ArgumentPromotion.cpp revision 794fd75c67a2cdc128d67342c6d88a504d186896
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If we can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then we can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// we refuse to scalarize aggregates which would require passing in more than
21// three operands to the function, because we don't want to pass thousands of
22// operands for a large array or structure!
23//
24// Note that this transformation could also be done for arguments that are only
25// stored to (returning the value instead), but we do not currently handle that
26// case.  This case would be best handled when and if we start supporting
27// multiple return values from functions.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "argpromotion"
32#include "llvm/Transforms/IPO.h"
33#include "llvm/Constants.h"
34#include "llvm/DerivedTypes.h"
35#include "llvm/Module.h"
36#include "llvm/CallGraphSCCPass.h"
37#include "llvm/Instructions.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Analysis/CallGraph.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/CFG.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/ADT/DepthFirstIterator.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/Support/Compiler.h"
48#include <set>
49using namespace llvm;
50
51STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
52STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
53STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
54
55namespace {
56  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
57  ///
58  struct VISIBILITY_HIDDEN ArgPromotion : public CallGraphSCCPass {
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<AliasAnalysis>();
61      AU.addRequired<TargetData>();
62      CallGraphSCCPass::getAnalysisUsage(AU);
63    }
64
65    virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
66    static const int ID; // Pass identifcation, replacement for typeid
67    ArgPromotion() : CallGraphSCCPass((intptr_t)&ID) {}
68
69  private:
70    bool PromoteArguments(CallGraphNode *CGN);
71    bool isSafeToPromoteArgument(Argument *Arg) const;
72    Function *DoPromotion(Function *F, std::vector<Argument*> &ArgsToPromote);
73  };
74
75  const int ArgPromotion::ID = 0;
76  RegisterPass<ArgPromotion> X("argpromotion",
77                               "Promote 'by reference' arguments to scalars");
78}
79
80Pass *llvm::createArgumentPromotionPass() {
81  return new ArgPromotion();
82}
83
84bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
85  bool Changed = false, LocalChange;
86
87  do {  // Iterate until we stop promoting from this SCC.
88    LocalChange = false;
89    // Attempt to promote arguments from all functions in this SCC.
90    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
91      LocalChange |= PromoteArguments(SCC[i]);
92    Changed |= LocalChange;               // Remember that we changed something.
93  } while (LocalChange);
94
95  return Changed;
96}
97
98/// PromoteArguments - This method checks the specified function to see if there
99/// are any promotable arguments and if it is safe to promote the function (for
100/// example, all callers are direct).  If safe to promote some arguments, it
101/// calls the DoPromotion method.
102///
103bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
104  Function *F = CGN->getFunction();
105
106  // Make sure that it is local to this module.
107  if (!F || !F->hasInternalLinkage()) return false;
108
109  // First check: see if there are any pointer arguments!  If not, quick exit.
110  std::vector<Argument*> PointerArgs;
111  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
112    if (isa<PointerType>(I->getType()))
113      PointerArgs.push_back(I);
114  if (PointerArgs.empty()) return false;
115
116  // Second check: make sure that all callers are direct callers.  We can't
117  // transform functions that have indirect callers.
118  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
119       UI != E; ++UI) {
120    CallSite CS = CallSite::get(*UI);
121    if (!CS.getInstruction())       // "Taking the address" of the function
122      return false;
123
124    // Ensure that this call site is CALLING the function, not passing it as
125    // an argument.
126    for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
127         AI != E; ++AI)
128      if (*AI == F) return false;   // Passing the function address in!
129  }
130
131  // Check to see which arguments are promotable.  If an argument is not
132  // promotable, remove it from the PointerArgs vector.
133  for (unsigned i = 0; i != PointerArgs.size(); ++i)
134    if (!isSafeToPromoteArgument(PointerArgs[i])) {
135      std::swap(PointerArgs[i--], PointerArgs.back());
136      PointerArgs.pop_back();
137    }
138
139  // No promotable pointer arguments.
140  if (PointerArgs.empty()) return false;
141
142  // Okay, promote all of the arguments are rewrite the callees!
143  Function *NewF = DoPromotion(F, PointerArgs);
144
145  // Update the call graph to know that the old function is gone.
146  getAnalysis<CallGraph>().changeFunction(F, NewF);
147  return true;
148}
149
150/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
151/// to load.
152static bool IsAlwaysValidPointer(Value *V) {
153  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
154  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
155    return IsAlwaysValidPointer(GEP->getOperand(0));
156  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
157    if (CE->getOpcode() == Instruction::GetElementPtr)
158      return IsAlwaysValidPointer(CE->getOperand(0));
159
160  return false;
161}
162
163/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
164/// all callees pass in a valid pointer for the specified function argument.
165static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
166  Function *Callee = Arg->getParent();
167
168  unsigned ArgNo = std::distance(Callee->arg_begin(),
169                                 Function::arg_iterator(Arg));
170
171  // Look at all call sites of the function.  At this pointer we know we only
172  // have direct callees.
173  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
174       UI != E; ++UI) {
175    CallSite CS = CallSite::get(*UI);
176    assert(CS.getInstruction() && "Should only have direct calls!");
177
178    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
179      return false;
180  }
181  return true;
182}
183
184
185/// isSafeToPromoteArgument - As you might guess from the name of this method,
186/// it checks to see if it is both safe and useful to promote the argument.
187/// This method limits promotion of aggregates to only promote up to three
188/// elements of the aggregate in order to avoid exploding the number of
189/// arguments passed in.
190bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg) const {
191  // We can only promote this argument if all of the uses are loads, or are GEP
192  // instructions (with constant indices) that are subsequently loaded.
193  bool HasLoadInEntryBlock = false;
194  BasicBlock *EntryBlock = Arg->getParent()->begin();
195  std::vector<LoadInst*> Loads;
196  std::vector<std::vector<ConstantInt*> > GEPIndices;
197  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
198       UI != E; ++UI)
199    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
200      if (LI->isVolatile()) return false;  // Don't hack volatile loads
201      Loads.push_back(LI);
202      HasLoadInEntryBlock |= LI->getParent() == EntryBlock;
203    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
204      if (GEP->use_empty()) {
205        // Dead GEP's cause trouble later.  Just remove them if we run into
206        // them.
207        getAnalysis<AliasAnalysis>().deleteValue(GEP);
208        GEP->getParent()->getInstList().erase(GEP);
209        return isSafeToPromoteArgument(Arg);
210      }
211      // Ensure that all of the indices are constants.
212      std::vector<ConstantInt*> Operands;
213      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
214        if (ConstantInt *C = dyn_cast<ConstantInt>(GEP->getOperand(i)))
215          Operands.push_back(C);
216        else
217          return false;  // Not a constant operand GEP!
218
219      // Ensure that the only users of the GEP are load instructions.
220      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
221           UI != E; ++UI)
222        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
223          if (LI->isVolatile()) return false;  // Don't hack volatile loads
224          Loads.push_back(LI);
225          HasLoadInEntryBlock |= LI->getParent() == EntryBlock;
226        } else {
227          return false;
228        }
229
230      // See if there is already a GEP with these indices.  If not, check to
231      // make sure that we aren't promoting too many elements.  If so, nothing
232      // to do.
233      if (std::find(GEPIndices.begin(), GEPIndices.end(), Operands) ==
234          GEPIndices.end()) {
235        if (GEPIndices.size() == 3) {
236          DOUT << "argpromotion disable promoting argument '"
237               << Arg->getName() << "' because it would require adding more "
238               << "than 3 arguments to the function.\n";
239          // We limit aggregate promotion to only promoting up to three elements
240          // of the aggregate.
241          return false;
242        }
243        GEPIndices.push_back(Operands);
244      }
245    } else {
246      return false;  // Not a load or a GEP.
247    }
248
249  if (Loads.empty()) return true;  // No users, this is a dead argument.
250
251  // If we decide that we want to promote this argument, the value is going to
252  // be unconditionally loaded in all callees.  This is only safe to do if the
253  // pointer was going to be unconditionally loaded anyway (i.e. there is a load
254  // of the pointer in the entry block of the function) or if we can prove that
255  // all pointers passed in are always to legal locations (for example, no null
256  // pointers are passed in, no pointers to free'd memory, etc).
257  if (!HasLoadInEntryBlock && !AllCalleesPassInValidPointerForArgument(Arg))
258    return false;   // Cannot prove that this is safe!!
259
260  // Okay, now we know that the argument is only used by load instructions and
261  // it is safe to unconditionally load the pointer.  Use alias analysis to
262  // check to see if the pointer is guaranteed to not be modified from entry of
263  // the function to each of the load instructions.
264
265  // Because there could be several/many load instructions, remember which
266  // blocks we know to be transparent to the load.
267  std::set<BasicBlock*> TranspBlocks;
268
269  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
270  TargetData &TD = getAnalysis<TargetData>();
271
272  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
273    // Check to see if the load is invalidated from the start of the block to
274    // the load itself.
275    LoadInst *Load = Loads[i];
276    BasicBlock *BB = Load->getParent();
277
278    const PointerType *LoadTy =
279      cast<PointerType>(Load->getOperand(0)->getType());
280    unsigned LoadSize = (unsigned)TD.getTypeSize(LoadTy->getElementType());
281
282    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
283      return false;  // Pointer is invalidated!
284
285    // Now check every path from the entry block to the load for transparency.
286    // To do this, we perform a depth first search on the inverse CFG from the
287    // loading block.
288    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
289      for (idf_ext_iterator<BasicBlock*> I = idf_ext_begin(*PI, TranspBlocks),
290             E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
291        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
292          return false;
293  }
294
295  // If the path from the entry of the function to each load is free of
296  // instructions that potentially invalidate the load, we can make the
297  // transformation!
298  return true;
299}
300
301namespace {
302  /// GEPIdxComparator - Provide a strong ordering for GEP indices.  All Value*
303  /// elements are instances of ConstantInt.
304  ///
305  struct GEPIdxComparator {
306    bool operator()(const std::vector<Value*> &LHS,
307                    const std::vector<Value*> &RHS) const {
308      unsigned idx = 0;
309      for (; idx < LHS.size() && idx < RHS.size(); ++idx) {
310        if (LHS[idx] != RHS[idx]) {
311          return cast<ConstantInt>(LHS[idx])->getZExtValue() <
312                 cast<ConstantInt>(RHS[idx])->getZExtValue();
313        }
314      }
315
316      // Return less than if we ran out of stuff in LHS and we didn't run out of
317      // stuff in RHS.
318      return idx == LHS.size() && idx != RHS.size();
319    }
320  };
321}
322
323
324/// DoPromotion - This method actually performs the promotion of the specified
325/// arguments, and returns the new function.  At this point, we know that it's
326/// safe to do so.
327Function *ArgPromotion::DoPromotion(Function *F,
328                                    std::vector<Argument*> &Args2Prom) {
329  std::set<Argument*> ArgsToPromote(Args2Prom.begin(), Args2Prom.end());
330
331  // Start by computing a new prototype for the function, which is the same as
332  // the old function, but has modified arguments.
333  const FunctionType *FTy = F->getFunctionType();
334  std::vector<const Type*> Params;
335
336  typedef std::set<std::vector<Value*>, GEPIdxComparator> ScalarizeTable;
337
338  // ScalarizedElements - If we are promoting a pointer that has elements
339  // accessed out of it, keep track of which elements are accessed so that we
340  // can add one argument for each.
341  //
342  // Arguments that are directly loaded will have a zero element value here, to
343  // handle cases where there are both a direct load and GEP accesses.
344  //
345  std::map<Argument*, ScalarizeTable> ScalarizedElements;
346
347  // OriginalLoads - Keep track of a representative load instruction from the
348  // original function so that we can tell the alias analysis implementation
349  // what the new GEP/Load instructions we are inserting look like.
350  std::map<std::vector<Value*>, LoadInst*> OriginalLoads;
351
352  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
353    if (!ArgsToPromote.count(I)) {
354      Params.push_back(I->getType());
355    } else if (I->use_empty()) {
356      ++NumArgumentsDead;
357    } else {
358      // Okay, this is being promoted.  Check to see if there are any GEP uses
359      // of the argument.
360      ScalarizeTable &ArgIndices = ScalarizedElements[I];
361      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
362           ++UI) {
363        Instruction *User = cast<Instruction>(*UI);
364        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
365        std::vector<Value*> Indices(User->op_begin()+1, User->op_end());
366        ArgIndices.insert(Indices);
367        LoadInst *OrigLoad;
368        if (LoadInst *L = dyn_cast<LoadInst>(User))
369          OrigLoad = L;
370        else
371          OrigLoad = cast<LoadInst>(User->use_back());
372        OriginalLoads[Indices] = OrigLoad;
373      }
374
375      // Add a parameter to the function for each element passed in.
376      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
377             E = ArgIndices.end(); SI != E; ++SI)
378        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
379                                                           &(*SI)[0],
380                                                           SI->size()));
381
382      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
383        ++NumArgumentsPromoted;
384      else
385        ++NumAggregatesPromoted;
386    }
387
388  const Type *RetTy = FTy->getReturnType();
389
390  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
391  // have zero fixed arguments.
392  bool ExtraArgHack = false;
393  if (Params.empty() && FTy->isVarArg()) {
394    ExtraArgHack = true;
395    Params.push_back(Type::Int32Ty);
396  }
397  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
398
399   // Create the new function body and insert it into the module...
400  Function *NF = new Function(NFTy, F->getLinkage(), F->getName());
401  NF->setCallingConv(F->getCallingConv());
402  F->getParent()->getFunctionList().insert(F, NF);
403
404  // Get the alias analysis information that we need to update to reflect our
405  // changes.
406  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
407
408  // Loop over all of the callers of the function, transforming the call sites
409  // to pass in the loaded pointers.
410  //
411  std::vector<Value*> Args;
412  while (!F->use_empty()) {
413    CallSite CS = CallSite::get(F->use_back());
414    Instruction *Call = CS.getInstruction();
415
416    // Loop over the operands, inserting GEP and loads in the caller as
417    // appropriate.
418    CallSite::arg_iterator AI = CS.arg_begin();
419    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
420         I != E; ++I, ++AI)
421      if (!ArgsToPromote.count(I))
422        Args.push_back(*AI);          // Unmodified argument
423      else if (!I->use_empty()) {
424        // Non-dead argument: insert GEPs and loads as appropriate.
425        ScalarizeTable &ArgIndices = ScalarizedElements[I];
426        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
427               E = ArgIndices.end(); SI != E; ++SI) {
428          Value *V = *AI;
429          LoadInst *OrigLoad = OriginalLoads[*SI];
430          if (!SI->empty()) {
431            V = new GetElementPtrInst(V, &(*SI)[0], SI->size(),
432                                      V->getName()+".idx", Call);
433            AA.copyValue(OrigLoad->getOperand(0), V);
434          }
435          Args.push_back(new LoadInst(V, V->getName()+".val", Call));
436          AA.copyValue(OrigLoad, Args.back());
437        }
438      }
439
440    if (ExtraArgHack)
441      Args.push_back(Constant::getNullValue(Type::Int32Ty));
442
443    // Push any varargs arguments on the list
444    for (; AI != CS.arg_end(); ++AI)
445      Args.push_back(*AI);
446
447    Instruction *New;
448    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
449      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
450                           &Args[0], Args.size(), "", Call);
451      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
452    } else {
453      New = new CallInst(NF, &Args[0], Args.size(), "", Call);
454      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
455      if (cast<CallInst>(Call)->isTailCall())
456        cast<CallInst>(New)->setTailCall();
457    }
458    Args.clear();
459
460    // Update the alias analysis implementation to know that we are replacing
461    // the old call with a new one.
462    AA.replaceWithNewValue(Call, New);
463
464    if (!Call->use_empty()) {
465      Call->replaceAllUsesWith(New);
466      New->takeName(Call);
467    }
468
469    // Finally, remove the old call from the program, reducing the use-count of
470    // F.
471    Call->getParent()->getInstList().erase(Call);
472  }
473
474  // Since we have now created the new function, splice the body of the old
475  // function right into the new function, leaving the old rotting hulk of the
476  // function empty.
477  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
478
479  // Loop over the argument list, transfering uses of the old arguments over to
480  // the new arguments, also transfering over the names as well.
481  //
482  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
483       I2 = NF->arg_begin(); I != E; ++I)
484    if (!ArgsToPromote.count(I)) {
485      // If this is an unmodified argument, move the name and users over to the
486      // new version.
487      I->replaceAllUsesWith(I2);
488      I2->takeName(I);
489      AA.replaceWithNewValue(I, I2);
490      ++I2;
491    } else if (I->use_empty()) {
492      AA.deleteValue(I);
493    } else {
494      // Otherwise, if we promoted this argument, then all users are load
495      // instructions, and all loads should be using the new argument that we
496      // added.
497      ScalarizeTable &ArgIndices = ScalarizedElements[I];
498
499      while (!I->use_empty()) {
500        if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
501          assert(ArgIndices.begin()->empty() &&
502                 "Load element should sort to front!");
503          I2->setName(I->getName()+".val");
504          LI->replaceAllUsesWith(I2);
505          AA.replaceWithNewValue(LI, I2);
506          LI->getParent()->getInstList().erase(LI);
507          DOUT << "*** Promoted load of argument '" << I->getName()
508               << "' in function '" << F->getName() << "'\n";
509        } else {
510          GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
511          std::vector<Value*> Operands(GEP->op_begin()+1, GEP->op_end());
512
513          Function::arg_iterator TheArg = I2;
514          for (ScalarizeTable::iterator It = ArgIndices.begin();
515               *It != Operands; ++It, ++TheArg) {
516            assert(It != ArgIndices.end() && "GEP not handled??");
517          }
518
519          std::string NewName = I->getName();
520          for (unsigned i = 0, e = Operands.size(); i != e; ++i)
521            if (ConstantInt *CI = dyn_cast<ConstantInt>(Operands[i]))
522              NewName += "." + CI->getValue().toString(10);
523            else
524              NewName += ".x";
525          TheArg->setName(NewName+".val");
526
527          DOUT << "*** Promoted agg argument '" << TheArg->getName()
528               << "' of function '" << F->getName() << "'\n";
529
530          // All of the uses must be load instructions.  Replace them all with
531          // the argument specified by ArgNo.
532          while (!GEP->use_empty()) {
533            LoadInst *L = cast<LoadInst>(GEP->use_back());
534            L->replaceAllUsesWith(TheArg);
535            AA.replaceWithNewValue(L, TheArg);
536            L->getParent()->getInstList().erase(L);
537          }
538          AA.deleteValue(GEP);
539          GEP->getParent()->getInstList().erase(GEP);
540        }
541      }
542
543      // Increment I2 past all of the arguments added for this promoted pointer.
544      for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
545        ++I2;
546    }
547
548  // Notify the alias analysis implementation that we inserted a new argument.
549  if (ExtraArgHack)
550    AA.copyValue(Constant::getNullValue(Type::Int32Ty), NF->arg_begin());
551
552
553  // Tell the alias analysis that the old function is about to disappear.
554  AA.replaceWithNewValue(F, NF);
555
556  // Now that the old function is dead, delete it.
557  F->getParent()->getFunctionList().erase(F);
558  return NF;
559}
560