with a new one.
582    AA.replaceWithNewValue(Call, New);
583
584    if (!Call->use_empty()) {
585      Call->replaceAllUsesWith(New);
586      New->takeName(Call);
587    }
588
589    // Finally, remove the old call from the program, reducing the use-count of
590    // F.
591    Call->eraseFromParent();
592  }
593
594  // Since we have now created the new function, splice the body of the old
595  // function right into the new function, leaving the old rotting hulk of the
596  // function empty.
597  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
598
599  // Loop over the argument list, transfering uses of the old arguments over to
600  // the new arguments, also transfering over the names as well.
601  //
602  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
603       I2 = NF->arg_begin(); I != E; ++I) {
604    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
605      // If this is an unmodified argument, move the name and users over to the
606      // new version.
607      I->replaceAllUsesWith(I2);
608      I2->takeName(I);
609      AA.replaceWithNewValue(I, I2);
610      ++I2;
611      continue;
612    }
613
614    if (ByValArgsToTransform.count(I)) {
615      // In the callee, we create an alloca, and store each of the new incoming
616      // arguments into the alloca.
617      Instruction *InsertPt = NF->begin()->begin();
618
619      // Just add all the struct element types.
620      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
621      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
622      const StructType *STy = cast<StructType>(AgTy);
623      Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
624
625      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
626        Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
627        Value *Idx = GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
628                                               TheAlloca->getName()+"."+utostr(i),
629                                               InsertPt);
630        I2->setName(I->getName()+"."+utostr(i));
631        new StoreInst(I2++, Idx, InsertPt);
632      }
633
634      // Anything that used the arg should now use the alloca.
635      I->replaceAllUsesWith(TheAlloca);
636      TheAlloca->takeName(I);
637      AA.replaceWithNewValue(I, TheAlloca);
638      continue;
639    }
640
641    if (I->use_empty()) {
642      AA.deleteValue(I);
643      continue;
644    }
645
646    // Otherwise, if we promoted this argument, then all users are load
647    // instructions, and all loads should be using the new argument that we
648    // added.
649    ScalarizeTable &ArgIndices = ScalarizedElements[I];
650
651    while (!I->use_empty()) {
652      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
653        assert(ArgIndices.begin()->empty() &&
654               "Load element should sort to front!");
655        I2->setName(I->getName()+".val");
656        LI->replaceAllUsesWith(I2);
657        AA.replaceWithNewValue(LI, I2);
658        LI->eraseFromParent();
659        DOUT << "*** Promoted load of argument '" << I->getName()
660             << "' in function '" << F->getName() << "'\n";
661      } else {
662        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
663        std::vector<Value*> Operands(GEP->op_begin()+1, GEP->op_end());
664
665        Function::arg_iterator TheArg = I2;
666        for (ScalarizeTable::iterator It = ArgIndices.begin();
667             *It != Operands; ++It, ++TheArg) {
668          assert(It != ArgIndices.end() && "GEP not handled??");
669        }
670
671        std::string NewName = I->getName();
672        for (unsigned i = 0, e = Operands.size(); i != e; ++i)
673          if (ConstantInt *CI = dyn_cast<ConstantInt>(Operands[i]))
674            NewName += "." + CI->getValue().toStringUnsigned(10);
675          else
676            NewName += ".x";
677        TheArg->setName(NewName+".val");
678
679        DOUT << "*** Promoted agg argument '" << TheArg->getName()
680             << "' of function '" << F->getName() << "'\n";
681
682        // All of the uses must be load instructions.  Replace them all with
683        // the argument specified by ArgNo.
684        while (!GEP->use_empty()) {
685          LoadInst *L = cast<LoadInst>(GEP->use_back());
686          L->replaceAllUsesWith(TheArg);
687          AA.replaceWithNewValue(L, TheArg);
688          L->eraseFromParent();
689        }
690        AA.deleteValue(GEP);
691        GEP->eraseFromParent();
692      }
693    }
694
695    // Increment I2 past all of the arguments added for this promoted pointer.
696    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
697      ++I2;
698  }
699
700  // Notify the alias analysis implementation that we inserted a new argument.
701  if (ExtraArgHack)
702    AA.copyValue(Constant::getNullValue(Type::Int32Ty), NF->arg_begin());
703
704
705  // Tell the alias analysis that the old function is about to disappear.
706  AA.replaceWithNewValue(F, NF);
707
708  // Now that the old function is dead, delete it.
709  F->eraseFromParent();
710  return NF;
711}
712