InstCombineCompares.cpp revision 368397bb7de8318a4663fec846bda714ae78dd7a
1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/Support/ConstantRange.h"
20#include "llvm/Support/GetElementPtrTypeIterator.h"
21#include "llvm/Support/PatternMatch.h"
22using namespace llvm;
23using namespace PatternMatch;
24
25/// AddOne - Add one to a ConstantInt
26static Constant *AddOne(Constant *C) {
27  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
28}
29/// SubOne - Subtract one from a ConstantInt
30static Constant *SubOne(ConstantInt *C) {
31  return ConstantExpr::getSub(C,  ConstantInt::get(C->getType(), 1));
32}
33
34static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
35  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
36}
37
38static bool HasAddOverflow(ConstantInt *Result,
39                           ConstantInt *In1, ConstantInt *In2,
40                           bool IsSigned) {
41  if (IsSigned)
42    if (In2->getValue().isNegative())
43      return Result->getValue().sgt(In1->getValue());
44    else
45      return Result->getValue().slt(In1->getValue());
46  else
47    return Result->getValue().ult(In1->getValue());
48}
49
50/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
51/// overflowed for this type.
52static bool AddWithOverflow(Constant *&Result, Constant *In1,
53                            Constant *In2, bool IsSigned = false) {
54  Result = ConstantExpr::getAdd(In1, In2);
55
56  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
57    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
58      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
59      if (HasAddOverflow(ExtractElement(Result, Idx),
60                         ExtractElement(In1, Idx),
61                         ExtractElement(In2, Idx),
62                         IsSigned))
63        return true;
64    }
65    return false;
66  }
67
68  return HasAddOverflow(cast<ConstantInt>(Result),
69                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
70                        IsSigned);
71}
72
73static bool HasSubOverflow(ConstantInt *Result,
74                           ConstantInt *In1, ConstantInt *In2,
75                           bool IsSigned) {
76  if (IsSigned)
77    if (In2->getValue().isNegative())
78      return Result->getValue().slt(In1->getValue());
79    else
80      return Result->getValue().sgt(In1->getValue());
81  else
82    return Result->getValue().ugt(In1->getValue());
83}
84
85/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
86/// overflowed for this type.
87static bool SubWithOverflow(Constant *&Result, Constant *In1,
88                            Constant *In2, bool IsSigned = false) {
89  Result = ConstantExpr::getSub(In1, In2);
90
91  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
92    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
93      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
94      if (HasSubOverflow(ExtractElement(Result, Idx),
95                         ExtractElement(In1, Idx),
96                         ExtractElement(In2, Idx),
97                         IsSigned))
98        return true;
99    }
100    return false;
101  }
102
103  return HasSubOverflow(cast<ConstantInt>(Result),
104                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
105                        IsSigned);
106}
107
108/// isSignBitCheck - Given an exploded icmp instruction, return true if the
109/// comparison only checks the sign bit.  If it only checks the sign bit, set
110/// TrueIfSigned if the result of the comparison is true when the input value is
111/// signed.
112static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
113                           bool &TrueIfSigned) {
114  switch (pred) {
115  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
116    TrueIfSigned = true;
117    return RHS->isZero();
118  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
119    TrueIfSigned = true;
120    return RHS->isAllOnesValue();
121  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
122    TrueIfSigned = false;
123    return RHS->isAllOnesValue();
124  case ICmpInst::ICMP_UGT:
125    // True if LHS u> RHS and RHS == high-bit-mask - 1
126    TrueIfSigned = true;
127    return RHS->getValue() ==
128      APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
129  case ICmpInst::ICMP_UGE:
130    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
131    TrueIfSigned = true;
132    return RHS->getValue().isSignBit();
133  default:
134    return false;
135  }
136}
137
138// isHighOnes - Return true if the constant is of the form 1+0+.
139// This is the same as lowones(~X).
140static bool isHighOnes(const ConstantInt *CI) {
141  return (~CI->getValue() + 1).isPowerOf2();
142}
143
144/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
145/// set of known zero and one bits, compute the maximum and minimum values that
146/// could have the specified known zero and known one bits, returning them in
147/// min/max.
148static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
149                                                   const APInt& KnownOne,
150                                                   APInt& Min, APInt& Max) {
151  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
152         KnownZero.getBitWidth() == Min.getBitWidth() &&
153         KnownZero.getBitWidth() == Max.getBitWidth() &&
154         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
155  APInt UnknownBits = ~(KnownZero|KnownOne);
156
157  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
158  // bit if it is unknown.
159  Min = KnownOne;
160  Max = KnownOne|UnknownBits;
161
162  if (UnknownBits.isNegative()) { // Sign bit is unknown
163    Min.setBit(Min.getBitWidth()-1);
164    Max.clearBit(Max.getBitWidth()-1);
165  }
166}
167
168// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
169// a set of known zero and one bits, compute the maximum and minimum values that
170// could have the specified known zero and known one bits, returning them in
171// min/max.
172static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
173                                                     const APInt &KnownOne,
174                                                     APInt &Min, APInt &Max) {
175  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
176         KnownZero.getBitWidth() == Min.getBitWidth() &&
177         KnownZero.getBitWidth() == Max.getBitWidth() &&
178         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
179  APInt UnknownBits = ~(KnownZero|KnownOne);
180
181  // The minimum value is when the unknown bits are all zeros.
182  Min = KnownOne;
183  // The maximum value is when the unknown bits are all ones.
184  Max = KnownOne|UnknownBits;
185}
186
187
188
189/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
190///   cmp pred (load (gep GV, ...)), cmpcst
191/// where GV is a global variable with a constant initializer.  Try to simplify
192/// this into some simple computation that does not need the load.  For example
193/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
194///
195/// If AndCst is non-null, then the loaded value is masked with that constant
196/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
197Instruction *InstCombiner::
198FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
199                             CmpInst &ICI, ConstantInt *AndCst) {
200  // We need TD information to know the pointer size unless this is inbounds.
201  if (!GEP->isInBounds() && TD == 0) return 0;
202
203  ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
204  if (Init == 0 || Init->getNumOperands() > 1024) return 0;
205
206  // There are many forms of this optimization we can handle, for now, just do
207  // the simple index into a single-dimensional array.
208  //
209  // Require: GEP GV, 0, i {{, constant indices}}
210  if (GEP->getNumOperands() < 3 ||
211      !isa<ConstantInt>(GEP->getOperand(1)) ||
212      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
213      isa<Constant>(GEP->getOperand(2)))
214    return 0;
215
216  // Check that indices after the variable are constants and in-range for the
217  // type they index.  Collect the indices.  This is typically for arrays of
218  // structs.
219  SmallVector<unsigned, 4> LaterIndices;
220
221  const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
222  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
223    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
224    if (Idx == 0) return 0;  // Variable index.
225
226    uint64_t IdxVal = Idx->getZExtValue();
227    if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
228
229    if (const StructType *STy = dyn_cast<StructType>(EltTy))
230      EltTy = STy->getElementType(IdxVal);
231    else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
232      if (IdxVal >= ATy->getNumElements()) return 0;
233      EltTy = ATy->getElementType();
234    } else {
235      return 0; // Unknown type.
236    }
237
238    LaterIndices.push_back(IdxVal);
239  }
240
241  enum { Overdefined = -3, Undefined = -2 };
242
243  // Variables for our state machines.
244
245  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
246  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
247  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
248  // undefined, otherwise set to the first true element.  SecondTrueElement is
249  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
250  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
251
252  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
253  // form "i != 47 & i != 87".  Same state transitions as for true elements.
254  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
255
256  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
257  /// define a state machine that triggers for ranges of values that the index
258  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
259  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
260  /// index in the range (inclusive).  We use -2 for undefined here because we
261  /// use relative comparisons and don't want 0-1 to match -1.
262  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
263
264  // MagicBitvector - This is a magic bitvector where we set a bit if the
265  // comparison is true for element 'i'.  If there are 64 elements or less in
266  // the array, this will fully represent all the comparison results.
267  uint64_t MagicBitvector = 0;
268
269
270  // Scan the array and see if one of our patterns matches.
271  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
272  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
273    Constant *Elt = Init->getOperand(i);
274
275    // If this is indexing an array of structures, get the structure element.
276    if (!LaterIndices.empty())
277      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(),
278                                          LaterIndices.size());
279
280    // If the element is masked, handle it.
281    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
282
283    // Find out if the comparison would be true or false for the i'th element.
284    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
285                                                  CompareRHS, TD);
286    // If the result is undef for this element, ignore it.
287    if (isa<UndefValue>(C)) {
288      // Extend range state machines to cover this element in case there is an
289      // undef in the middle of the range.
290      if (TrueRangeEnd == (int)i-1)
291        TrueRangeEnd = i;
292      if (FalseRangeEnd == (int)i-1)
293        FalseRangeEnd = i;
294      continue;
295    }
296
297    // If we can't compute the result for any of the elements, we have to give
298    // up evaluating the entire conditional.
299    if (!isa<ConstantInt>(C)) return 0;
300
301    // Otherwise, we know if the comparison is true or false for this element,
302    // update our state machines.
303    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
304
305    // State machine for single/double/range index comparison.
306    if (IsTrueForElt) {
307      // Update the TrueElement state machine.
308      if (FirstTrueElement == Undefined)
309        FirstTrueElement = TrueRangeEnd = i;  // First true element.
310      else {
311        // Update double-compare state machine.
312        if (SecondTrueElement == Undefined)
313          SecondTrueElement = i;
314        else
315          SecondTrueElement = Overdefined;
316
317        // Update range state machine.
318        if (TrueRangeEnd == (int)i-1)
319          TrueRangeEnd = i;
320        else
321          TrueRangeEnd = Overdefined;
322      }
323    } else {
324      // Update the FalseElement state machine.
325      if (FirstFalseElement == Undefined)
326        FirstFalseElement = FalseRangeEnd = i; // First false element.
327      else {
328        // Update double-compare state machine.
329        if (SecondFalseElement == Undefined)
330          SecondFalseElement = i;
331        else
332          SecondFalseElement = Overdefined;
333
334        // Update range state machine.
335        if (FalseRangeEnd == (int)i-1)
336          FalseRangeEnd = i;
337        else
338          FalseRangeEnd = Overdefined;
339      }
340    }
341
342
343    // If this element is in range, update our magic bitvector.
344    if (i < 64 && IsTrueForElt)
345      MagicBitvector |= 1ULL << i;
346
347    // If all of our states become overdefined, bail out early.  Since the
348    // predicate is expensive, only check it every 8 elements.  This is only
349    // really useful for really huge arrays.
350    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
351        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
352        FalseRangeEnd == Overdefined)
353      return 0;
354  }
355
356  // Now that we've scanned the entire array, emit our new comparison(s).  We
357  // order the state machines in complexity of the generated code.
358  Value *Idx = GEP->getOperand(2);
359
360  // If the index is larger than the pointer size of the target, truncate the
361  // index down like the GEP would do implicitly.  We don't have to do this for
362  // an inbounds GEP because the index can't be out of range.
363  if (!GEP->isInBounds() &&
364      Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
365    Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
366
367  // If the comparison is only true for one or two elements, emit direct
368  // comparisons.
369  if (SecondTrueElement != Overdefined) {
370    // None true -> false.
371    if (FirstTrueElement == Undefined)
372      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
373
374    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
375
376    // True for one element -> 'i == 47'.
377    if (SecondTrueElement == Undefined)
378      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
379
380    // True for two elements -> 'i == 47 | i == 72'.
381    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
382    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
383    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
384    return BinaryOperator::CreateOr(C1, C2);
385  }
386
387  // If the comparison is only false for one or two elements, emit direct
388  // comparisons.
389  if (SecondFalseElement != Overdefined) {
390    // None false -> true.
391    if (FirstFalseElement == Undefined)
392      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
393
394    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
395
396    // False for one element -> 'i != 47'.
397    if (SecondFalseElement == Undefined)
398      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
399
400    // False for two elements -> 'i != 47 & i != 72'.
401    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
402    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
403    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
404    return BinaryOperator::CreateAnd(C1, C2);
405  }
406
407  // If the comparison can be replaced with a range comparison for the elements
408  // where it is true, emit the range check.
409  if (TrueRangeEnd != Overdefined) {
410    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
411
412    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
413    if (FirstTrueElement) {
414      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
415      Idx = Builder->CreateAdd(Idx, Offs);
416    }
417
418    Value *End = ConstantInt::get(Idx->getType(),
419                                  TrueRangeEnd-FirstTrueElement+1);
420    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
421  }
422
423  // False range check.
424  if (FalseRangeEnd != Overdefined) {
425    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
426    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
427    if (FirstFalseElement) {
428      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
429      Idx = Builder->CreateAdd(Idx, Offs);
430    }
431
432    Value *End = ConstantInt::get(Idx->getType(),
433                                  FalseRangeEnd-FirstFalseElement);
434    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
435  }
436
437
438  // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
439  // of this load, replace it with computation that does:
440  //   ((magic_cst >> i) & 1) != 0
441  if (Init->getNumOperands() <= 32 ||
442      (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
443    const Type *Ty;
444    if (Init->getNumOperands() <= 32)
445      Ty = Type::getInt32Ty(Init->getContext());
446    else
447      Ty = Type::getInt64Ty(Init->getContext());
448    Value *V = Builder->CreateIntCast(Idx, Ty, false);
449    V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
450    V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
451    return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
452  }
453
454  return 0;
455}
456
457
458/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
459/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
460/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
461/// be complex, and scales are involved.  The above expression would also be
462/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
463/// This later form is less amenable to optimization though, and we are allowed
464/// to generate the first by knowing that pointer arithmetic doesn't overflow.
465///
466/// If we can't emit an optimized form for this expression, this returns null.
467///
468static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
469                                          InstCombiner &IC) {
470  TargetData &TD = *IC.getTargetData();
471  gep_type_iterator GTI = gep_type_begin(GEP);
472
473  // Check to see if this gep only has a single variable index.  If so, and if
474  // any constant indices are a multiple of its scale, then we can compute this
475  // in terms of the scale of the variable index.  For example, if the GEP
476  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
477  // because the expression will cross zero at the same point.
478  unsigned i, e = GEP->getNumOperands();
479  int64_t Offset = 0;
480  for (i = 1; i != e; ++i, ++GTI) {
481    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
482      // Compute the aggregate offset of constant indices.
483      if (CI->isZero()) continue;
484
485      // Handle a struct index, which adds its field offset to the pointer.
486      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
487        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
488      } else {
489        uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
490        Offset += Size*CI->getSExtValue();
491      }
492    } else {
493      // Found our variable index.
494      break;
495    }
496  }
497
498  // If there are no variable indices, we must have a constant offset, just
499  // evaluate it the general way.
500  if (i == e) return 0;
501
502  Value *VariableIdx = GEP->getOperand(i);
503  // Determine the scale factor of the variable element.  For example, this is
504  // 4 if the variable index is into an array of i32.
505  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
506
507  // Verify that there are no other variable indices.  If so, emit the hard way.
508  for (++i, ++GTI; i != e; ++i, ++GTI) {
509    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
510    if (!CI) return 0;
511
512    // Compute the aggregate offset of constant indices.
513    if (CI->isZero()) continue;
514
515    // Handle a struct index, which adds its field offset to the pointer.
516    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
517      Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
518    } else {
519      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
520      Offset += Size*CI->getSExtValue();
521    }
522  }
523
524  // Okay, we know we have a single variable index, which must be a
525  // pointer/array/vector index.  If there is no offset, life is simple, return
526  // the index.
527  unsigned IntPtrWidth = TD.getPointerSizeInBits();
528  if (Offset == 0) {
529    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
530    // we don't need to bother extending: the extension won't affect where the
531    // computation crosses zero.
532    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
533      VariableIdx = new TruncInst(VariableIdx,
534                                  TD.getIntPtrType(VariableIdx->getContext()),
535                                  VariableIdx->getName(), &I);
536    return VariableIdx;
537  }
538
539  // Otherwise, there is an index.  The computation we will do will be modulo
540  // the pointer size, so get it.
541  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
542
543  Offset &= PtrSizeMask;
544  VariableScale &= PtrSizeMask;
545
546  // To do this transformation, any constant index must be a multiple of the
547  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
548  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
549  // multiple of the variable scale.
550  int64_t NewOffs = Offset / (int64_t)VariableScale;
551  if (Offset != NewOffs*(int64_t)VariableScale)
552    return 0;
553
554  // Okay, we can do this evaluation.  Start by converting the index to intptr.
555  const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
556  if (VariableIdx->getType() != IntPtrTy)
557    VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
558                                              true /*SExt*/,
559                                              VariableIdx->getName(), &I);
560  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
561  return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
562}
563
564/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
565/// else.  At this point we know that the GEP is on the LHS of the comparison.
566Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
567                                       ICmpInst::Predicate Cond,
568                                       Instruction &I) {
569  // Look through bitcasts.
570  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
571    RHS = BCI->getOperand(0);
572
573  Value *PtrBase = GEPLHS->getOperand(0);
574  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
575    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
576    // This transformation (ignoring the base and scales) is valid because we
577    // know pointers can't overflow since the gep is inbounds.  See if we can
578    // output an optimized form.
579    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
580
581    // If not, synthesize the offset the hard way.
582    if (Offset == 0)
583      Offset = EmitGEPOffset(GEPLHS);
584    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
585                        Constant::getNullValue(Offset->getType()));
586  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
587    // If the base pointers are different, but the indices are the same, just
588    // compare the base pointer.
589    if (PtrBase != GEPRHS->getOperand(0)) {
590      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
591      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
592                        GEPRHS->getOperand(0)->getType();
593      if (IndicesTheSame)
594        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
595          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
596            IndicesTheSame = false;
597            break;
598          }
599
600      // If all indices are the same, just compare the base pointers.
601      if (IndicesTheSame)
602        return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
603                            GEPLHS->getOperand(0), GEPRHS->getOperand(0));
604
605      // Otherwise, the base pointers are different and the indices are
606      // different, bail out.
607      return 0;
608    }
609
610    // If one of the GEPs has all zero indices, recurse.
611    bool AllZeros = true;
612    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
613      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
614          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
615        AllZeros = false;
616        break;
617      }
618    if (AllZeros)
619      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
620                          ICmpInst::getSwappedPredicate(Cond), I);
621
622    // If the other GEP has all zero indices, recurse.
623    AllZeros = true;
624    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
625      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
626          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
627        AllZeros = false;
628        break;
629      }
630    if (AllZeros)
631      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
632
633    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
634      // If the GEPs only differ by one index, compare it.
635      unsigned NumDifferences = 0;  // Keep track of # differences.
636      unsigned DiffOperand = 0;     // The operand that differs.
637      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
638        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
639          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
640                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
641            // Irreconcilable differences.
642            NumDifferences = 2;
643            break;
644          } else {
645            if (NumDifferences++) break;
646            DiffOperand = i;
647          }
648        }
649
650      if (NumDifferences == 0)   // SAME GEP?
651        return ReplaceInstUsesWith(I, // No comparison is needed here.
652                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
653                                             ICmpInst::isTrueWhenEqual(Cond)));
654
655      else if (NumDifferences == 1) {
656        Value *LHSV = GEPLHS->getOperand(DiffOperand);
657        Value *RHSV = GEPRHS->getOperand(DiffOperand);
658        // Make sure we do a signed comparison here.
659        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
660      }
661    }
662
663    // Only lower this if the icmp is the only user of the GEP or if we expect
664    // the result to fold to a constant!
665    if (TD &&
666        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
667        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
668      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
669      Value *L = EmitGEPOffset(GEPLHS);
670      Value *R = EmitGEPOffset(GEPRHS);
671      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
672    }
673  }
674  return 0;
675}
676
677/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
678Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
679                                            Value *X, ConstantInt *CI,
680                                            ICmpInst::Predicate Pred,
681                                            Value *TheAdd) {
682  // If we have X+0, exit early (simplifying logic below) and let it get folded
683  // elsewhere.   icmp X+0, X  -> icmp X, X
684  if (CI->isZero()) {
685    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
686    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
687  }
688
689  // (X+4) == X -> false.
690  if (Pred == ICmpInst::ICMP_EQ)
691    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
692
693  // (X+4) != X -> true.
694  if (Pred == ICmpInst::ICMP_NE)
695    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
696
697  // If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
698  bool isNUW = false, isNSW = false;
699  if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) {
700    isNUW = Add->hasNoUnsignedWrap();
701    isNSW = Add->hasNoSignedWrap();
702  }
703
704  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
705  // so the values can never be equal.  Similiarly for all other "or equals"
706  // operators.
707
708  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
709  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
710  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
711  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
712    // If this is an NUW add, then this is always false.
713    if (isNUW)
714      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
715
716    Value *R =
717      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
718    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
719  }
720
721  // (X+1) >u X        --> X <u (0-1)        --> X != 255
722  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
723  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
724  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
725    // If this is an NUW add, then this is always true.
726    if (isNUW)
727      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
728    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
729  }
730
731  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
732  ConstantInt *SMax = ConstantInt::get(X->getContext(),
733                                       APInt::getSignedMaxValue(BitWidth));
734
735  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
736  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
737  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
738  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
739  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
740  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
741  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
742    // If this is an NSW add, then we have two cases: if the constant is
743    // positive, then this is always false, if negative, this is always true.
744    if (isNSW) {
745      bool isTrue = CI->getValue().isNegative();
746      return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
747    }
748
749    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
750  }
751
752  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
753  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
754  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
755  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
756  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
757  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
758
759  // If this is an NSW add, then we have two cases: if the constant is
760  // positive, then this is always true, if negative, this is always false.
761  if (isNSW) {
762    bool isTrue = !CI->getValue().isNegative();
763    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
764  }
765
766  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
767  Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
768  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
769}
770
771/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
772/// and CmpRHS are both known to be integer constants.
773Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
774                                          ConstantInt *DivRHS) {
775  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
776  const APInt &CmpRHSV = CmpRHS->getValue();
777
778  // FIXME: If the operand types don't match the type of the divide
779  // then don't attempt this transform. The code below doesn't have the
780  // logic to deal with a signed divide and an unsigned compare (and
781  // vice versa). This is because (x /s C1) <s C2  produces different
782  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
783  // (x /u C1) <u C2.  Simply casting the operands and result won't
784  // work. :(  The if statement below tests that condition and bails
785  // if it finds it.
786  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
787  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
788    return 0;
789  if (DivRHS->isZero())
790    return 0; // The ProdOV computation fails on divide by zero.
791  if (DivIsSigned && DivRHS->isAllOnesValue())
792    return 0; // The overflow computation also screws up here
793  if (DivRHS->isOne())
794    return 0; // Not worth bothering, and eliminates some funny cases
795              // with INT_MIN.
796
797  // Compute Prod = CI * DivRHS. We are essentially solving an equation
798  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
799  // C2 (CI). By solving for X we can turn this into a range check
800  // instead of computing a divide.
801  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
802
803  // Determine if the product overflows by seeing if the product is
804  // not equal to the divide. Make sure we do the same kind of divide
805  // as in the LHS instruction that we're folding.
806  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
807                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
808
809  // Get the ICmp opcode
810  ICmpInst::Predicate Pred = ICI.getPredicate();
811
812  // Figure out the interval that is being checked.  For example, a comparison
813  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
814  // Compute this interval based on the constants involved and the signedness of
815  // the compare/divide.  This computes a half-open interval, keeping track of
816  // whether either value in the interval overflows.  After analysis each
817  // overflow variable is set to 0 if it's corresponding bound variable is valid
818  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
819  int LoOverflow = 0, HiOverflow = 0;
820  Constant *LoBound = 0, *HiBound = 0;
821
822  if (!DivIsSigned) {  // udiv
823    // e.g. X/5 op 3  --> [15, 20)
824    LoBound = Prod;
825    HiOverflow = LoOverflow = ProdOV;
826    if (!HiOverflow)
827      HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
828  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
829    if (CmpRHSV == 0) {       // (X / pos) op 0
830      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
831      LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
832      HiBound = DivRHS;
833    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
834      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
835      HiOverflow = LoOverflow = ProdOV;
836      if (!HiOverflow)
837        HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
838    } else {                       // (X / pos) op neg
839      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
840      HiBound = AddOne(Prod);
841      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
842      if (!LoOverflow) {
843        ConstantInt* DivNeg =
844                         cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
845        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
846       }
847    }
848  } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
849    if (CmpRHSV == 0) {       // (X / neg) op 0
850      // e.g. X/-5 op 0  --> [-4, 5)
851      LoBound = AddOne(DivRHS);
852      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
853      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
854        HiOverflow = 1;            // [INTMIN+1, overflow)
855        HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
856      }
857    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
858      // e.g. X/-5 op 3  --> [-19, -14)
859      HiBound = AddOne(Prod);
860      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
861      if (!LoOverflow)
862        LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
863    } else {                       // (X / neg) op neg
864      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
865      LoOverflow = HiOverflow = ProdOV;
866      if (!HiOverflow)
867        HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
868    }
869
870    // Dividing by a negative swaps the condition.  LT <-> GT
871    Pred = ICmpInst::getSwappedPredicate(Pred);
872  }
873
874  Value *X = DivI->getOperand(0);
875  switch (Pred) {
876  default: llvm_unreachable("Unhandled icmp opcode!");
877  case ICmpInst::ICMP_EQ:
878    if (LoOverflow && HiOverflow)
879      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
880    if (HiOverflow)
881      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
882                          ICmpInst::ICMP_UGE, X, LoBound);
883    if (LoOverflow)
884      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
885                          ICmpInst::ICMP_ULT, X, HiBound);
886    return ReplaceInstUsesWith(ICI,
887                               InsertRangeTest(X, LoBound, HiBound, DivIsSigned,
888                                               true));
889  case ICmpInst::ICMP_NE:
890    if (LoOverflow && HiOverflow)
891      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
892    if (HiOverflow)
893      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
894                          ICmpInst::ICMP_ULT, X, LoBound);
895    if (LoOverflow)
896      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
897                          ICmpInst::ICMP_UGE, X, HiBound);
898    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
899                                                    DivIsSigned, false));
900  case ICmpInst::ICMP_ULT:
901  case ICmpInst::ICMP_SLT:
902    if (LoOverflow == +1)   // Low bound is greater than input range.
903      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
904    if (LoOverflow == -1)   // Low bound is less than input range.
905      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
906    return new ICmpInst(Pred, X, LoBound);
907  case ICmpInst::ICMP_UGT:
908  case ICmpInst::ICMP_SGT:
909    if (HiOverflow == +1)       // High bound greater than input range.
910      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
911    else if (HiOverflow == -1)  // High bound less than input range.
912      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
913    if (Pred == ICmpInst::ICMP_UGT)
914      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
915    else
916      return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
917  }
918}
919
920
921/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
922///
923Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
924                                                          Instruction *LHSI,
925                                                          ConstantInt *RHS) {
926  const APInt &RHSV = RHS->getValue();
927
928  switch (LHSI->getOpcode()) {
929  case Instruction::Trunc:
930    if (ICI.isEquality() && LHSI->hasOneUse()) {
931      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
932      // of the high bits truncated out of x are known.
933      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
934             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
935      APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
936      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
937      ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
938
939      // If all the high bits are known, we can do this xform.
940      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
941        // Pull in the high bits from known-ones set.
942        APInt NewRHS = RHS->getValue().zext(SrcBits);
943        NewRHS |= KnownOne;
944        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
945                            ConstantInt::get(ICI.getContext(), NewRHS));
946      }
947    }
948    break;
949
950  case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
951    if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
952      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
953      // fold the xor.
954      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
955          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
956        Value *CompareVal = LHSI->getOperand(0);
957
958        // If the sign bit of the XorCST is not set, there is no change to
959        // the operation, just stop using the Xor.
960        if (!XorCST->getValue().isNegative()) {
961          ICI.setOperand(0, CompareVal);
962          Worklist.Add(LHSI);
963          return &ICI;
964        }
965
966        // Was the old condition true if the operand is positive?
967        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
968
969        // If so, the new one isn't.
970        isTrueIfPositive ^= true;
971
972        if (isTrueIfPositive)
973          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
974                              SubOne(RHS));
975        else
976          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
977                              AddOne(RHS));
978      }
979
980      if (LHSI->hasOneUse()) {
981        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
982        if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
983          const APInt &SignBit = XorCST->getValue();
984          ICmpInst::Predicate Pred = ICI.isSigned()
985                                         ? ICI.getUnsignedPredicate()
986                                         : ICI.getSignedPredicate();
987          return new ICmpInst(Pred, LHSI->getOperand(0),
988                              ConstantInt::get(ICI.getContext(),
989                                               RHSV ^ SignBit));
990        }
991
992        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
993        if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
994          const APInt &NotSignBit = XorCST->getValue();
995          ICmpInst::Predicate Pred = ICI.isSigned()
996                                         ? ICI.getUnsignedPredicate()
997                                         : ICI.getSignedPredicate();
998          Pred = ICI.getSwappedPredicate(Pred);
999          return new ICmpInst(Pred, LHSI->getOperand(0),
1000                              ConstantInt::get(ICI.getContext(),
1001                                               RHSV ^ NotSignBit));
1002        }
1003      }
1004    }
1005    break;
1006  case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
1007    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1008        LHSI->getOperand(0)->hasOneUse()) {
1009      ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1010
1011      // If the LHS is an AND of a truncating cast, we can widen the
1012      // and/compare to be the input width without changing the value
1013      // produced, eliminating a cast.
1014      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1015        // We can do this transformation if either the AND constant does not
1016        // have its sign bit set or if it is an equality comparison.
1017        // Extending a relational comparison when we're checking the sign
1018        // bit would not work.
1019        if (Cast->hasOneUse() &&
1020            (ICI.isEquality() ||
1021             (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
1022          uint32_t BitWidth =
1023            cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
1024          APInt NewCST = AndCST->getValue().zext(BitWidth);
1025          APInt NewCI = RHSV.zext(BitWidth);
1026          Value *NewAnd =
1027            Builder->CreateAnd(Cast->getOperand(0),
1028                           ConstantInt::get(ICI.getContext(), NewCST),
1029                               LHSI->getName());
1030          return new ICmpInst(ICI.getPredicate(), NewAnd,
1031                              ConstantInt::get(ICI.getContext(), NewCI));
1032        }
1033      }
1034
1035      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1036      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1037      // happens a LOT in code produced by the C front-end, for bitfield
1038      // access.
1039      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1040      if (Shift && !Shift->isShift())
1041        Shift = 0;
1042
1043      ConstantInt *ShAmt;
1044      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1045      const Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
1046      const Type *AndTy = AndCST->getType();          // Type of the and.
1047
1048      // We can fold this as long as we can't shift unknown bits
1049      // into the mask.  This can only happen with signed shift
1050      // rights, as they sign-extend.
1051      if (ShAmt) {
1052        bool CanFold = Shift->isLogicalShift();
1053        if (!CanFold) {
1054          // To test for the bad case of the signed shr, see if any
1055          // of the bits shifted in could be tested after the mask.
1056          uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1057          int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1058
1059          uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1060          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1061               AndCST->getValue()) == 0)
1062            CanFold = true;
1063        }
1064
1065        if (CanFold) {
1066          Constant *NewCst;
1067          if (Shift->getOpcode() == Instruction::Shl)
1068            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1069          else
1070            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1071
1072          // Check to see if we are shifting out any of the bits being
1073          // compared.
1074          if (ConstantExpr::get(Shift->getOpcode(),
1075                                       NewCst, ShAmt) != RHS) {
1076            // If we shifted bits out, the fold is not going to work out.
1077            // As a special case, check to see if this means that the
1078            // result is always true or false now.
1079            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1080              return ReplaceInstUsesWith(ICI,
1081                                       ConstantInt::getFalse(ICI.getContext()));
1082            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1083              return ReplaceInstUsesWith(ICI,
1084                                       ConstantInt::getTrue(ICI.getContext()));
1085          } else {
1086            ICI.setOperand(1, NewCst);
1087            Constant *NewAndCST;
1088            if (Shift->getOpcode() == Instruction::Shl)
1089              NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1090            else
1091              NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1092            LHSI->setOperand(1, NewAndCST);
1093            LHSI->setOperand(0, Shift->getOperand(0));
1094            Worklist.Add(Shift); // Shift is dead.
1095            return &ICI;
1096          }
1097        }
1098      }
1099
1100      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1101      // preferable because it allows the C<<Y expression to be hoisted out
1102      // of a loop if Y is invariant and X is not.
1103      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1104          ICI.isEquality() && !Shift->isArithmeticShift() &&
1105          !isa<Constant>(Shift->getOperand(0))) {
1106        // Compute C << Y.
1107        Value *NS;
1108        if (Shift->getOpcode() == Instruction::LShr) {
1109          NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
1110        } else {
1111          // Insert a logical shift.
1112          NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
1113        }
1114
1115        // Compute X & (C << Y).
1116        Value *NewAnd =
1117          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1118
1119        ICI.setOperand(0, NewAnd);
1120        return &ICI;
1121      }
1122    }
1123
1124    // Try to optimize things like "A[i]&42 == 0" to index computations.
1125    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1126      if (GetElementPtrInst *GEP =
1127          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1128        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1129          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1130              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1131            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1132            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1133              return Res;
1134          }
1135    }
1136    break;
1137
1138  case Instruction::Or: {
1139    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1140      break;
1141    Value *P, *Q;
1142    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1143      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1144      // -> and (icmp eq P, null), (icmp eq Q, null).
1145
1146      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1147                                        Constant::getNullValue(P->getType()));
1148      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1149                                        Constant::getNullValue(Q->getType()));
1150      Instruction *Op;
1151      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1152        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1153      else
1154        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1155      return Op;
1156    }
1157    break;
1158  }
1159
1160  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1161    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1162    if (!ShAmt) break;
1163
1164    uint32_t TypeBits = RHSV.getBitWidth();
1165
1166    // Check that the shift amount is in range.  If not, don't perform
1167    // undefined shifts.  When the shift is visited it will be
1168    // simplified.
1169    if (ShAmt->uge(TypeBits))
1170      break;
1171
1172    if (ICI.isEquality()) {
1173      // If we are comparing against bits always shifted out, the
1174      // comparison cannot succeed.
1175      Constant *Comp =
1176        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1177                                                                 ShAmt);
1178      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1179        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1180        Constant *Cst =
1181          ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1182        return ReplaceInstUsesWith(ICI, Cst);
1183      }
1184
1185      if (LHSI->hasOneUse()) {
1186        // Otherwise strength reduce the shift into an and.
1187        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1188        Constant *Mask =
1189          ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
1190                                                       TypeBits-ShAmtVal));
1191
1192        Value *And =
1193          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1194        return new ICmpInst(ICI.getPredicate(), And,
1195                            ConstantInt::get(ICI.getContext(),
1196                                             RHSV.lshr(ShAmtVal)));
1197      }
1198    }
1199
1200    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1201    bool TrueIfSigned = false;
1202    if (LHSI->hasOneUse() &&
1203        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1204      // (X << 31) <s 0  --> (X&1) != 0
1205      Constant *Mask = ConstantInt::get(ICI.getContext(), APInt(TypeBits, 1) <<
1206                                           (TypeBits-ShAmt->getZExtValue()-1));
1207      Value *And =
1208        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1209      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1210                          And, Constant::getNullValue(And->getType()));
1211    }
1212    break;
1213  }
1214
1215  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1216  case Instruction::AShr: {
1217    // Only handle equality comparisons of shift-by-constant.
1218    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1219    if (!ShAmt || !ICI.isEquality()) break;
1220
1221    // Check that the shift amount is in range.  If not, don't perform
1222    // undefined shifts.  When the shift is visited it will be
1223    // simplified.
1224    uint32_t TypeBits = RHSV.getBitWidth();
1225    if (ShAmt->uge(TypeBits))
1226      break;
1227
1228    uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1229
1230    // If we are comparing against bits always shifted out, the
1231    // comparison cannot succeed.
1232    APInt Comp = RHSV << ShAmtVal;
1233    if (LHSI->getOpcode() == Instruction::LShr)
1234      Comp = Comp.lshr(ShAmtVal);
1235    else
1236      Comp = Comp.ashr(ShAmtVal);
1237
1238    if (Comp != RHSV) { // Comparing against a bit that we know is zero.
1239      bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1240      Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1241                                       IsICMP_NE);
1242      return ReplaceInstUsesWith(ICI, Cst);
1243    }
1244
1245    // Otherwise, check to see if the bits shifted out are known to be zero.
1246    // If so, we can compare against the unshifted value:
1247    //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1248    if (LHSI->hasOneUse() &&
1249        MaskedValueIsZero(LHSI->getOperand(0),
1250                          APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
1251      return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1252                          ConstantExpr::getShl(RHS, ShAmt));
1253    }
1254
1255    if (LHSI->hasOneUse()) {
1256      // Otherwise strength reduce the shift into an and.
1257      APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1258      Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
1259
1260      Value *And = Builder->CreateAnd(LHSI->getOperand(0),
1261                                      Mask, LHSI->getName()+".mask");
1262      return new ICmpInst(ICI.getPredicate(), And,
1263                          ConstantExpr::getShl(RHS, ShAmt));
1264    }
1265    break;
1266  }
1267
1268  case Instruction::SDiv:
1269  case Instruction::UDiv:
1270    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1271    // Fold this div into the comparison, producing a range check.
1272    // Determine, based on the divide type, what the range is being
1273    // checked.  If there is an overflow on the low or high side, remember
1274    // it, otherwise compute the range [low, hi) bounding the new value.
1275    // See: InsertRangeTest above for the kinds of replacements possible.
1276    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1277      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1278                                          DivRHS))
1279        return R;
1280    break;
1281
1282  case Instruction::Add:
1283    // Fold: icmp pred (add X, C1), C2
1284    if (!ICI.isEquality()) {
1285      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1286      if (!LHSC) break;
1287      const APInt &LHSV = LHSC->getValue();
1288
1289      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1290                            .subtract(LHSV);
1291
1292      if (ICI.isSigned()) {
1293        if (CR.getLower().isSignBit()) {
1294          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1295                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1296        } else if (CR.getUpper().isSignBit()) {
1297          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1298                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1299        }
1300      } else {
1301        if (CR.getLower().isMinValue()) {
1302          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1303                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1304        } else if (CR.getUpper().isMinValue()) {
1305          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1306                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1307        }
1308      }
1309    }
1310    break;
1311  }
1312
1313  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1314  if (ICI.isEquality()) {
1315    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1316
1317    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1318    // the second operand is a constant, simplify a bit.
1319    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1320      switch (BO->getOpcode()) {
1321      case Instruction::SRem:
1322        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1323        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1324          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1325          if (V.sgt(1) && V.isPowerOf2()) {
1326            Value *NewRem =
1327              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1328                                  BO->getName());
1329            return new ICmpInst(ICI.getPredicate(), NewRem,
1330                                Constant::getNullValue(BO->getType()));
1331          }
1332        }
1333        break;
1334      case Instruction::Add:
1335        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1336        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1337          if (BO->hasOneUse())
1338            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1339                                ConstantExpr::getSub(RHS, BOp1C));
1340        } else if (RHSV == 0) {
1341          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1342          // efficiently invertible, or if the add has just this one use.
1343          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1344
1345          if (Value *NegVal = dyn_castNegVal(BOp1))
1346            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1347          else if (Value *NegVal = dyn_castNegVal(BOp0))
1348            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1349          else if (BO->hasOneUse()) {
1350            Value *Neg = Builder->CreateNeg(BOp1);
1351            Neg->takeName(BO);
1352            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1353          }
1354        }
1355        break;
1356      case Instruction::Xor:
1357        // For the xor case, we can xor two constants together, eliminating
1358        // the explicit xor.
1359        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
1360          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1361                              ConstantExpr::getXor(RHS, BOC));
1362
1363        // FALLTHROUGH
1364      case Instruction::Sub:
1365        // Replace (([sub|xor] A, B) != 0) with (A != B)
1366        if (RHSV == 0)
1367          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1368                              BO->getOperand(1));
1369        break;
1370
1371      case Instruction::Or:
1372        // If bits are being or'd in that are not present in the constant we
1373        // are comparing against, then the comparison could never succeed!
1374        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1375          Constant *NotCI = ConstantExpr::getNot(RHS);
1376          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1377            return ReplaceInstUsesWith(ICI,
1378                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1379                                       isICMP_NE));
1380        }
1381        break;
1382
1383      case Instruction::And:
1384        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1385          // If bits are being compared against that are and'd out, then the
1386          // comparison can never succeed!
1387          if ((RHSV & ~BOC->getValue()) != 0)
1388            return ReplaceInstUsesWith(ICI,
1389                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1390                                       isICMP_NE));
1391
1392          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1393          if (RHS == BOC && RHSV.isPowerOf2())
1394            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1395                                ICmpInst::ICMP_NE, LHSI,
1396                                Constant::getNullValue(RHS->getType()));
1397
1398          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1399          if (BOC->getValue().isSignBit()) {
1400            Value *X = BO->getOperand(0);
1401            Constant *Zero = Constant::getNullValue(X->getType());
1402            ICmpInst::Predicate pred = isICMP_NE ?
1403              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1404            return new ICmpInst(pred, X, Zero);
1405          }
1406
1407          // ((X & ~7) == 0) --> X < 8
1408          if (RHSV == 0 && isHighOnes(BOC)) {
1409            Value *X = BO->getOperand(0);
1410            Constant *NegX = ConstantExpr::getNeg(BOC);
1411            ICmpInst::Predicate pred = isICMP_NE ?
1412              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1413            return new ICmpInst(pred, X, NegX);
1414          }
1415        }
1416      default: break;
1417      }
1418    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1419      // Handle icmp {eq|ne} <intrinsic>, intcst.
1420      switch (II->getIntrinsicID()) {
1421      case Intrinsic::bswap:
1422        Worklist.Add(II);
1423        ICI.setOperand(0, II->getArgOperand(0));
1424        ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1425        return &ICI;
1426      case Intrinsic::ctlz:
1427      case Intrinsic::cttz:
1428        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1429        if (RHSV == RHS->getType()->getBitWidth()) {
1430          Worklist.Add(II);
1431          ICI.setOperand(0, II->getArgOperand(0));
1432          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1433          return &ICI;
1434        }
1435        break;
1436      case Intrinsic::ctpop:
1437        // popcount(A) == 0  ->  A == 0 and likewise for !=
1438        if (RHS->isZero()) {
1439          Worklist.Add(II);
1440          ICI.setOperand(0, II->getArgOperand(0));
1441          ICI.setOperand(1, RHS);
1442          return &ICI;
1443        }
1444        break;
1445      default:
1446        break;
1447      }
1448    }
1449  }
1450  return 0;
1451}
1452
1453/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1454/// We only handle extending casts so far.
1455///
1456Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1457  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1458  Value *LHSCIOp        = LHSCI->getOperand(0);
1459  const Type *SrcTy     = LHSCIOp->getType();
1460  const Type *DestTy    = LHSCI->getType();
1461  Value *RHSCIOp;
1462
1463  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1464  // integer type is the same size as the pointer type.
1465  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1466      TD->getPointerSizeInBits() ==
1467         cast<IntegerType>(DestTy)->getBitWidth()) {
1468    Value *RHSOp = 0;
1469    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1470      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1471    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1472      RHSOp = RHSC->getOperand(0);
1473      // If the pointer types don't match, insert a bitcast.
1474      if (LHSCIOp->getType() != RHSOp->getType())
1475        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1476    }
1477
1478    if (RHSOp)
1479      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1480  }
1481
1482  // The code below only handles extension cast instructions, so far.
1483  // Enforce this.
1484  if (LHSCI->getOpcode() != Instruction::ZExt &&
1485      LHSCI->getOpcode() != Instruction::SExt)
1486    return 0;
1487
1488  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1489  bool isSignedCmp = ICI.isSigned();
1490
1491  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1492    // Not an extension from the same type?
1493    RHSCIOp = CI->getOperand(0);
1494    if (RHSCIOp->getType() != LHSCIOp->getType())
1495      return 0;
1496
1497    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1498    // and the other is a zext), then we can't handle this.
1499    if (CI->getOpcode() != LHSCI->getOpcode())
1500      return 0;
1501
1502    // Deal with equality cases early.
1503    if (ICI.isEquality())
1504      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1505
1506    // A signed comparison of sign extended values simplifies into a
1507    // signed comparison.
1508    if (isSignedCmp && isSignedExt)
1509      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1510
1511    // The other three cases all fold into an unsigned comparison.
1512    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1513  }
1514
1515  // If we aren't dealing with a constant on the RHS, exit early
1516  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1517  if (!CI)
1518    return 0;
1519
1520  // Compute the constant that would happen if we truncated to SrcTy then
1521  // reextended to DestTy.
1522  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1523  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1524                                                Res1, DestTy);
1525
1526  // If the re-extended constant didn't change...
1527  if (Res2 == CI) {
1528    // Deal with equality cases early.
1529    if (ICI.isEquality())
1530      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1531
1532    // A signed comparison of sign extended values simplifies into a
1533    // signed comparison.
1534    if (isSignedExt && isSignedCmp)
1535      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1536
1537    // The other three cases all fold into an unsigned comparison.
1538    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1539  }
1540
1541  // The re-extended constant changed so the constant cannot be represented
1542  // in the shorter type. Consequently, we cannot emit a simple comparison.
1543
1544  // First, handle some easy cases. We know the result cannot be equal at this
1545  // point so handle the ICI.isEquality() cases
1546  if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1547    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
1548  if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1549    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
1550
1551  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1552  // should have been folded away previously and not enter in here.
1553  Value *Result;
1554  if (isSignedCmp) {
1555    // We're performing a signed comparison.
1556    if (cast<ConstantInt>(CI)->getValue().isNegative())
1557      Result = ConstantInt::getFalse(ICI.getContext()); // X < (small) --> false
1558    else
1559      Result = ConstantInt::getTrue(ICI.getContext());  // X < (large) --> true
1560  } else {
1561    // We're performing an unsigned comparison.
1562    if (isSignedExt) {
1563      // We're performing an unsigned comp with a sign extended value.
1564      // This is true if the input is >= 0. [aka >s -1]
1565      Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1566      Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1567    } else {
1568      // Unsigned extend & unsigned compare -> always true.
1569      Result = ConstantInt::getTrue(ICI.getContext());
1570    }
1571  }
1572
1573  // Finally, return the value computed.
1574  if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
1575      ICI.getPredicate() == ICmpInst::ICMP_SLT)
1576    return ReplaceInstUsesWith(ICI, Result);
1577
1578  assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
1579          ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
1580         "ICmp should be folded!");
1581  if (Constant *CI = dyn_cast<Constant>(Result))
1582    return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
1583  return BinaryOperator::CreateNot(Result);
1584}
1585
1586/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1587///   I = icmp ugt (add (add A, B), CI2), CI1
1588static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1589                                          ConstantInt *CI2, ConstantInt *CI1,
1590                                          InstCombiner::BuilderTy *Builder) {
1591  // The transformation we're trying to do here is to transform this into an
1592  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1593  // with a narrower add, and discard the add-with-constant that is part of the
1594  // range check (if we can't eliminate it, this isn't profitable).
1595
1596  // In order to eliminate the add-with-constant, the compare can be its only
1597  // use.
1598  Value *AddWithCst = I.getOperand(0);
1599  if (!AddWithCst->hasOneUse()) return 0;
1600
1601  const IntegerType *WideType = cast<IntegerType>(CI1->getType());
1602  unsigned WideWidth = WideType->getBitWidth();
1603  unsigned NarrowWidth = WideWidth / 2;
1604  const IntegerType *NarrowType =
1605  IntegerType::get(CI1->getContext(), NarrowWidth);
1606
1607  // NarrowAllOnes and NarrowSignBit are the magic constants used to
1608  // perform an overflow check in the wider type: 0x00..00FF..FF and
1609  // 0x00..0010..00 respectively, where the highest set bit in each is
1610  // what would be the sign bit in the narrower type.
1611  ConstantInt *NarrowAllOnes = cast<ConstantInt>(ConstantInt::get(WideType,
1612                          APInt::getAllOnesValue(NarrowWidth).zext(WideWidth)));
1613  APInt SignBit(WideWidth, 0);
1614  SignBit.setBit(NarrowWidth-1);
1615  ConstantInt *NarrowSignBit =
1616  cast<ConstantInt>(ConstantInt::get(WideType, SignBit));
1617
1618  if (CI1 != NarrowAllOnes || CI2 != NarrowSignBit)
1619    return 0;
1620
1621  Module *M = I.getParent()->getParent()->getParent();
1622
1623  const Type *IntrinsicType = NarrowType;
1624  Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1625                                       &IntrinsicType, 1);
1626
1627  BasicBlock *InitialBlock = Builder->GetInsertBlock();
1628  BasicBlock::iterator InitialInsert = Builder->GetInsertPoint();
1629
1630  // If the pattern matches, truncate the inputs to the narrower type and
1631  // use the sadd_with_overflow intrinsic to efficiently compute both the
1632  // result and the overflow bit.
1633  Instruction *OrigAdd =
1634  cast<Instruction>(cast<Instruction>(I.getOperand(0))->getOperand(0));
1635  Builder->SetInsertPoint(OrigAdd->getParent(),
1636                          BasicBlock::iterator(OrigAdd));
1637
1638  Value *TruncA = Builder->CreateTrunc(A, NarrowType, A->getName());
1639  Value *TruncB = Builder->CreateTrunc(B, NarrowType, B->getName());
1640  CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB);
1641  Value *Add = Builder->CreateExtractValue(Call, 0);
1642  Value *ZExt = Builder->CreateZExt(Add, WideType);
1643
1644  // The inner add was the result of the narrow add, zero extended to the
1645  // wider type.  Replace it with the result computed by the intrinsic.
1646  OrigAdd->replaceAllUsesWith(ZExt);
1647
1648  Builder->SetInsertPoint(InitialBlock, InitialInsert);
1649
1650  return ExtractValueInst::Create(Call, 1);
1651}
1652
1653
1654Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1655  bool Changed = false;
1656  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1657
1658  /// Orders the operands of the compare so that they are listed from most
1659  /// complex to least complex.  This puts constants before unary operators,
1660  /// before binary operators.
1661  if (getComplexity(Op0) < getComplexity(Op1)) {
1662    I.swapOperands();
1663    std::swap(Op0, Op1);
1664    Changed = true;
1665  }
1666
1667  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1668    return ReplaceInstUsesWith(I, V);
1669
1670  const Type *Ty = Op0->getType();
1671
1672  // icmp's with boolean values can always be turned into bitwise operations
1673  if (Ty->isIntegerTy(1)) {
1674    switch (I.getPredicate()) {
1675    default: llvm_unreachable("Invalid icmp instruction!");
1676    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
1677      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1678      return BinaryOperator::CreateNot(Xor);
1679    }
1680    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
1681      return BinaryOperator::CreateXor(Op0, Op1);
1682
1683    case ICmpInst::ICMP_UGT:
1684      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
1685      // FALL THROUGH
1686    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
1687      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1688      return BinaryOperator::CreateAnd(Not, Op1);
1689    }
1690    case ICmpInst::ICMP_SGT:
1691      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
1692      // FALL THROUGH
1693    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
1694      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1695      return BinaryOperator::CreateAnd(Not, Op0);
1696    }
1697    case ICmpInst::ICMP_UGE:
1698      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
1699      // FALL THROUGH
1700    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
1701      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1702      return BinaryOperator::CreateOr(Not, Op1);
1703    }
1704    case ICmpInst::ICMP_SGE:
1705      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
1706      // FALL THROUGH
1707    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
1708      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1709      return BinaryOperator::CreateOr(Not, Op0);
1710    }
1711    }
1712  }
1713
1714  unsigned BitWidth = 0;
1715  if (TD)
1716    BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
1717  else if (Ty->isIntOrIntVectorTy())
1718    BitWidth = Ty->getScalarSizeInBits();
1719
1720  bool isSignBit = false;
1721
1722  // See if we are doing a comparison with a constant.
1723  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1724    Value *A = 0, *B = 0;
1725
1726    // Match the following pattern, which is a common idiom when writing
1727    // overflow-safe integer arithmetic function.  The source performs an
1728    // addition in wider type, and explicitly checks for overflow using
1729    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
1730    // sadd_with_overflow intrinsic.
1731    //
1732    // TODO: This could probably be generalized to handle other overflow-safe
1733    // operations if we worked out the formulas to compute the appropriate
1734    // magic constants.
1735    //
1736    // sum = a + b
1737    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1738    {
1739    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
1740    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
1741        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1742      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, Builder))
1743        return Res;
1744    }
1745
1746    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1747    if (I.isEquality() && CI->isZero() &&
1748        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
1749      // (icmp cond A B) if cond is equality
1750      return new ICmpInst(I.getPredicate(), A, B);
1751    }
1752
1753    // If we have an icmp le or icmp ge instruction, turn it into the
1754    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
1755    // them being folded in the code below.  The SimplifyICmpInst code has
1756    // already handled the edge cases for us, so we just assert on them.
1757    switch (I.getPredicate()) {
1758    default: break;
1759    case ICmpInst::ICMP_ULE:
1760      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
1761      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1762                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1763    case ICmpInst::ICMP_SLE:
1764      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
1765      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1766                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1767    case ICmpInst::ICMP_UGE:
1768      assert(!CI->isMinValue(false));                  // A >=u MIN -> TRUE
1769      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1770                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1771    case ICmpInst::ICMP_SGE:
1772      assert(!CI->isMinValue(true));                   // A >=s MIN -> TRUE
1773      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1774                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1775    }
1776
1777    // If this comparison is a normal comparison, it demands all
1778    // bits, if it is a sign bit comparison, it only demands the sign bit.
1779    bool UnusedBit;
1780    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
1781  }
1782
1783  // See if we can fold the comparison based on range information we can get
1784  // by checking whether bits are known to be zero or one in the input.
1785  if (BitWidth != 0) {
1786    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
1787    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
1788
1789    if (SimplifyDemandedBits(I.getOperandUse(0),
1790                             isSignBit ? APInt::getSignBit(BitWidth)
1791                                       : APInt::getAllOnesValue(BitWidth),
1792                             Op0KnownZero, Op0KnownOne, 0))
1793      return &I;
1794    if (SimplifyDemandedBits(I.getOperandUse(1),
1795                             APInt::getAllOnesValue(BitWidth),
1796                             Op1KnownZero, Op1KnownOne, 0))
1797      return &I;
1798
1799    // Given the known and unknown bits, compute a range that the LHS could be
1800    // in.  Compute the Min, Max and RHS values based on the known bits. For the
1801    // EQ and NE we use unsigned values.
1802    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
1803    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
1804    if (I.isSigned()) {
1805      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1806                                             Op0Min, Op0Max);
1807      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1808                                             Op1Min, Op1Max);
1809    } else {
1810      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1811                                               Op0Min, Op0Max);
1812      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1813                                               Op1Min, Op1Max);
1814    }
1815
1816    // If Min and Max are known to be the same, then SimplifyDemandedBits
1817    // figured out that the LHS is a constant.  Just constant fold this now so
1818    // that code below can assume that Min != Max.
1819    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
1820      return new ICmpInst(I.getPredicate(),
1821                          ConstantInt::get(I.getContext(), Op0Min), Op1);
1822    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
1823      return new ICmpInst(I.getPredicate(), Op0,
1824                          ConstantInt::get(I.getContext(), Op1Min));
1825
1826    // Based on the range information we know about the LHS, see if we can
1827    // simplify this comparison.  For example, (x&4) < 8  is always true.
1828    switch (I.getPredicate()) {
1829    default: llvm_unreachable("Unknown icmp opcode!");
1830    case ICmpInst::ICMP_EQ: {
1831      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1832        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1833
1834      // If all bits are known zero except for one, then we know at most one
1835      // bit is set.   If the comparison is against zero, then this is a check
1836      // to see if *that* bit is set.
1837      APInt Op0KnownZeroInverted = ~Op0KnownZero;
1838      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1839        // If the LHS is an AND with the same constant, look through it.
1840        Value *LHS = 0;
1841        ConstantInt *LHSC = 0;
1842        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1843            LHSC->getValue() != Op0KnownZeroInverted)
1844          LHS = Op0;
1845
1846        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
1847        // then turn "((1 << x)&8) == 0" into "x != 3".
1848        Value *X = 0;
1849        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1850          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
1851          return new ICmpInst(ICmpInst::ICMP_NE, X,
1852                              ConstantInt::get(X->getType(), CmpVal));
1853        }
1854
1855        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
1856        // then turn "((8 >>u x)&1) == 0" into "x != 3".
1857        ConstantInt *CI = 0;
1858        if (Op0KnownZeroInverted == 1 &&
1859            match(LHS, m_LShr(m_ConstantInt(CI), m_Value(X))) &&
1860            CI->getValue().isPowerOf2()) {
1861          unsigned CmpVal = CI->getValue().countTrailingZeros();
1862          return new ICmpInst(ICmpInst::ICMP_NE, X,
1863                              ConstantInt::get(X->getType(), CmpVal));
1864        }
1865      }
1866
1867      break;
1868    }
1869    case ICmpInst::ICMP_NE: {
1870      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1871        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1872
1873      // If all bits are known zero except for one, then we know at most one
1874      // bit is set.   If the comparison is against zero, then this is a check
1875      // to see if *that* bit is set.
1876      APInt Op0KnownZeroInverted = ~Op0KnownZero;
1877      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1878        // If the LHS is an AND with the same constant, look through it.
1879        Value *LHS = 0;
1880        ConstantInt *LHSC = 0;
1881        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1882            LHSC->getValue() != Op0KnownZeroInverted)
1883          LHS = Op0;
1884
1885        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
1886        // then turn "((1 << x)&8) != 0" into "x == 3".
1887        Value *X = 0;
1888        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1889          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
1890          return new ICmpInst(ICmpInst::ICMP_EQ, X,
1891                              ConstantInt::get(X->getType(), CmpVal));
1892        }
1893
1894        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
1895        // then turn "((8 >>u x)&1) != 0" into "x == 3".
1896        ConstantInt *CI = 0;
1897        if (Op0KnownZeroInverted == 1 &&
1898            match(LHS, m_LShr(m_ConstantInt(CI), m_Value(X))) &&
1899            CI->getValue().isPowerOf2()) {
1900          unsigned CmpVal = CI->getValue().countTrailingZeros();
1901          return new ICmpInst(ICmpInst::ICMP_EQ, X,
1902                              ConstantInt::get(X->getType(), CmpVal));
1903        }
1904      }
1905
1906      break;
1907    }
1908    case ICmpInst::ICMP_ULT:
1909      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
1910        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1911      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
1912        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1913      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
1914        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1915      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1916        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
1917          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1918                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1919
1920        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
1921        if (CI->isMinValue(true))
1922          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1923                           Constant::getAllOnesValue(Op0->getType()));
1924      }
1925      break;
1926    case ICmpInst::ICMP_UGT:
1927      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
1928        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1929      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
1930        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1931
1932      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
1933        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1934      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1935        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
1936          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1937                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1938
1939        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
1940        if (CI->isMaxValue(true))
1941          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1942                              Constant::getNullValue(Op0->getType()));
1943      }
1944      break;
1945    case ICmpInst::ICMP_SLT:
1946      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
1947        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1948      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
1949        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1950      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
1951        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1952      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1953        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
1954          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1955                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1956      }
1957      break;
1958    case ICmpInst::ICMP_SGT:
1959      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
1960        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1961      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
1962        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1963
1964      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
1965        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1966      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1967        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
1968          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1969                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1970      }
1971      break;
1972    case ICmpInst::ICMP_SGE:
1973      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
1974      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
1975        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1976      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
1977        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1978      break;
1979    case ICmpInst::ICMP_SLE:
1980      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
1981      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
1982        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1983      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
1984        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1985      break;
1986    case ICmpInst::ICMP_UGE:
1987      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
1988      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
1989        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1990      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
1991        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1992      break;
1993    case ICmpInst::ICMP_ULE:
1994      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
1995      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
1996        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1997      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
1998        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1999      break;
2000    }
2001
2002    // Turn a signed comparison into an unsigned one if both operands
2003    // are known to have the same sign.
2004    if (I.isSigned() &&
2005        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2006         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2007      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2008  }
2009
2010  // Test if the ICmpInst instruction is used exclusively by a select as
2011  // part of a minimum or maximum operation. If so, refrain from doing
2012  // any other folding. This helps out other analyses which understand
2013  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2014  // and CodeGen. And in this case, at least one of the comparison
2015  // operands has at least one user besides the compare (the select),
2016  // which would often largely negate the benefit of folding anyway.
2017  if (I.hasOneUse())
2018    if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2019      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2020          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2021        return 0;
2022
2023  // See if we are doing a comparison between a constant and an instruction that
2024  // can be folded into the comparison.
2025  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2026    // Since the RHS is a ConstantInt (CI), if the left hand side is an
2027    // instruction, see if that instruction also has constants so that the
2028    // instruction can be folded into the icmp
2029    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2030      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2031        return Res;
2032  }
2033
2034  // Handle icmp with constant (but not simple integer constant) RHS
2035  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2036    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2037      switch (LHSI->getOpcode()) {
2038      case Instruction::GetElementPtr:
2039          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2040        if (RHSC->isNullValue() &&
2041            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2042          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2043                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2044        break;
2045      case Instruction::PHI:
2046        // Only fold icmp into the PHI if the phi and icmp are in the same
2047        // block.  If in the same block, we're encouraging jump threading.  If
2048        // not, we are just pessimizing the code by making an i1 phi.
2049        if (LHSI->getParent() == I.getParent())
2050          if (Instruction *NV = FoldOpIntoPhi(I, true))
2051            return NV;
2052        break;
2053      case Instruction::Select: {
2054        // If either operand of the select is a constant, we can fold the
2055        // comparison into the select arms, which will cause one to be
2056        // constant folded and the select turned into a bitwise or.
2057        Value *Op1 = 0, *Op2 = 0;
2058        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2059          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2060        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2061          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2062
2063        // We only want to perform this transformation if it will not lead to
2064        // additional code. This is true if either both sides of the select
2065        // fold to a constant (in which case the icmp is replaced with a select
2066        // which will usually simplify) or this is the only user of the
2067        // select (in which case we are trading a select+icmp for a simpler
2068        // select+icmp).
2069        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2070          if (!Op1)
2071            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2072                                      RHSC, I.getName());
2073          if (!Op2)
2074            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2075                                      RHSC, I.getName());
2076          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2077        }
2078        break;
2079      }
2080      case Instruction::IntToPtr:
2081        // icmp pred inttoptr(X), null -> icmp pred X, 0
2082        if (RHSC->isNullValue() && TD &&
2083            TD->getIntPtrType(RHSC->getContext()) ==
2084               LHSI->getOperand(0)->getType())
2085          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2086                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
2087        break;
2088
2089      case Instruction::Load:
2090        // Try to optimize things like "A[i] > 4" to index computations.
2091        if (GetElementPtrInst *GEP =
2092              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2093          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2094            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2095                !cast<LoadInst>(LHSI)->isVolatile())
2096              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2097                return Res;
2098        }
2099        break;
2100      }
2101  }
2102
2103  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2104  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2105    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2106      return NI;
2107  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2108    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2109                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2110      return NI;
2111
2112  // Test to see if the operands of the icmp are casted versions of other
2113  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
2114  // now.
2115  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2116    if (Op0->getType()->isPointerTy() &&
2117        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2118      // We keep moving the cast from the left operand over to the right
2119      // operand, where it can often be eliminated completely.
2120      Op0 = CI->getOperand(0);
2121
2122      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2123      // so eliminate it as well.
2124      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2125        Op1 = CI2->getOperand(0);
2126
2127      // If Op1 is a constant, we can fold the cast into the constant.
2128      if (Op0->getType() != Op1->getType()) {
2129        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2130          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2131        } else {
2132          // Otherwise, cast the RHS right before the icmp
2133          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2134        }
2135      }
2136      return new ICmpInst(I.getPredicate(), Op0, Op1);
2137    }
2138  }
2139
2140  if (isa<CastInst>(Op0)) {
2141    // Handle the special case of: icmp (cast bool to X), <cst>
2142    // This comes up when you have code like
2143    //   int X = A < B;
2144    //   if (X) ...
2145    // For generality, we handle any zero-extension of any operand comparison
2146    // with a constant or another cast from the same type.
2147    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2148      if (Instruction *R = visitICmpInstWithCastAndCast(I))
2149        return R;
2150  }
2151
2152  // See if it's the same type of instruction on the left and right.
2153  if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2154    if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2155      if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
2156          Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
2157        switch (Op0I->getOpcode()) {
2158        default: break;
2159        case Instruction::Add:
2160        case Instruction::Sub:
2161        case Instruction::Xor:
2162          if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
2163            return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
2164                                Op1I->getOperand(0));
2165          // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2166          if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2167            if (CI->getValue().isSignBit()) {
2168              ICmpInst::Predicate Pred = I.isSigned()
2169                                             ? I.getUnsignedPredicate()
2170                                             : I.getSignedPredicate();
2171              return new ICmpInst(Pred, Op0I->getOperand(0),
2172                                  Op1I->getOperand(0));
2173            }
2174
2175            if (CI->getValue().isMaxSignedValue()) {
2176              ICmpInst::Predicate Pred = I.isSigned()
2177                                             ? I.getUnsignedPredicate()
2178                                             : I.getSignedPredicate();
2179              Pred = I.getSwappedPredicate(Pred);
2180              return new ICmpInst(Pred, Op0I->getOperand(0),
2181                                  Op1I->getOperand(0));
2182            }
2183          }
2184          break;
2185        case Instruction::Mul:
2186          if (!I.isEquality())
2187            break;
2188
2189          if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2190            // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2191            // Mask = -1 >> count-trailing-zeros(Cst).
2192            if (!CI->isZero() && !CI->isOne()) {
2193              const APInt &AP = CI->getValue();
2194              ConstantInt *Mask = ConstantInt::get(I.getContext(),
2195                                      APInt::getLowBitsSet(AP.getBitWidth(),
2196                                                           AP.getBitWidth() -
2197                                                      AP.countTrailingZeros()));
2198              Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
2199              Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
2200              return new ICmpInst(I.getPredicate(), And1, And2);
2201            }
2202          }
2203          break;
2204        }
2205      }
2206    }
2207  }
2208
2209  // ~x < ~y --> y < x
2210  { Value *A, *B;
2211    if (match(Op0, m_Not(m_Value(A))) &&
2212        match(Op1, m_Not(m_Value(B))))
2213      return new ICmpInst(I.getPredicate(), B, A);
2214  }
2215
2216  if (I.isEquality()) {
2217    Value *A, *B, *C, *D;
2218
2219    // -x == -y --> x == y
2220    if (match(Op0, m_Neg(m_Value(A))) &&
2221        match(Op1, m_Neg(m_Value(B))))
2222      return new ICmpInst(I.getPredicate(), A, B);
2223
2224    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2225      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
2226        Value *OtherVal = A == Op1 ? B : A;
2227        return new ICmpInst(I.getPredicate(), OtherVal,
2228                            Constant::getNullValue(A->getType()));
2229      }
2230
2231      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2232        // A^c1 == C^c2 --> A == C^(c1^c2)
2233        ConstantInt *C1, *C2;
2234        if (match(B, m_ConstantInt(C1)) &&
2235            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2236          Constant *NC = ConstantInt::get(I.getContext(),
2237                                          C1->getValue() ^ C2->getValue());
2238          Value *Xor = Builder->CreateXor(C, NC, "tmp");
2239          return new ICmpInst(I.getPredicate(), A, Xor);
2240        }
2241
2242        // A^B == A^D -> B == D
2243        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2244        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2245        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2246        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2247      }
2248    }
2249
2250    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2251        (A == Op0 || B == Op0)) {
2252      // A == (A^B)  ->  B == 0
2253      Value *OtherVal = A == Op0 ? B : A;
2254      return new ICmpInst(I.getPredicate(), OtherVal,
2255                          Constant::getNullValue(A->getType()));
2256    }
2257
2258    // (A-B) == A  ->  B == 0
2259    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
2260      return new ICmpInst(I.getPredicate(), B,
2261                          Constant::getNullValue(B->getType()));
2262
2263    // A == (A-B)  ->  B == 0
2264    if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
2265      return new ICmpInst(I.getPredicate(), B,
2266                          Constant::getNullValue(B->getType()));
2267
2268    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2269    if (Op0->hasOneUse() && Op1->hasOneUse() &&
2270        match(Op0, m_And(m_Value(A), m_Value(B))) &&
2271        match(Op1, m_And(m_Value(C), m_Value(D)))) {
2272      Value *X = 0, *Y = 0, *Z = 0;
2273
2274      if (A == C) {
2275        X = B; Y = D; Z = A;
2276      } else if (A == D) {
2277        X = B; Y = C; Z = A;
2278      } else if (B == C) {
2279        X = A; Y = D; Z = B;
2280      } else if (B == D) {
2281        X = A; Y = C; Z = B;
2282      }
2283
2284      if (X) {   // Build (X^Y) & Z
2285        Op1 = Builder->CreateXor(X, Y, "tmp");
2286        Op1 = Builder->CreateAnd(Op1, Z, "tmp");
2287        I.setOperand(0, Op1);
2288        I.setOperand(1, Constant::getNullValue(Op1->getType()));
2289        return &I;
2290      }
2291    }
2292  }
2293
2294  {
2295    Value *X; ConstantInt *Cst;
2296    // icmp X+Cst, X
2297    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2298      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2299
2300    // icmp X, X+Cst
2301    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2302      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2303  }
2304  return Changed ? &I : 0;
2305}
2306
2307
2308
2309
2310
2311
2312/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2313///
2314Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2315                                                Instruction *LHSI,
2316                                                Constant *RHSC) {
2317  if (!isa<ConstantFP>(RHSC)) return 0;
2318  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
2319
2320  // Get the width of the mantissa.  We don't want to hack on conversions that
2321  // might lose information from the integer, e.g. "i64 -> float"
2322  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2323  if (MantissaWidth == -1) return 0;  // Unknown.
2324
2325  // Check to see that the input is converted from an integer type that is small
2326  // enough that preserves all bits.  TODO: check here for "known" sign bits.
2327  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2328  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
2329
2330  // If this is a uitofp instruction, we need an extra bit to hold the sign.
2331  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2332  if (LHSUnsigned)
2333    ++InputSize;
2334
2335  // If the conversion would lose info, don't hack on this.
2336  if ((int)InputSize > MantissaWidth)
2337    return 0;
2338
2339  // Otherwise, we can potentially simplify the comparison.  We know that it
2340  // will always come through as an integer value and we know the constant is
2341  // not a NAN (it would have been previously simplified).
2342  assert(!RHS.isNaN() && "NaN comparison not already folded!");
2343
2344  ICmpInst::Predicate Pred;
2345  switch (I.getPredicate()) {
2346  default: llvm_unreachable("Unexpected predicate!");
2347  case FCmpInst::FCMP_UEQ:
2348  case FCmpInst::FCMP_OEQ:
2349    Pred = ICmpInst::ICMP_EQ;
2350    break;
2351  case FCmpInst::FCMP_UGT:
2352  case FCmpInst::FCMP_OGT:
2353    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2354    break;
2355  case FCmpInst::FCMP_UGE:
2356  case FCmpInst::FCMP_OGE:
2357    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2358    break;
2359  case FCmpInst::FCMP_ULT:
2360  case FCmpInst::FCMP_OLT:
2361    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2362    break;
2363  case FCmpInst::FCMP_ULE:
2364  case FCmpInst::FCMP_OLE:
2365    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2366    break;
2367  case FCmpInst::FCMP_UNE:
2368  case FCmpInst::FCMP_ONE:
2369    Pred = ICmpInst::ICMP_NE;
2370    break;
2371  case FCmpInst::FCMP_ORD:
2372    return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2373  case FCmpInst::FCMP_UNO:
2374    return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2375  }
2376
2377  const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
2378
2379  // Now we know that the APFloat is a normal number, zero or inf.
2380
2381  // See if the FP constant is too large for the integer.  For example,
2382  // comparing an i8 to 300.0.
2383  unsigned IntWidth = IntTy->getScalarSizeInBits();
2384
2385  if (!LHSUnsigned) {
2386    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
2387    // and large values.
2388    APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2389    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2390                          APFloat::rmNearestTiesToEven);
2391    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
2392      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
2393          Pred == ICmpInst::ICMP_SLE)
2394        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2395      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2396    }
2397  } else {
2398    // If the RHS value is > UnsignedMax, fold the comparison. This handles
2399    // +INF and large values.
2400    APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2401    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2402                          APFloat::rmNearestTiesToEven);
2403    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
2404      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
2405          Pred == ICmpInst::ICMP_ULE)
2406        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2407      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2408    }
2409  }
2410
2411  if (!LHSUnsigned) {
2412    // See if the RHS value is < SignedMin.
2413    APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2414    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2415                          APFloat::rmNearestTiesToEven);
2416    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2417      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2418          Pred == ICmpInst::ICMP_SGE)
2419        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2420      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2421    }
2422  }
2423
2424  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2425  // [0, UMAX], but it may still be fractional.  See if it is fractional by
2426  // casting the FP value to the integer value and back, checking for equality.
2427  // Don't do this for zero, because -0.0 is not fractional.
2428  Constant *RHSInt = LHSUnsigned
2429    ? ConstantExpr::getFPToUI(RHSC, IntTy)
2430    : ConstantExpr::getFPToSI(RHSC, IntTy);
2431  if (!RHS.isZero()) {
2432    bool Equal = LHSUnsigned
2433      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2434      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2435    if (!Equal) {
2436      // If we had a comparison against a fractional value, we have to adjust
2437      // the compare predicate and sometimes the value.  RHSC is rounded towards
2438      // zero at this point.
2439      switch (Pred) {
2440      default: llvm_unreachable("Unexpected integer comparison!");
2441      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
2442        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2443      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
2444        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2445      case ICmpInst::ICMP_ULE:
2446        // (float)int <= 4.4   --> int <= 4
2447        // (float)int <= -4.4  --> false
2448        if (RHS.isNegative())
2449          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2450        break;
2451      case ICmpInst::ICMP_SLE:
2452        // (float)int <= 4.4   --> int <= 4
2453        // (float)int <= -4.4  --> int < -4
2454        if (RHS.isNegative())
2455          Pred = ICmpInst::ICMP_SLT;
2456        break;
2457      case ICmpInst::ICMP_ULT:
2458        // (float)int < -4.4   --> false
2459        // (float)int < 4.4    --> int <= 4
2460        if (RHS.isNegative())
2461          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2462        Pred = ICmpInst::ICMP_ULE;
2463        break;
2464      case ICmpInst::ICMP_SLT:
2465        // (float)int < -4.4   --> int < -4
2466        // (float)int < 4.4    --> int <= 4
2467        if (!RHS.isNegative())
2468          Pred = ICmpInst::ICMP_SLE;
2469        break;
2470      case ICmpInst::ICMP_UGT:
2471        // (float)int > 4.4    --> int > 4
2472        // (float)int > -4.4   --> true
2473        if (RHS.isNegative())
2474          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2475        break;
2476      case ICmpInst::ICMP_SGT:
2477        // (float)int > 4.4    --> int > 4
2478        // (float)int > -4.4   --> int >= -4
2479        if (RHS.isNegative())
2480          Pred = ICmpInst::ICMP_SGE;
2481        break;
2482      case ICmpInst::ICMP_UGE:
2483        // (float)int >= -4.4   --> true
2484        // (float)int >= 4.4    --> int > 4
2485        if (!RHS.isNegative())
2486          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2487        Pred = ICmpInst::ICMP_UGT;
2488        break;
2489      case ICmpInst::ICMP_SGE:
2490        // (float)int >= -4.4   --> int >= -4
2491        // (float)int >= 4.4    --> int > 4
2492        if (!RHS.isNegative())
2493          Pred = ICmpInst::ICMP_SGT;
2494        break;
2495      }
2496    }
2497  }
2498
2499  // Lower this FP comparison into an appropriate integer version of the
2500  // comparison.
2501  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2502}
2503
2504Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2505  bool Changed = false;
2506
2507  /// Orders the operands of the compare so that they are listed from most
2508  /// complex to least complex.  This puts constants before unary operators,
2509  /// before binary operators.
2510  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2511    I.swapOperands();
2512    Changed = true;
2513  }
2514
2515  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2516
2517  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2518    return ReplaceInstUsesWith(I, V);
2519
2520  // Simplify 'fcmp pred X, X'
2521  if (Op0 == Op1) {
2522    switch (I.getPredicate()) {
2523    default: llvm_unreachable("Unknown predicate!");
2524    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
2525    case FCmpInst::FCMP_ULT:    // True if unordered or less than
2526    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
2527    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
2528      // Canonicalize these to be 'fcmp uno %X, 0.0'.
2529      I.setPredicate(FCmpInst::FCMP_UNO);
2530      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2531      return &I;
2532
2533    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
2534    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
2535    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
2536    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
2537      // Canonicalize these to be 'fcmp ord %X, 0.0'.
2538      I.setPredicate(FCmpInst::FCMP_ORD);
2539      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2540      return &I;
2541    }
2542  }
2543
2544  // Handle fcmp with constant RHS
2545  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2546    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2547      switch (LHSI->getOpcode()) {
2548      case Instruction::PHI:
2549        // Only fold fcmp into the PHI if the phi and fcmp are in the same
2550        // block.  If in the same block, we're encouraging jump threading.  If
2551        // not, we are just pessimizing the code by making an i1 phi.
2552        if (LHSI->getParent() == I.getParent())
2553          if (Instruction *NV = FoldOpIntoPhi(I, true))
2554            return NV;
2555        break;
2556      case Instruction::SIToFP:
2557      case Instruction::UIToFP:
2558        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
2559          return NV;
2560        break;
2561      case Instruction::Select: {
2562        // If either operand of the select is a constant, we can fold the
2563        // comparison into the select arms, which will cause one to be
2564        // constant folded and the select turned into a bitwise or.
2565        Value *Op1 = 0, *Op2 = 0;
2566        if (LHSI->hasOneUse()) {
2567          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2568            // Fold the known value into the constant operand.
2569            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2570            // Insert a new FCmp of the other select operand.
2571            Op2 = Builder->CreateFCmp(I.getPredicate(),
2572                                      LHSI->getOperand(2), RHSC, I.getName());
2573          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2574            // Fold the known value into the constant operand.
2575            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2576            // Insert a new FCmp of the other select operand.
2577            Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
2578                                      RHSC, I.getName());
2579          }
2580        }
2581
2582        if (Op1)
2583          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2584        break;
2585      }
2586      case Instruction::Load:
2587        if (GetElementPtrInst *GEP =
2588            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2589          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2590            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2591                !cast<LoadInst>(LHSI)->isVolatile())
2592              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2593                return Res;
2594        }
2595        break;
2596      }
2597  }
2598
2599  return Changed ? &I : 0;
2600}
2601