ArgumentPromotion.cpp revision ae0a7bc68303ce0c8721f0e981ae602601390e68
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// by default it refuses to scalarize aggregates which would require passing in
21// more than three operands to the function, because passing thousands of
22// operands for a large array or structure is unprofitable! This limit can be
23// configured or disabled, however.
24//
25// Note that this transformation could also be done for arguments that are only
26// stored to (returning the value instead), but does not currently.  This case
27// would be best handled when and if LLVM begins supporting multiple return
28// values from functions.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "argpromotion"
33#include "llvm/Transforms/IPO.h"
34#include "llvm/Constants.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/CallGraphSCCPass.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/CallGraph.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Support/CallSite.h"
44#include "llvm/Support/CFG.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/ADT/DepthFirstIterator.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/StringExtras.h"
50#include <set>
51using namespace llvm;
52
53STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
54STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
55STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
56STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
57
58namespace {
59  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
60  ///
61  struct ArgPromotion : public CallGraphSCCPass {
62    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63      AU.addRequired<AliasAnalysis>();
64      CallGraphSCCPass::getAnalysisUsage(AU);
65    }
66
67    virtual bool runOnSCC(CallGraphSCC &SCC);
68    static char ID; // Pass identification, replacement for typeid
69    explicit ArgPromotion(unsigned maxElements = 3)
70      : CallGraphSCCPass(ID), maxElements(maxElements) {}
71
72    /// A vector used to hold the indices of a single GEP instruction
73    typedef std::vector<uint64_t> IndicesVector;
74
75  private:
76    CallGraphNode *PromoteArguments(CallGraphNode *CGN);
77    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
78    CallGraphNode *DoPromotion(Function *F,
79                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
80                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
81    /// The maximum number of elements to expand, or 0 for unlimited.
82    unsigned maxElements;
83  };
84}
85
86char ArgPromotion::ID = 0;
87INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
88                "Promote 'by reference' arguments to scalars", false, false)
89INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
90INITIALIZE_AG_DEPENDENCY(CallGraph)
91INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
92                "Promote 'by reference' arguments to scalars", false, false)
93
94Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
95  return new ArgPromotion(maxElements);
96}
97
98bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
99  bool Changed = false, LocalChange;
100
101  do {  // Iterate until we stop promoting from this SCC.
102    LocalChange = false;
103    // Attempt to promote arguments from all functions in this SCC.
104    for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
105      if (CallGraphNode *CGN = PromoteArguments(*I)) {
106        LocalChange = true;
107        SCC.ReplaceNode(*I, CGN);
108      }
109    }
110    Changed |= LocalChange;               // Remember that we changed something.
111  } while (LocalChange);
112
113  return Changed;
114}
115
116/// PromoteArguments - This method checks the specified function to see if there
117/// are any promotable arguments and if it is safe to promote the function (for
118/// example, all callers are direct).  If safe to promote some arguments, it
119/// calls the DoPromotion method.
120///
121CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
122  Function *F = CGN->getFunction();
123
124  // Make sure that it is local to this module.
125  if (!F || !F->hasLocalLinkage()) return 0;
126
127  // First check: see if there are any pointer arguments!  If not, quick exit.
128  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
129  unsigned ArgNo = 0;
130  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
131       I != E; ++I, ++ArgNo)
132    if (I->getType()->isPointerTy())
133      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
134  if (PointerArgs.empty()) return 0;
135
136  // Second check: make sure that all callers are direct callers.  We can't
137  // transform functions that have indirect callers.
138  if (F->hasAddressTaken())
139    return 0;
140
141  // Check to see which arguments are promotable.  If an argument is promotable,
142  // add it to ArgsToPromote.
143  SmallPtrSet<Argument*, 8> ArgsToPromote;
144  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
145  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
146    bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
147
148    // If this is a byval argument, and if the aggregate type is small, just
149    // pass the elements, which is always safe.
150    Argument *PtrArg = PointerArgs[i].first;
151    if (isByVal) {
152      const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
153      if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
154        if (maxElements > 0 && STy->getNumElements() > maxElements) {
155          DEBUG(dbgs() << "argpromotion disable promoting argument '"
156                << PtrArg->getName() << "' because it would require adding more"
157                << " than " << maxElements << " arguments to the function.\n");
158        } else {
159          // If all the elements are single-value types, we can promote it.
160          bool AllSimple = true;
161          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
162            if (!STy->getElementType(i)->isSingleValueType()) {
163              AllSimple = false;
164              break;
165            }
166
167          // Safe to transform, don't even bother trying to "promote" it.
168          // Passing the elements as a scalar will allow scalarrepl to hack on
169          // the new alloca we introduce.
170          if (AllSimple) {
171            ByValArgsToTransform.insert(PtrArg);
172            continue;
173          }
174        }
175      }
176    }
177
178    // Otherwise, see if we can promote the pointer to its value.
179    if (isSafeToPromoteArgument(PtrArg, isByVal))
180      ArgsToPromote.insert(PtrArg);
181  }
182
183  // No promotable pointer arguments.
184  if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
185    return 0;
186
187  return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
188}
189
190/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
191/// to load.
192static bool IsAlwaysValidPointer(Value *V) {
193  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
194  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
195    return IsAlwaysValidPointer(GEP->getOperand(0));
196  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
197    if (CE->getOpcode() == Instruction::GetElementPtr)
198      return IsAlwaysValidPointer(CE->getOperand(0));
199
200  return false;
201}
202
203/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
204/// all callees pass in a valid pointer for the specified function argument.
205static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
206  Function *Callee = Arg->getParent();
207
208  unsigned ArgNo = std::distance(Callee->arg_begin(),
209                                 Function::arg_iterator(Arg));
210
211  // Look at all call sites of the function.  At this pointer we know we only
212  // have direct callees.
213  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
214       UI != E; ++UI) {
215    CallSite CS(*UI);
216    assert(CS && "Should only have direct calls!");
217
218    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
219      return false;
220  }
221  return true;
222}
223
224/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
225/// that is greater than or equal to the size of prefix, and each of the
226/// elements in Prefix is the same as the corresponding elements in Longer.
227///
228/// This means it also returns true when Prefix and Longer are equal!
229static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
230                     const ArgPromotion::IndicesVector &Longer) {
231  if (Prefix.size() > Longer.size())
232    return false;
233  for (unsigned i = 0, e = Prefix.size(); i != e; ++i)
234    if (Prefix[i] != Longer[i])
235      return false;
236  return true;
237}
238
239
240/// Checks if Indices, or a prefix of Indices, is in Set.
241static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
242                     std::set<ArgPromotion::IndicesVector> &Set) {
243    std::set<ArgPromotion::IndicesVector>::iterator Low;
244    Low = Set.upper_bound(Indices);
245    if (Low != Set.begin())
246      Low--;
247    // Low is now the last element smaller than or equal to Indices. This means
248    // it points to a prefix of Indices (possibly Indices itself), if such
249    // prefix exists.
250    //
251    // This load is safe if any prefix of its operands is safe to load.
252    return Low != Set.end() && IsPrefix(*Low, Indices);
253}
254
255/// Mark the given indices (ToMark) as safe in the given set of indices
256/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
257/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
258/// already. Furthermore, any indices that Indices is itself a prefix of, are
259/// removed from Safe (since they are implicitely safe because of Indices now).
260static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
261                            std::set<ArgPromotion::IndicesVector> &Safe) {
262  std::set<ArgPromotion::IndicesVector>::iterator Low;
263  Low = Safe.upper_bound(ToMark);
264  // Guard against the case where Safe is empty
265  if (Low != Safe.begin())
266    Low--;
267  // Low is now the last element smaller than or equal to Indices. This
268  // means it points to a prefix of Indices (possibly Indices itself), if
269  // such prefix exists.
270  if (Low != Safe.end()) {
271    if (IsPrefix(*Low, ToMark))
272      // If there is already a prefix of these indices (or exactly these
273      // indices) marked a safe, don't bother adding these indices
274      return;
275
276    // Increment Low, so we can use it as a "insert before" hint
277    ++Low;
278  }
279  // Insert
280  Low = Safe.insert(Low, ToMark);
281  ++Low;
282  // If there we're a prefix of longer index list(s), remove those
283  std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
284  while (Low != End && IsPrefix(ToMark, *Low)) {
285    std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
286    ++Low;
287    Safe.erase(Remove);
288  }
289}
290
291/// isSafeToPromoteArgument - As you might guess from the name of this method,
292/// it checks to see if it is both safe and useful to promote the argument.
293/// This method limits promotion of aggregates to only promote up to three
294/// elements of the aggregate in order to avoid exploding the number of
295/// arguments passed in.
296bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
297  typedef std::set<IndicesVector> GEPIndicesSet;
298
299  // Quick exit for unused arguments
300  if (Arg->use_empty())
301    return true;
302
303  // We can only promote this argument if all of the uses are loads, or are GEP
304  // instructions (with constant indices) that are subsequently loaded.
305  //
306  // Promoting the argument causes it to be loaded in the caller
307  // unconditionally. This is only safe if we can prove that either the load
308  // would have happened in the callee anyway (ie, there is a load in the entry
309  // block) or the pointer passed in at every call site is guaranteed to be
310  // valid.
311  // In the former case, invalid loads can happen, but would have happened
312  // anyway, in the latter case, invalid loads won't happen. This prevents us
313  // from introducing an invalid load that wouldn't have happened in the
314  // original code.
315  //
316  // This set will contain all sets of indices that are loaded in the entry
317  // block, and thus are safe to unconditionally load in the caller.
318  GEPIndicesSet SafeToUnconditionallyLoad;
319
320  // This set contains all the sets of indices that we are planning to promote.
321  // This makes it possible to limit the number of arguments added.
322  GEPIndicesSet ToPromote;
323
324  // If the pointer is always valid, any load with first index 0 is valid.
325  if (isByVal || AllCalleesPassInValidPointerForArgument(Arg))
326    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
327
328  // First, iterate the entry block and mark loads of (geps of) arguments as
329  // safe.
330  BasicBlock *EntryBlock = Arg->getParent()->begin();
331  // Declare this here so we can reuse it
332  IndicesVector Indices;
333  for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
334       I != E; ++I)
335    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
336      Value *V = LI->getPointerOperand();
337      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
338        V = GEP->getPointerOperand();
339        if (V == Arg) {
340          // This load actually loads (part of) Arg? Check the indices then.
341          Indices.reserve(GEP->getNumIndices());
342          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
343               II != IE; ++II)
344            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
345              Indices.push_back(CI->getSExtValue());
346            else
347              // We found a non-constant GEP index for this argument? Bail out
348              // right away, can't promote this argument at all.
349              return false;
350
351          // Indices checked out, mark them as safe
352          MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
353          Indices.clear();
354        }
355      } else if (V == Arg) {
356        // Direct loads are equivalent to a GEP with a single 0 index.
357        MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
358      }
359    }
360
361  // Now, iterate all uses of the argument to see if there are any uses that are
362  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
363  SmallVector<LoadInst*, 16> Loads;
364  IndicesVector Operands;
365  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
366       UI != E; ++UI) {
367    User *U = *UI;
368    Operands.clear();
369    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
370      if (LI->isVolatile()) return false;  // Don't hack volatile loads
371      Loads.push_back(LI);
372      // Direct loads are equivalent to a GEP with a zero index and then a load.
373      Operands.push_back(0);
374    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
375      if (GEP->use_empty()) {
376        // Dead GEP's cause trouble later.  Just remove them if we run into
377        // them.
378        getAnalysis<AliasAnalysis>().deleteValue(GEP);
379        GEP->eraseFromParent();
380        // TODO: This runs the above loop over and over again for dead GEPs
381        // Couldn't we just do increment the UI iterator earlier and erase the
382        // use?
383        return isSafeToPromoteArgument(Arg, isByVal);
384      }
385
386      // Ensure that all of the indices are constants.
387      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
388        i != e; ++i)
389        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
390          Operands.push_back(C->getSExtValue());
391        else
392          return false;  // Not a constant operand GEP!
393
394      // Ensure that the only users of the GEP are load instructions.
395      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
396           UI != E; ++UI)
397        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
398          if (LI->isVolatile()) return false;  // Don't hack volatile loads
399          Loads.push_back(LI);
400        } else {
401          // Other uses than load?
402          return false;
403        }
404    } else {
405      return false;  // Not a load or a GEP.
406    }
407
408    // Now, see if it is safe to promote this load / loads of this GEP. Loading
409    // is safe if Operands, or a prefix of Operands, is marked as safe.
410    if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
411      return false;
412
413    // See if we are already promoting a load with these indices. If not, check
414    // to make sure that we aren't promoting too many elements.  If so, nothing
415    // to do.
416    if (ToPromote.find(Operands) == ToPromote.end()) {
417      if (maxElements > 0 && ToPromote.size() == maxElements) {
418        DEBUG(dbgs() << "argpromotion not promoting argument '"
419              << Arg->getName() << "' because it would require adding more "
420              << "than " << maxElements << " arguments to the function.\n");
421        // We limit aggregate promotion to only promoting up to a fixed number
422        // of elements of the aggregate.
423        return false;
424      }
425      ToPromote.insert(Operands);
426    }
427  }
428
429  if (Loads.empty()) return true;  // No users, this is a dead argument.
430
431  // Okay, now we know that the argument is only used by load instructions and
432  // it is safe to unconditionally perform all of them. Use alias analysis to
433  // check to see if the pointer is guaranteed to not be modified from entry of
434  // the function to each of the load instructions.
435
436  // Because there could be several/many load instructions, remember which
437  // blocks we know to be transparent to the load.
438  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
439
440  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
441  TargetData *TD = getAnalysisIfAvailable<TargetData>();
442  if (!TD) return false; // Without TargetData, assume the worst.
443
444  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
445    // Check to see if the load is invalidated from the start of the block to
446    // the load itself.
447    LoadInst *Load = Loads[i];
448    BasicBlock *BB = Load->getParent();
449
450    const PointerType *LoadTy =
451      cast<PointerType>(Load->getPointerOperand()->getType());
452    unsigned LoadSize =(unsigned)TD->getTypeStoreSize(LoadTy->getElementType());
453
454    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
455      return false;  // Pointer is invalidated!
456
457    // Now check every path from the entry block to the load for transparency.
458    // To do this, we perform a depth first search on the inverse CFG from the
459    // loading block.
460    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
461      BasicBlock *P = *PI;
462      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
463             I = idf_ext_begin(P, TranspBlocks),
464             E = idf_ext_end(P, TranspBlocks); I != E; ++I)
465        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
466          return false;
467    }
468  }
469
470  // If the path from the entry of the function to each load is free of
471  // instructions that potentially invalidate the load, we can make the
472  // transformation!
473  return true;
474}
475
476/// DoPromotion - This method actually performs the promotion of the specified
477/// arguments, and returns the new function.  At this point, we know that it's
478/// safe to do so.
479CallGraphNode *ArgPromotion::DoPromotion(Function *F,
480                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
481                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
482
483  // Start by computing a new prototype for the function, which is the same as
484  // the old function, but has modified arguments.
485  const FunctionType *FTy = F->getFunctionType();
486  std::vector<const Type*> Params;
487
488  typedef std::set<IndicesVector> ScalarizeTable;
489
490  // ScalarizedElements - If we are promoting a pointer that has elements
491  // accessed out of it, keep track of which elements are accessed so that we
492  // can add one argument for each.
493  //
494  // Arguments that are directly loaded will have a zero element value here, to
495  // handle cases where there are both a direct load and GEP accesses.
496  //
497  std::map<Argument*, ScalarizeTable> ScalarizedElements;
498
499  // OriginalLoads - Keep track of a representative load instruction from the
500  // original function so that we can tell the alias analysis implementation
501  // what the new GEP/Load instructions we are inserting look like.
502  std::map<IndicesVector, LoadInst*> OriginalLoads;
503
504  // Attributes - Keep track of the parameter attributes for the arguments
505  // that we are *not* promoting. For the ones that we do promote, the parameter
506  // attributes are lost
507  SmallVector<AttributeWithIndex, 8> AttributesVec;
508  const AttrListPtr &PAL = F->getAttributes();
509
510  // Add any return attributes.
511  if (Attributes attrs = PAL.getRetAttributes())
512    AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
513
514  // First, determine the new argument list
515  unsigned ArgIndex = 1;
516  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
517       ++I, ++ArgIndex) {
518    if (ByValArgsToTransform.count(I)) {
519      // Simple byval argument? Just add all the struct element types.
520      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
521      const StructType *STy = cast<StructType>(AgTy);
522      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
523        Params.push_back(STy->getElementType(i));
524      ++NumByValArgsPromoted;
525    } else if (!ArgsToPromote.count(I)) {
526      // Unchanged argument
527      Params.push_back(I->getType());
528      if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
529        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
530    } else if (I->use_empty()) {
531      // Dead argument (which are always marked as promotable)
532      ++NumArgumentsDead;
533    } else {
534      // Okay, this is being promoted. This means that the only uses are loads
535      // or GEPs which are only used by loads
536
537      // In this table, we will track which indices are loaded from the argument
538      // (where direct loads are tracked as no indices).
539      ScalarizeTable &ArgIndices = ScalarizedElements[I];
540      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
541           ++UI) {
542        Instruction *User = cast<Instruction>(*UI);
543        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
544        IndicesVector Indices;
545        Indices.reserve(User->getNumOperands() - 1);
546        // Since loads will only have a single operand, and GEPs only a single
547        // non-index operand, this will record direct loads without any indices,
548        // and gep+loads with the GEP indices.
549        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
550             II != IE; ++II)
551          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
552        // GEPs with a single 0 index can be merged with direct loads
553        if (Indices.size() == 1 && Indices.front() == 0)
554          Indices.clear();
555        ArgIndices.insert(Indices);
556        LoadInst *OrigLoad;
557        if (LoadInst *L = dyn_cast<LoadInst>(User))
558          OrigLoad = L;
559        else
560          // Take any load, we will use it only to update Alias Analysis
561          OrigLoad = cast<LoadInst>(User->use_back());
562        OriginalLoads[Indices] = OrigLoad;
563      }
564
565      // Add a parameter to the function for each element passed in.
566      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
567             E = ArgIndices.end(); SI != E; ++SI) {
568        // not allowed to dereference ->begin() if size() is 0
569        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
570                                                           SI->begin(),
571                                                           SI->end()));
572        assert(Params.back());
573      }
574
575      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
576        ++NumArgumentsPromoted;
577      else
578        ++NumAggregatesPromoted;
579    }
580  }
581
582  // Add any function attributes.
583  if (Attributes attrs = PAL.getFnAttributes())
584    AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
585
586  const Type *RetTy = FTy->getReturnType();
587
588  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
589  // have zero fixed arguments.
590  bool ExtraArgHack = false;
591  if (Params.empty() && FTy->isVarArg()) {
592    ExtraArgHack = true;
593    Params.push_back(Type::getInt32Ty(F->getContext()));
594  }
595
596  // Construct the new function type using the new arguments.
597  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
598
599  // Create the new function body and insert it into the module.
600  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
601  NF->copyAttributesFrom(F);
602
603
604  DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
605        << "From: " << *F);
606
607  // Recompute the parameter attributes list based on the new arguments for
608  // the function.
609  NF->setAttributes(AttrListPtr::get(AttributesVec.begin(),
610                                     AttributesVec.end()));
611  AttributesVec.clear();
612
613  F->getParent()->getFunctionList().insert(F, NF);
614  NF->takeName(F);
615
616  // Get the alias analysis information that we need to update to reflect our
617  // changes.
618  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
619
620  // Get the callgraph information that we need to update to reflect our
621  // changes.
622  CallGraph &CG = getAnalysis<CallGraph>();
623
624  // Get a new callgraph node for NF.
625  CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
626
627  // Loop over all of the callers of the function, transforming the call sites
628  // to pass in the loaded pointers.
629  //
630  SmallVector<Value*, 16> Args;
631  while (!F->use_empty()) {
632    CallSite CS(F->use_back());
633    assert(CS.getCalledFunction() == F);
634    Instruction *Call = CS.getInstruction();
635    const AttrListPtr &CallPAL = CS.getAttributes();
636
637    // Add any return attributes.
638    if (Attributes attrs = CallPAL.getRetAttributes())
639      AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
640
641    // Loop over the operands, inserting GEP and loads in the caller as
642    // appropriate.
643    CallSite::arg_iterator AI = CS.arg_begin();
644    ArgIndex = 1;
645    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
646         I != E; ++I, ++AI, ++ArgIndex)
647      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
648        Args.push_back(*AI);          // Unmodified argument
649
650        if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
651          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
652
653      } else if (ByValArgsToTransform.count(I)) {
654        // Emit a GEP and load for each element of the struct.
655        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
656        const StructType *STy = cast<StructType>(AgTy);
657        Value *Idxs[2] = {
658              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
659        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
660          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
661          Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
662                                                 (*AI)->getName()+"."+utostr(i),
663                                                 Call);
664          // TODO: Tell AA about the new values?
665          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
666        }
667      } else if (!I->use_empty()) {
668        // Non-dead argument: insert GEPs and loads as appropriate.
669        ScalarizeTable &ArgIndices = ScalarizedElements[I];
670        // Store the Value* version of the indices in here, but declare it now
671        // for reuse.
672        std::vector<Value*> Ops;
673        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
674               E = ArgIndices.end(); SI != E; ++SI) {
675          Value *V = *AI;
676          LoadInst *OrigLoad = OriginalLoads[*SI];
677          if (!SI->empty()) {
678            Ops.reserve(SI->size());
679            const Type *ElTy = V->getType();
680            for (IndicesVector::const_iterator II = SI->begin(),
681                 IE = SI->end(); II != IE; ++II) {
682              // Use i32 to index structs, and i64 for others (pointers/arrays).
683              // This satisfies GEP constraints.
684              const Type *IdxTy = (ElTy->isStructTy() ?
685                    Type::getInt32Ty(F->getContext()) :
686                    Type::getInt64Ty(F->getContext()));
687              Ops.push_back(ConstantInt::get(IdxTy, *II));
688              // Keep track of the type we're currently indexing.
689              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
690            }
691            // And create a GEP to extract those indices.
692            V = GetElementPtrInst::Create(V, Ops.begin(), Ops.end(),
693                                          V->getName()+".idx", Call);
694            Ops.clear();
695            AA.copyValue(OrigLoad->getOperand(0), V);
696          }
697          // Since we're replacing a load make sure we take the alignment
698          // of the previous load.
699          LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
700          newLoad->setAlignment(OrigLoad->getAlignment());
701          Args.push_back(newLoad);
702          AA.copyValue(OrigLoad, Args.back());
703        }
704      }
705
706    if (ExtraArgHack)
707      Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
708
709    // Push any varargs arguments on the list.
710    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
711      Args.push_back(*AI);
712      if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
713        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
714    }
715
716    // Add any function attributes.
717    if (Attributes attrs = CallPAL.getFnAttributes())
718      AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
719
720    Instruction *New;
721    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
722      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
723                               Args.begin(), Args.end(), "", Call);
724      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
725      cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
726                                                          AttributesVec.end()));
727    } else {
728      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
729      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
730      cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
731                                                        AttributesVec.end()));
732      if (cast<CallInst>(Call)->isTailCall())
733        cast<CallInst>(New)->setTailCall();
734    }
735    Args.clear();
736    AttributesVec.clear();
737
738    // Update the alias analysis implementation to know that we are replacing
739    // the old call with a new one.
740    AA.replaceWithNewValue(Call, New);
741
742    // Update the callgraph to know that the callsite has been transformed.
743    CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
744    CalleeNode->replaceCallEdge(Call, New, NF_CGN);
745
746    if (!Call->use_empty()) {
747      Call->replaceAllUsesWith(New);
748      New->takeName(Call);
749    }
750
751    // Finally, remove the old call from the program, reducing the use-count of
752    // F.
753    Call->eraseFromParent();
754  }
755
756  // Since we have now created the new function, splice the body of the old
757  // function right into the new function, leaving the old rotting hulk of the
758  // function empty.
759  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
760
761  // Loop over the argument list, transfering uses of the old arguments over to
762  // the new arguments, also transfering over the names as well.
763  //
764  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
765       I2 = NF->arg_begin(); I != E; ++I) {
766    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
767      // If this is an unmodified argument, move the name and users over to the
768      // new version.
769      I->replaceAllUsesWith(I2);
770      I2->takeName(I);
771      AA.replaceWithNewValue(I, I2);
772      ++I2;
773      continue;
774    }
775
776    if (ByValArgsToTransform.count(I)) {
777      // In the callee, we create an alloca, and store each of the new incoming
778      // arguments into the alloca.
779      Instruction *InsertPt = NF->begin()->begin();
780
781      // Just add all the struct element types.
782      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
783      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
784      const StructType *STy = cast<StructType>(AgTy);
785      Value *Idxs[2] = {
786            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
787
788      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
789        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
790        Value *Idx =
791          GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
792                                    TheAlloca->getName()+"."+Twine(i),
793                                    InsertPt);
794        I2->setName(I->getName()+"."+Twine(i));
795        new StoreInst(I2++, Idx, InsertPt);
796      }
797
798      // Anything that used the arg should now use the alloca.
799      I->replaceAllUsesWith(TheAlloca);
800      TheAlloca->takeName(I);
801      AA.replaceWithNewValue(I, TheAlloca);
802      continue;
803    }
804
805    if (I->use_empty()) {
806      AA.deleteValue(I);
807      continue;
808    }
809
810    // Otherwise, if we promoted this argument, then all users are load
811    // instructions (or GEPs with only load users), and all loads should be
812    // using the new argument that we added.
813    ScalarizeTable &ArgIndices = ScalarizedElements[I];
814
815    while (!I->use_empty()) {
816      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
817        assert(ArgIndices.begin()->empty() &&
818               "Load element should sort to front!");
819        I2->setName(I->getName()+".val");
820        LI->replaceAllUsesWith(I2);
821        AA.replaceWithNewValue(LI, I2);
822        LI->eraseFromParent();
823        DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
824              << "' in function '" << F->getName() << "'\n");
825      } else {
826        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
827        IndicesVector Operands;
828        Operands.reserve(GEP->getNumIndices());
829        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
830             II != IE; ++II)
831          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
832
833        // GEPs with a single 0 index can be merged with direct loads
834        if (Operands.size() == 1 && Operands.front() == 0)
835          Operands.clear();
836
837        Function::arg_iterator TheArg = I2;
838        for (ScalarizeTable::iterator It = ArgIndices.begin();
839             *It != Operands; ++It, ++TheArg) {
840          assert(It != ArgIndices.end() && "GEP not handled??");
841        }
842
843        std::string NewName = I->getName();
844        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
845            NewName += "." + utostr(Operands[i]);
846        }
847        NewName += ".val";
848        TheArg->setName(NewName);
849
850        DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
851              << "' of function '" << NF->getName() << "'\n");
852
853        // All of the uses must be load instructions.  Replace them all with
854        // the argument specified by ArgNo.
855        while (!GEP->use_empty()) {
856          LoadInst *L = cast<LoadInst>(GEP->use_back());
857          L->replaceAllUsesWith(TheArg);
858          AA.replaceWithNewValue(L, TheArg);
859          L->eraseFromParent();
860        }
861        AA.deleteValue(GEP);
862        GEP->eraseFromParent();
863      }
864    }
865
866    // Increment I2 past all of the arguments added for this promoted pointer.
867    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
868      ++I2;
869  }
870
871  // Notify the alias analysis implementation that we inserted a new argument.
872  if (ExtraArgHack)
873    AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())),
874                 NF->arg_begin());
875
876
877  // Tell the alias analysis that the old function is about to disappear.
878  AA.replaceWithNewValue(F, NF);
879
880
881  NF_CGN->stealCalledFunctionsFrom(CG[F]);
882
883  // Now that the old function is dead, delete it.  If there is a dangling
884  // reference to the CallgraphNode, just leave the dead function around for
885  // someone else to nuke.
886  CallGraphNode *CGN = CG[F];
887  if (CGN->getNumReferences() == 0)
888    delete CG.removeFunctionFromModule(CGN);
889  else
890    F->setLinkage(Function::ExternalLinkage);
891
892  return NF_CGN;
893}
894