ArgumentPromotion.cpp revision 7eb28f3786543f63cb9a4099655e6d456fca71f7
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// by default it refuses to scalarize aggregates which would require passing in
21// more than three operands to the function, because passing thousands of
22// operands for a large array or structure is unprofitable! This limit can be
23// configured or disabled, however.
24//
25// Note that this transformation could also be done for arguments that are only
26// stored to (returning the value instead), but does not currently.  This case
27// would be best handled when and if LLVM begins supporting multiple return
28// values from functions.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "argpromotion"
33#include "llvm/Transforms/IPO.h"
34#include "llvm/Constants.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/CallGraphSCCPass.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/CallGraph.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Support/CallSite.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/CFG.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/ADT/DepthFirstIterator.h"
49#include "llvm/ADT/Statistic.h"
50#include <set>
51using namespace llvm;
52
53STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
54STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
55STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
56STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
57
58namespace {
59  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
60  ///
61  struct VISIBILITY_HIDDEN ArgPromotion : public CallGraphSCCPass {
62    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63      AU.addRequired<AliasAnalysis>();
64      CallGraphSCCPass::getAnalysisUsage(AU);
65    }
66
67    virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
68    static char ID; // Pass identification, replacement for typeid
69    explicit ArgPromotion(unsigned maxElements = 3)
70      : CallGraphSCCPass(&ID), maxElements(maxElements) {}
71
72    /// A vector used to hold the indices of a single GEP instruction
73    typedef std::vector<uint64_t> IndicesVector;
74
75  private:
76    bool PromoteArguments(CallGraphNode *CGN);
77    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
78    Function *DoPromotion(Function *F,
79                          SmallPtrSet<Argument*, 8> &ArgsToPromote,
80                          SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
81    /// The maximum number of elements to expand, or 0 for unlimited.
82    unsigned maxElements;
83  };
84}
85
86char ArgPromotion::ID = 0;
87static RegisterPass<ArgPromotion>
88X("argpromotion", "Promote 'by reference' arguments to scalars");
89
90Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
91  return new ArgPromotion(maxElements);
92}
93
94bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
95  bool Changed = false, LocalChange;
96
97  do {  // Iterate until we stop promoting from this SCC.
98    LocalChange = false;
99    // Attempt to promote arguments from all functions in this SCC.
100    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
101      LocalChange |= PromoteArguments(SCC[i]);
102    Changed |= LocalChange;               // Remember that we changed something.
103  } while (LocalChange);
104
105  return Changed;
106}
107
108/// PromoteArguments - This method checks the specified function to see if there
109/// are any promotable arguments and if it is safe to promote the function (for
110/// example, all callers are direct).  If safe to promote some arguments, it
111/// calls the DoPromotion method.
112///
113bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
114  Function *F = CGN->getFunction();
115
116  // Make sure that it is local to this module.
117  if (!F || !F->hasLocalLinkage()) return false;
118
119  // First check: see if there are any pointer arguments!  If not, quick exit.
120  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
121  unsigned ArgNo = 0;
122  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
123       I != E; ++I, ++ArgNo)
124    if (isa<PointerType>(I->getType()))
125      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
126  if (PointerArgs.empty()) return false;
127
128  // Second check: make sure that all callers are direct callers.  We can't
129  // transform functions that have indirect callers.
130  if (F->hasAddressTaken())
131    return false;
132
133  // Check to see which arguments are promotable.  If an argument is promotable,
134  // add it to ArgsToPromote.
135  SmallPtrSet<Argument*, 8> ArgsToPromote;
136  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
137  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
138    bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
139
140    // If this is a byval argument, and if the aggregate type is small, just
141    // pass the elements, which is always safe.
142    Argument *PtrArg = PointerArgs[i].first;
143    if (isByVal) {
144      const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
145      if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
146        if (maxElements > 0 && STy->getNumElements() > maxElements) {
147          DEBUG(errs() << "argpromotion disable promoting argument '"
148                << PtrArg->getName() << "' because it would require adding more"
149                << " than " << maxElements << " arguments to the function.\n");
150        } else {
151          // If all the elements are single-value types, we can promote it.
152          bool AllSimple = true;
153          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
154            if (!STy->getElementType(i)->isSingleValueType()) {
155              AllSimple = false;
156              break;
157            }
158
159          // Safe to transform, don't even bother trying to "promote" it.
160          // Passing the elements as a scalar will allow scalarrepl to hack on
161          // the new alloca we introduce.
162          if (AllSimple) {
163            ByValArgsToTransform.insert(PtrArg);
164            continue;
165          }
166        }
167      }
168    }
169
170    // Otherwise, see if we can promote the pointer to its value.
171    if (isSafeToPromoteArgument(PtrArg, isByVal))
172      ArgsToPromote.insert(PtrArg);
173  }
174
175  // No promotable pointer arguments.
176  if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) return false;
177
178  Function *NewF = DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
179
180  // Update the call graph to know that the function has been transformed.
181  getAnalysis<CallGraph>().changeFunction(F, NewF);
182  return true;
183}
184
185/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
186/// to load.
187static bool IsAlwaysValidPointer(Value *V) {
188  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
189  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
190    return IsAlwaysValidPointer(GEP->getOperand(0));
191  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
192    if (CE->getOpcode() == Instruction::GetElementPtr)
193      return IsAlwaysValidPointer(CE->getOperand(0));
194
195  return false;
196}
197
198/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
199/// all callees pass in a valid pointer for the specified function argument.
200static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
201  Function *Callee = Arg->getParent();
202
203  unsigned ArgNo = std::distance(Callee->arg_begin(),
204                                 Function::arg_iterator(Arg));
205
206  // Look at all call sites of the function.  At this pointer we know we only
207  // have direct callees.
208  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
209       UI != E; ++UI) {
210    CallSite CS = CallSite::get(*UI);
211    assert(CS.getInstruction() && "Should only have direct calls!");
212
213    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
214      return false;
215  }
216  return true;
217}
218
219/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
220/// that is greater than or equal to the size of prefix, and each of the
221/// elements in Prefix is the same as the corresponding elements in Longer.
222///
223/// This means it also returns true when Prefix and Longer are equal!
224static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
225                     const ArgPromotion::IndicesVector &Longer) {
226  if (Prefix.size() > Longer.size())
227    return false;
228  for (unsigned i = 0, e = Prefix.size(); i != e; ++i)
229    if (Prefix[i] != Longer[i])
230      return false;
231  return true;
232}
233
234
235/// Checks if Indices, or a prefix of Indices, is in Set.
236static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
237                     std::set<ArgPromotion::IndicesVector> &Set) {
238    std::set<ArgPromotion::IndicesVector>::iterator Low;
239    Low = Set.upper_bound(Indices);
240    if (Low != Set.begin())
241      Low--;
242    // Low is now the last element smaller than or equal to Indices. This means
243    // it points to a prefix of Indices (possibly Indices itself), if such
244    // prefix exists.
245    //
246    // This load is safe if any prefix of its operands is safe to load.
247    return Low != Set.end() && IsPrefix(*Low, Indices);
248}
249
250/// Mark the given indices (ToMark) as safe in the the given set of indices
251/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
252/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
253/// already. Furthermore, any indices that Indices is itself a prefix of, are
254/// removed from Safe (since they are implicitely safe because of Indices now).
255static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
256                            std::set<ArgPromotion::IndicesVector> &Safe) {
257  std::set<ArgPromotion::IndicesVector>::iterator Low;
258  Low = Safe.upper_bound(ToMark);
259  // Guard against the case where Safe is empty
260  if (Low != Safe.begin())
261    Low--;
262  // Low is now the last element smaller than or equal to Indices. This
263  // means it points to a prefix of Indices (possibly Indices itself), if
264  // such prefix exists.
265  if (Low != Safe.end()) {
266    if (IsPrefix(*Low, ToMark))
267      // If there is already a prefix of these indices (or exactly these
268      // indices) marked a safe, don't bother adding these indices
269      return;
270
271    // Increment Low, so we can use it as a "insert before" hint
272    ++Low;
273  }
274  // Insert
275  Low = Safe.insert(Low, ToMark);
276  ++Low;
277  // If there we're a prefix of longer index list(s), remove those
278  std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
279  while (Low != End && IsPrefix(ToMark, *Low)) {
280    std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
281    ++Low;
282    Safe.erase(Remove);
283  }
284}
285
286/// isSafeToPromoteArgument - As you might guess from the name of this method,
287/// it checks to see if it is both safe and useful to promote the argument.
288/// This method limits promotion of aggregates to only promote up to three
289/// elements of the aggregate in order to avoid exploding the number of
290/// arguments passed in.
291bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
292  typedef std::set<IndicesVector> GEPIndicesSet;
293
294  // Quick exit for unused arguments
295  if (Arg->use_empty())
296    return true;
297
298  // We can only promote this argument if all of the uses are loads, or are GEP
299  // instructions (with constant indices) that are subsequently loaded.
300  //
301  // Promoting the argument causes it to be loaded in the caller
302  // unconditionally. This is only safe if we can prove that either the load
303  // would have happened in the callee anyway (ie, there is a load in the entry
304  // block) or the pointer passed in at every call site is guaranteed to be
305  // valid.
306  // In the former case, invalid loads can happen, but would have happened
307  // anyway, in the latter case, invalid loads won't happen. This prevents us
308  // from introducing an invalid load that wouldn't have happened in the
309  // original code.
310  //
311  // This set will contain all sets of indices that are loaded in the entry
312  // block, and thus are safe to unconditionally load in the caller.
313  GEPIndicesSet SafeToUnconditionallyLoad;
314
315  // This set contains all the sets of indices that we are planning to promote.
316  // This makes it possible to limit the number of arguments added.
317  GEPIndicesSet ToPromote;
318
319  // If the pointer is always valid, any load with first index 0 is valid.
320  if(isByVal || AllCalleesPassInValidPointerForArgument(Arg))
321    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
322
323  // First, iterate the entry block and mark loads of (geps of) arguments as
324  // safe.
325  BasicBlock *EntryBlock = Arg->getParent()->begin();
326  // Declare this here so we can reuse it
327  IndicesVector Indices;
328  for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
329       I != E; ++I)
330    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
331      Value *V = LI->getPointerOperand();
332      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
333        V = GEP->getPointerOperand();
334        if (V == Arg) {
335          // This load actually loads (part of) Arg? Check the indices then.
336          Indices.reserve(GEP->getNumIndices());
337          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
338               II != IE; ++II)
339            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
340              Indices.push_back(CI->getSExtValue());
341            else
342              // We found a non-constant GEP index for this argument? Bail out
343              // right away, can't promote this argument at all.
344              return false;
345
346          // Indices checked out, mark them as safe
347          MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
348          Indices.clear();
349        }
350      } else if (V == Arg) {
351        // Direct loads are equivalent to a GEP with a single 0 index.
352        MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
353      }
354    }
355
356  // Now, iterate all uses of the argument to see if there are any uses that are
357  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
358  SmallVector<LoadInst*, 16> Loads;
359  IndicesVector Operands;
360  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
361       UI != E; ++UI) {
362    Operands.clear();
363    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
364      if (LI->isVolatile()) return false;  // Don't hack volatile loads
365      Loads.push_back(LI);
366      // Direct loads are equivalent to a GEP with a zero index and then a load.
367      Operands.push_back(0);
368    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
369      if (GEP->use_empty()) {
370        // Dead GEP's cause trouble later.  Just remove them if we run into
371        // them.
372        getAnalysis<AliasAnalysis>().deleteValue(GEP);
373        GEP->eraseFromParent();
374        // TODO: This runs the above loop over and over again for dead GEPS
375        // Couldn't we just do increment the UI iterator earlier and erase the
376        // use?
377        return isSafeToPromoteArgument(Arg, isByVal);
378      }
379
380      // Ensure that all of the indices are constants.
381      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
382        i != e; ++i)
383        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
384          Operands.push_back(C->getSExtValue());
385        else
386          return false;  // Not a constant operand GEP!
387
388      // Ensure that the only users of the GEP are load instructions.
389      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
390           UI != E; ++UI)
391        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
392          if (LI->isVolatile()) return false;  // Don't hack volatile loads
393          Loads.push_back(LI);
394        } else {
395          // Other uses than load?
396          return false;
397        }
398    } else {
399      return false;  // Not a load or a GEP.
400    }
401
402    // Now, see if it is safe to promote this load / loads of this GEP. Loading
403    // is safe if Operands, or a prefix of Operands, is marked as safe.
404    if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
405      return false;
406
407    // See if we are already promoting a load with these indices. If not, check
408    // to make sure that we aren't promoting too many elements.  If so, nothing
409    // to do.
410    if (ToPromote.find(Operands) == ToPromote.end()) {
411      if (maxElements > 0 && ToPromote.size() == maxElements) {
412        DEBUG(errs() << "argpromotion not promoting argument '"
413              << Arg->getName() << "' because it would require adding more "
414              << "than " << maxElements << " arguments to the function.\n");
415        // We limit aggregate promotion to only promoting up to a fixed number
416        // of elements of the aggregate.
417        return false;
418      }
419      ToPromote.insert(Operands);
420    }
421  }
422
423  if (Loads.empty()) return true;  // No users, this is a dead argument.
424
425  // Okay, now we know that the argument is only used by load instructions and
426  // it is safe to unconditionally perform all of them. Use alias analysis to
427  // check to see if the pointer is guaranteed to not be modified from entry of
428  // the function to each of the load instructions.
429
430  // Because there could be several/many load instructions, remember which
431  // blocks we know to be transparent to the load.
432  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
433
434  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
435  TargetData *TD = getAnalysisIfAvailable<TargetData>();
436  if (!TD) return false; // Without TargetData, assume the worst.
437
438  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
439    // Check to see if the load is invalidated from the start of the block to
440    // the load itself.
441    LoadInst *Load = Loads[i];
442    BasicBlock *BB = Load->getParent();
443
444    const PointerType *LoadTy =
445      cast<PointerType>(Load->getPointerOperand()->getType());
446    unsigned LoadSize =(unsigned)TD->getTypeStoreSize(LoadTy->getElementType());
447
448    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
449      return false;  // Pointer is invalidated!
450
451    // Now check every path from the entry block to the load for transparency.
452    // To do this, we perform a depth first search on the inverse CFG from the
453    // loading block.
454    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
455      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
456             I = idf_ext_begin(*PI, TranspBlocks),
457             E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
458        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
459          return false;
460  }
461
462  // If the path from the entry of the function to each load is free of
463  // instructions that potentially invalidate the load, we can make the
464  // transformation!
465  return true;
466}
467
468/// DoPromotion - This method actually performs the promotion of the specified
469/// arguments, and returns the new function.  At this point, we know that it's
470/// safe to do so.
471Function *ArgPromotion::DoPromotion(Function *F,
472                                    SmallPtrSet<Argument*, 8> &ArgsToPromote,
473                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
474
475  // Start by computing a new prototype for the function, which is the same as
476  // the old function, but has modified arguments.
477  const FunctionType *FTy = F->getFunctionType();
478  std::vector<const Type*> Params;
479
480  typedef std::set<IndicesVector> ScalarizeTable;
481
482  // ScalarizedElements - If we are promoting a pointer that has elements
483  // accessed out of it, keep track of which elements are accessed so that we
484  // can add one argument for each.
485  //
486  // Arguments that are directly loaded will have a zero element value here, to
487  // handle cases where there are both a direct load and GEP accesses.
488  //
489  std::map<Argument*, ScalarizeTable> ScalarizedElements;
490
491  // OriginalLoads - Keep track of a representative load instruction from the
492  // original function so that we can tell the alias analysis implementation
493  // what the new GEP/Load instructions we are inserting look like.
494  std::map<IndicesVector, LoadInst*> OriginalLoads;
495
496  // Attributes - Keep track of the parameter attributes for the arguments
497  // that we are *not* promoting. For the ones that we do promote, the parameter
498  // attributes are lost
499  SmallVector<AttributeWithIndex, 8> AttributesVec;
500  const AttrListPtr &PAL = F->getAttributes();
501
502  // Add any return attributes.
503  if (Attributes attrs = PAL.getRetAttributes())
504    AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
505
506  // First, determine the new argument list
507  unsigned ArgIndex = 1;
508  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
509       ++I, ++ArgIndex) {
510    if (ByValArgsToTransform.count(I)) {
511      // Simple byval argument? Just add all the struct element types.
512      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
513      const StructType *STy = cast<StructType>(AgTy);
514      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
515        Params.push_back(STy->getElementType(i));
516      ++NumByValArgsPromoted;
517    } else if (!ArgsToPromote.count(I)) {
518      // Unchanged argument
519      Params.push_back(I->getType());
520      if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
521        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
522    } else if (I->use_empty()) {
523      // Dead argument (which are always marked as promotable)
524      ++NumArgumentsDead;
525    } else {
526      // Okay, this is being promoted. This means that the only uses are loads
527      // or GEPs which are only used by loads
528
529      // In this table, we will track which indices are loaded from the argument
530      // (where direct loads are tracked as no indices).
531      ScalarizeTable &ArgIndices = ScalarizedElements[I];
532      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
533           ++UI) {
534        Instruction *User = cast<Instruction>(*UI);
535        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
536        IndicesVector Indices;
537        Indices.reserve(User->getNumOperands() - 1);
538        // Since loads will only have a single operand, and GEPs only a single
539        // non-index operand, this will record direct loads without any indices,
540        // and gep+loads with the GEP indices.
541        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
542             II != IE; ++II)
543          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
544        // GEPs with a single 0 index can be merged with direct loads
545        if (Indices.size() == 1 && Indices.front() == 0)
546          Indices.clear();
547        ArgIndices.insert(Indices);
548        LoadInst *OrigLoad;
549        if (LoadInst *L = dyn_cast<LoadInst>(User))
550          OrigLoad = L;
551        else
552          // Take any load, we will use it only to update Alias Analysis
553          OrigLoad = cast<LoadInst>(User->use_back());
554        OriginalLoads[Indices] = OrigLoad;
555      }
556
557      // Add a parameter to the function for each element passed in.
558      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
559             E = ArgIndices.end(); SI != E; ++SI) {
560        // not allowed to dereference ->begin() if size() is 0
561        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
562                                                           SI->begin(),
563                                                           SI->end()));
564        assert(Params.back());
565      }
566
567      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
568        ++NumArgumentsPromoted;
569      else
570        ++NumAggregatesPromoted;
571    }
572  }
573
574  // Add any function attributes.
575  if (Attributes attrs = PAL.getFnAttributes())
576    AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
577
578  const Type *RetTy = FTy->getReturnType();
579
580  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
581  // have zero fixed arguments.
582  bool ExtraArgHack = false;
583  if (Params.empty() && FTy->isVarArg()) {
584    ExtraArgHack = true;
585    Params.push_back(Type::getInt32Ty(F->getContext()));
586  }
587
588  // Construct the new function type using the new arguments.
589  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
590
591  // Create the new function body and insert it into the module...
592  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
593  NF->copyAttributesFrom(F);
594
595  // Recompute the parameter attributes list based on the new arguments for
596  // the function.
597  NF->setAttributes(AttrListPtr::get(AttributesVec.begin(), AttributesVec.end()));
598  AttributesVec.clear();
599
600  F->getParent()->getFunctionList().insert(F, NF);
601  NF->takeName(F);
602
603  // Get the alias analysis information that we need to update to reflect our
604  // changes.
605  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
606
607  // Get the callgraph information that we need to update to reflect our
608  // changes.
609  CallGraph &CG = getAnalysis<CallGraph>();
610
611  // Loop over all of the callers of the function, transforming the call sites
612  // to pass in the loaded pointers.
613  //
614  SmallVector<Value*, 16> Args;
615  while (!F->use_empty()) {
616    CallSite CS = CallSite::get(F->use_back());
617    Instruction *Call = CS.getInstruction();
618    const AttrListPtr &CallPAL = CS.getAttributes();
619
620    // Add any return attributes.
621    if (Attributes attrs = CallPAL.getRetAttributes())
622      AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
623
624    // Loop over the operands, inserting GEP and loads in the caller as
625    // appropriate.
626    CallSite::arg_iterator AI = CS.arg_begin();
627    ArgIndex = 1;
628    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
629         I != E; ++I, ++AI, ++ArgIndex)
630      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
631        Args.push_back(*AI);          // Unmodified argument
632
633        if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
634          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
635
636      } else if (ByValArgsToTransform.count(I)) {
637        // Emit a GEP and load for each element of the struct.
638        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
639        const StructType *STy = cast<StructType>(AgTy);
640        Value *Idxs[2] = {
641              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
642        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
643          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
644          Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
645                                                 (*AI)->getName()+"."+utostr(i),
646                                                 Call);
647          // TODO: Tell AA about the new values?
648          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
649        }
650      } else if (!I->use_empty()) {
651        // Non-dead argument: insert GEPs and loads as appropriate.
652        ScalarizeTable &ArgIndices = ScalarizedElements[I];
653        // Store the Value* version of the indices in here, but declare it now
654        // for reuse
655        std::vector<Value*> Ops;
656        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
657               E = ArgIndices.end(); SI != E; ++SI) {
658          Value *V = *AI;
659          LoadInst *OrigLoad = OriginalLoads[*SI];
660          if (!SI->empty()) {
661            Ops.reserve(SI->size());
662            const Type *ElTy = V->getType();
663            for (IndicesVector::const_iterator II = SI->begin(),
664                 IE = SI->end(); II != IE; ++II) {
665              // Use i32 to index structs, and i64 for others (pointers/arrays).
666              // This satisfies GEP constraints.
667              const Type *IdxTy = (isa<StructType>(ElTy) ?
668                    Type::getInt32Ty(F->getContext()) :
669                    Type::getInt64Ty(F->getContext()));
670              Ops.push_back(ConstantInt::get(IdxTy, *II));
671              // Keep track of the type we're currently indexing
672              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
673            }
674            // And create a GEP to extract those indices
675            V = GetElementPtrInst::Create(V, Ops.begin(), Ops.end(),
676                                          V->getName()+".idx", Call);
677            Ops.clear();
678            AA.copyValue(OrigLoad->getOperand(0), V);
679          }
680          Args.push_back(new LoadInst(V, V->getName()+".val", Call));
681          AA.copyValue(OrigLoad, Args.back());
682        }
683      }
684
685    if (ExtraArgHack)
686      Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
687
688    // Push any varargs arguments on the list
689    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
690      Args.push_back(*AI);
691      if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
692        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
693    }
694
695    // Add any function attributes.
696    if (Attributes attrs = CallPAL.getFnAttributes())
697      AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
698
699    Instruction *New;
700    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
701      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
702                               Args.begin(), Args.end(), "", Call);
703      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
704      cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
705                                                          AttributesVec.end()));
706    } else {
707      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
708      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
709      cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
710                                                        AttributesVec.end()));
711      if (cast<CallInst>(Call)->isTailCall())
712        cast<CallInst>(New)->setTailCall();
713    }
714    Args.clear();
715    AttributesVec.clear();
716
717    // Update the alias analysis implementation to know that we are replacing
718    // the old call with a new one.
719    AA.replaceWithNewValue(Call, New);
720
721    // Update the callgraph to know that the callsite has been transformed.
722    CG[Call->getParent()->getParent()]->replaceCallSite(Call, New);
723
724    if (!Call->use_empty()) {
725      Call->replaceAllUsesWith(New);
726      New->takeName(Call);
727    }
728
729    // Finally, remove the old call from the program, reducing the use-count of
730    // F.
731    Call->eraseFromParent();
732  }
733
734  // Since we have now created the new function, splice the body of the old
735  // function right into the new function, leaving the old rotting hulk of the
736  // function empty.
737  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
738
739  // Loop over the argument list, transfering uses of the old arguments over to
740  // the new arguments, also transfering over the names as well.
741  //
742  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
743       I2 = NF->arg_begin(); I != E; ++I) {
744    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
745      // If this is an unmodified argument, move the name and users over to the
746      // new version.
747      I->replaceAllUsesWith(I2);
748      I2->takeName(I);
749      AA.replaceWithNewValue(I, I2);
750      ++I2;
751      continue;
752    }
753
754    if (ByValArgsToTransform.count(I)) {
755      // In the callee, we create an alloca, and store each of the new incoming
756      // arguments into the alloca.
757      Instruction *InsertPt = NF->begin()->begin();
758
759      // Just add all the struct element types.
760      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
761      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
762      const StructType *STy = cast<StructType>(AgTy);
763      Value *Idxs[2] = {
764            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
765
766      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
767        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
768        Value *Idx =
769          GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
770                                    TheAlloca->getName()+"."+Twine(i),
771                                    InsertPt);
772        I2->setName(I->getName()+"."+Twine(i));
773        new StoreInst(I2++, Idx, InsertPt);
774      }
775
776      // Anything that used the arg should now use the alloca.
777      I->replaceAllUsesWith(TheAlloca);
778      TheAlloca->takeName(I);
779      AA.replaceWithNewValue(I, TheAlloca);
780      continue;
781    }
782
783    if (I->use_empty()) {
784      AA.deleteValue(I);
785      continue;
786    }
787
788    // Otherwise, if we promoted this argument, then all users are load
789    // instructions (or GEPs with only load users), and all loads should be
790    // using the new argument that we added.
791    ScalarizeTable &ArgIndices = ScalarizedElements[I];
792
793    while (!I->use_empty()) {
794      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
795        assert(ArgIndices.begin()->empty() &&
796               "Load element should sort to front!");
797        I2->setName(I->getName()+".val");
798        LI->replaceAllUsesWith(I2);
799        AA.replaceWithNewValue(LI, I2);
800        LI->eraseFromParent();
801        DEBUG(errs() << "*** Promoted load of argument '" << I->getName()
802              << "' in function '" << F->getName() << "'\n");
803      } else {
804        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
805        IndicesVector Operands;
806        Operands.reserve(GEP->getNumIndices());
807        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
808             II != IE; ++II)
809          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
810
811        // GEPs with a single 0 index can be merged with direct loads
812        if (Operands.size() == 1 && Operands.front() == 0)
813          Operands.clear();
814
815        Function::arg_iterator TheArg = I2;
816        for (ScalarizeTable::iterator It = ArgIndices.begin();
817             *It != Operands; ++It, ++TheArg) {
818          assert(It != ArgIndices.end() && "GEP not handled??");
819        }
820
821        std::string NewName = I->getName();
822        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
823            NewName += "." + utostr(Operands[i]);
824        }
825        NewName += ".val";
826        TheArg->setName(NewName);
827
828        DEBUG(errs() << "*** Promoted agg argument '" << TheArg->getName()
829              << "' of function '" << NF->getName() << "'\n");
830
831        // All of the uses must be load instructions.  Replace them all with
832        // the argument specified by ArgNo.
833        while (!GEP->use_empty()) {
834          LoadInst *L = cast<LoadInst>(GEP->use_back());
835          L->replaceAllUsesWith(TheArg);
836          AA.replaceWithNewValue(L, TheArg);
837          L->eraseFromParent();
838        }
839        AA.deleteValue(GEP);
840        GEP->eraseFromParent();
841      }
842    }
843
844    // Increment I2 past all of the arguments added for this promoted pointer.
845    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
846      ++I2;
847  }
848
849  // Notify the alias analysis implementation that we inserted a new argument.
850  if (ExtraArgHack)
851    AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())),
852                 NF->arg_begin());
853
854
855  // Tell the alias analysis that the old function is about to disappear.
856  AA.replaceWithNewValue(F, NF);
857
858  // Now that the old function is dead, delete it.
859  F->eraseFromParent();
860  return NF;
861}
862