InstCombineLoadStoreAlloca.cpp revision 1df9859c40492511b8aa4321eb76496005d3b75b
1//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for load, store and alloca.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Transforms/Utils/BasicBlockUtils.h"
18#include "llvm/Transforms/Utils/Local.h"
19#include "llvm/ADT/Statistic.h"
20using namespace llvm;
21
22STATISTIC(NumDeadStore, "Number of dead stores eliminated");
23
24Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
25  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
26  if (AI.isArrayAllocation()) {  // Check C != 1
27    if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
28      const Type *NewTy =
29        ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
30      assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
31      AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
32      New->setAlignment(AI.getAlignment());
33
34      // Scan to the end of the allocation instructions, to skip over a block of
35      // allocas if possible...also skip interleaved debug info
36      //
37      BasicBlock::iterator It = New;
38      while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
39
40      // Now that I is pointing to the first non-allocation-inst in the block,
41      // insert our getelementptr instruction...
42      //
43      Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext()));
44      Value *Idx[2];
45      Idx[0] = NullIdx;
46      Idx[1] = NullIdx;
47      Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2,
48                                                   New->getName()+".sub", It);
49
50      // Now make everything use the getelementptr instead of the original
51      // allocation.
52      return ReplaceInstUsesWith(AI, V);
53    } else if (isa<UndefValue>(AI.getArraySize())) {
54      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
55    }
56  }
57
58  if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
59    // If alloca'ing a zero byte object, replace the alloca with a null pointer.
60    // Note that we only do this for alloca's, because malloc should allocate
61    // and return a unique pointer, even for a zero byte allocation.
62    if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
63      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
64
65    // If the alignment is 0 (unspecified), assign it the preferred alignment.
66    if (AI.getAlignment() == 0)
67      AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
68  }
69
70  return 0;
71}
72
73
74/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
75static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
76                                        const TargetData *TD) {
77  User *CI = cast<User>(LI.getOperand(0));
78  Value *CastOp = CI->getOperand(0);
79
80  const PointerType *DestTy = cast<PointerType>(CI->getType());
81  const Type *DestPTy = DestTy->getElementType();
82  if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
83
84    // If the address spaces don't match, don't eliminate the cast.
85    if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
86      return 0;
87
88    const Type *SrcPTy = SrcTy->getElementType();
89
90    if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
91         DestPTy->isVectorTy()) {
92      // If the source is an array, the code below will not succeed.  Check to
93      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
94      // constants.
95      if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
96        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
97          if (ASrcTy->getNumElements() != 0) {
98            Value *Idxs[2];
99            Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext()));
100            Idxs[1] = Idxs[0];
101            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
102            SrcTy = cast<PointerType>(CastOp->getType());
103            SrcPTy = SrcTy->getElementType();
104          }
105
106      if (IC.getTargetData() &&
107          (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
108            SrcPTy->isVectorTy()) &&
109          // Do not allow turning this into a load of an integer, which is then
110          // casted to a pointer, this pessimizes pointer analysis a lot.
111          (SrcPTy->isPointerTy() == LI.getType()->isPointerTy()) &&
112          IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
113               IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
114
115        // Okay, we are casting from one integer or pointer type to another of
116        // the same size.  Instead of casting the pointer before the load, cast
117        // the result of the loaded value.
118        LoadInst *NewLoad =
119          IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
120        NewLoad->setAlignment(LI.getAlignment());
121        // Now cast the result of the load.
122        return new BitCastInst(NewLoad, LI.getType());
123      }
124    }
125  }
126  return 0;
127}
128
129Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
130  Value *Op = LI.getOperand(0);
131
132  // Attempt to improve the alignment.
133  if (TD) {
134    unsigned KnownAlign =
135      GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
136    if (KnownAlign >
137        (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
138                                  LI.getAlignment()))
139      LI.setAlignment(KnownAlign);
140  }
141
142  // load (cast X) --> cast (load X) iff safe.
143  if (isa<CastInst>(Op))
144    if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
145      return Res;
146
147  // None of the following transforms are legal for volatile loads.
148  if (LI.isVolatile()) return 0;
149
150  // Do really simple store-to-load forwarding and load CSE, to catch cases
151  // where there are several consequtive memory accesses to the same location,
152  // separated by a few arithmetic operations.
153  BasicBlock::iterator BBI = &LI;
154  if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
155    return ReplaceInstUsesWith(LI, AvailableVal);
156
157  // load(gep null, ...) -> unreachable
158  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
159    const Value *GEPI0 = GEPI->getOperand(0);
160    // TODO: Consider a target hook for valid address spaces for this xform.
161    if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
162      // Insert a new store to null instruction before the load to indicate
163      // that this code is not reachable.  We do this instead of inserting
164      // an unreachable instruction directly because we cannot modify the
165      // CFG.
166      new StoreInst(UndefValue::get(LI.getType()),
167                    Constant::getNullValue(Op->getType()), &LI);
168      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
169    }
170  }
171
172  // load null/undef -> unreachable
173  // TODO: Consider a target hook for valid address spaces for this xform.
174  if (isa<UndefValue>(Op) ||
175      (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
176    // Insert a new store to null instruction before the load to indicate that
177    // this code is not reachable.  We do this instead of inserting an
178    // unreachable instruction directly because we cannot modify the CFG.
179    new StoreInst(UndefValue::get(LI.getType()),
180                  Constant::getNullValue(Op->getType()), &LI);
181    return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
182  }
183
184  // Instcombine load (constantexpr_cast global) -> cast (load global)
185  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
186    if (CE->isCast())
187      if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
188        return Res;
189
190  if (Op->hasOneUse()) {
191    // Change select and PHI nodes to select values instead of addresses: this
192    // helps alias analysis out a lot, allows many others simplifications, and
193    // exposes redundancy in the code.
194    //
195    // Note that we cannot do the transformation unless we know that the
196    // introduced loads cannot trap!  Something like this is valid as long as
197    // the condition is always false: load (select bool %C, int* null, int* %G),
198    // but it would not be valid if we transformed it to load from null
199    // unconditionally.
200    //
201    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
202      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
203      unsigned Align = LI.getAlignment();
204      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) &&
205          isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) {
206        LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
207                                           SI->getOperand(1)->getName()+".val");
208        LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
209                                           SI->getOperand(2)->getName()+".val");
210        V1->setAlignment(Align);
211        V2->setAlignment(Align);
212        return SelectInst::Create(SI->getCondition(), V1, V2);
213      }
214
215      // load (select (cond, null, P)) -> load P
216      if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
217        if (C->isNullValue()) {
218          LI.setOperand(0, SI->getOperand(2));
219          return &LI;
220        }
221
222      // load (select (cond, P, null)) -> load P
223      if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
224        if (C->isNullValue()) {
225          LI.setOperand(0, SI->getOperand(1));
226          return &LI;
227        }
228    }
229  }
230  return 0;
231}
232
233/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
234/// when possible.  This makes it generally easy to do alias analysis and/or
235/// SROA/mem2reg of the memory object.
236static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
237  User *CI = cast<User>(SI.getOperand(1));
238  Value *CastOp = CI->getOperand(0);
239
240  const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
241  const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
242  if (SrcTy == 0) return 0;
243
244  const Type *SrcPTy = SrcTy->getElementType();
245
246  if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
247    return 0;
248
249  /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
250  /// to its first element.  This allows us to handle things like:
251  ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*)
252  /// on 32-bit hosts.
253  SmallVector<Value*, 4> NewGEPIndices;
254
255  // If the source is an array, the code below will not succeed.  Check to
256  // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
257  // constants.
258  if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
259    // Index through pointer.
260    Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
261    NewGEPIndices.push_back(Zero);
262
263    while (1) {
264      if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) {
265        if (!STy->getNumElements()) /* Struct can be empty {} */
266          break;
267        NewGEPIndices.push_back(Zero);
268        SrcPTy = STy->getElementType(0);
269      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
270        NewGEPIndices.push_back(Zero);
271        SrcPTy = ATy->getElementType();
272      } else {
273        break;
274      }
275    }
276
277    SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
278  }
279
280  if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
281    return 0;
282
283  // If the pointers point into different address spaces or if they point to
284  // values with different sizes, we can't do the transformation.
285  if (!IC.getTargetData() ||
286      SrcTy->getAddressSpace() !=
287        cast<PointerType>(CI->getType())->getAddressSpace() ||
288      IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
289      IC.getTargetData()->getTypeSizeInBits(DestPTy))
290    return 0;
291
292  // Okay, we are casting from one integer or pointer type to another of
293  // the same size.  Instead of casting the pointer before
294  // the store, cast the value to be stored.
295  Value *NewCast;
296  Value *SIOp0 = SI.getOperand(0);
297  Instruction::CastOps opcode = Instruction::BitCast;
298  const Type* CastSrcTy = SIOp0->getType();
299  const Type* CastDstTy = SrcPTy;
300  if (CastDstTy->isPointerTy()) {
301    if (CastSrcTy->isIntegerTy())
302      opcode = Instruction::IntToPtr;
303  } else if (CastDstTy->isIntegerTy()) {
304    if (SIOp0->getType()->isPointerTy())
305      opcode = Instruction::PtrToInt;
306  }
307
308  // SIOp0 is a pointer to aggregate and this is a store to the first field,
309  // emit a GEP to index into its first field.
310  if (!NewGEPIndices.empty())
311    CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(),
312                                           NewGEPIndices.end());
313
314  NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
315                                   SIOp0->getName()+".c");
316  return new StoreInst(NewCast, CastOp);
317}
318
319/// equivalentAddressValues - Test if A and B will obviously have the same
320/// value. This includes recognizing that %t0 and %t1 will have the same
321/// value in code like this:
322///   %t0 = getelementptr \@a, 0, 3
323///   store i32 0, i32* %t0
324///   %t1 = getelementptr \@a, 0, 3
325///   %t2 = load i32* %t1
326///
327static bool equivalentAddressValues(Value *A, Value *B) {
328  // Test if the values are trivially equivalent.
329  if (A == B) return true;
330
331  // Test if the values come form identical arithmetic instructions.
332  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
333  // its only used to compare two uses within the same basic block, which
334  // means that they'll always either have the same value or one of them
335  // will have an undefined value.
336  if (isa<BinaryOperator>(A) ||
337      isa<CastInst>(A) ||
338      isa<PHINode>(A) ||
339      isa<GetElementPtrInst>(A))
340    if (Instruction *BI = dyn_cast<Instruction>(B))
341      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
342        return true;
343
344  // Otherwise they may not be equivalent.
345  return false;
346}
347
348// If this instruction has two uses, one of which is a llvm.dbg.declare,
349// return the llvm.dbg.declare.
350DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) {
351  if (!V->hasNUses(2))
352    return 0;
353  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
354       UI != E; ++UI) {
355    if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI))
356      return DI;
357    if (isa<BitCastInst>(UI) && UI->hasOneUse()) {
358      if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI->use_begin()))
359        return DI;
360      }
361  }
362  return 0;
363}
364
365Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
366  Value *Val = SI.getOperand(0);
367  Value *Ptr = SI.getOperand(1);
368
369  // If the RHS is an alloca with a single use, zapify the store, making the
370  // alloca dead.
371  // If the RHS is an alloca with a two uses, the other one being a
372  // llvm.dbg.declare, zapify the store and the declare, making the
373  // alloca dead.  We must do this to prevent declares from affecting
374  // codegen.
375  if (!SI.isVolatile()) {
376    if (Ptr->hasOneUse()) {
377      if (isa<AllocaInst>(Ptr))
378        return EraseInstFromFunction(SI);
379      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
380        if (isa<AllocaInst>(GEP->getOperand(0))) {
381          if (GEP->getOperand(0)->hasOneUse())
382            return EraseInstFromFunction(SI);
383          if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) {
384            EraseInstFromFunction(*DI);
385            return EraseInstFromFunction(SI);
386          }
387        }
388      }
389    }
390    if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) {
391      EraseInstFromFunction(*DI);
392      return EraseInstFromFunction(SI);
393    }
394  }
395
396  // Attempt to improve the alignment.
397  if (TD) {
398    unsigned KnownAlign =
399      GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
400    if (KnownAlign >
401        (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
402                                  SI.getAlignment()))
403      SI.setAlignment(KnownAlign);
404  }
405
406  // Do really simple DSE, to catch cases where there are several consecutive
407  // stores to the same location, separated by a few arithmetic operations. This
408  // situation often occurs with bitfield accesses.
409  BasicBlock::iterator BBI = &SI;
410  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
411       --ScanInsts) {
412    --BBI;
413    // Don't count debug info directives, lest they affect codegen,
414    // and we skip pointer-to-pointer bitcasts, which are NOPs.
415    if (isa<DbgInfoIntrinsic>(BBI) ||
416        (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
417      ScanInsts++;
418      continue;
419    }
420
421    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
422      // Prev store isn't volatile, and stores to the same location?
423      if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
424                                                          SI.getOperand(1))) {
425        ++NumDeadStore;
426        ++BBI;
427        EraseInstFromFunction(*PrevSI);
428        continue;
429      }
430      break;
431    }
432
433    // If this is a load, we have to stop.  However, if the loaded value is from
434    // the pointer we're loading and is producing the pointer we're storing,
435    // then *this* store is dead (X = load P; store X -> P).
436    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
437      if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
438          !SI.isVolatile())
439        return EraseInstFromFunction(SI);
440
441      // Otherwise, this is a load from some other location.  Stores before it
442      // may not be dead.
443      break;
444    }
445
446    // Don't skip over loads or things that can modify memory.
447    if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
448      break;
449  }
450
451
452  if (SI.isVolatile()) return 0;  // Don't hack volatile stores.
453
454  // store X, null    -> turns into 'unreachable' in SimplifyCFG
455  if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
456    if (!isa<UndefValue>(Val)) {
457      SI.setOperand(0, UndefValue::get(Val->getType()));
458      if (Instruction *U = dyn_cast<Instruction>(Val))
459        Worklist.Add(U);  // Dropped a use.
460    }
461    return 0;  // Do not modify these!
462  }
463
464  // store undef, Ptr -> noop
465  if (isa<UndefValue>(Val))
466    return EraseInstFromFunction(SI);
467
468  // If the pointer destination is a cast, see if we can fold the cast into the
469  // source instead.
470  if (isa<CastInst>(Ptr))
471    if (Instruction *Res = InstCombineStoreToCast(*this, SI))
472      return Res;
473  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
474    if (CE->isCast())
475      if (Instruction *Res = InstCombineStoreToCast(*this, SI))
476        return Res;
477
478
479  // If this store is the last instruction in the basic block (possibly
480  // excepting debug info instructions), and if the block ends with an
481  // unconditional branch, try to move it to the successor block.
482  BBI = &SI;
483  do {
484    ++BBI;
485  } while (isa<DbgInfoIntrinsic>(BBI) ||
486           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
487  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
488    if (BI->isUnconditional())
489      if (SimplifyStoreAtEndOfBlock(SI))
490        return 0;  // xform done!
491
492  return 0;
493}
494
495/// SimplifyStoreAtEndOfBlock - Turn things like:
496///   if () { *P = v1; } else { *P = v2 }
497/// into a phi node with a store in the successor.
498///
499/// Simplify things like:
500///   *P = v1; if () { *P = v2; }
501/// into a phi node with a store in the successor.
502///
503bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
504  BasicBlock *StoreBB = SI.getParent();
505
506  // Check to see if the successor block has exactly two incoming edges.  If
507  // so, see if the other predecessor contains a store to the same location.
508  // if so, insert a PHI node (if needed) and move the stores down.
509  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
510
511  // Determine whether Dest has exactly two predecessors and, if so, compute
512  // the other predecessor.
513  pred_iterator PI = pred_begin(DestBB);
514  BasicBlock *OtherBB = 0;
515  if (*PI != StoreBB)
516    OtherBB = *PI;
517  ++PI;
518  if (PI == pred_end(DestBB))
519    return false;
520
521  if (*PI != StoreBB) {
522    if (OtherBB)
523      return false;
524    OtherBB = *PI;
525  }
526  if (++PI != pred_end(DestBB))
527    return false;
528
529  // Bail out if all the relevant blocks aren't distinct (this can happen,
530  // for example, if SI is in an infinite loop)
531  if (StoreBB == DestBB || OtherBB == DestBB)
532    return false;
533
534  // Verify that the other block ends in a branch and is not otherwise empty.
535  BasicBlock::iterator BBI = OtherBB->getTerminator();
536  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
537  if (!OtherBr || BBI == OtherBB->begin())
538    return false;
539
540  // If the other block ends in an unconditional branch, check for the 'if then
541  // else' case.  there is an instruction before the branch.
542  StoreInst *OtherStore = 0;
543  if (OtherBr->isUnconditional()) {
544    --BBI;
545    // Skip over debugging info.
546    while (isa<DbgInfoIntrinsic>(BBI) ||
547           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
548      if (BBI==OtherBB->begin())
549        return false;
550      --BBI;
551    }
552    // If this isn't a store, isn't a store to the same location, or if the
553    // alignments differ, bail out.
554    OtherStore = dyn_cast<StoreInst>(BBI);
555    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
556        OtherStore->getAlignment() != SI.getAlignment())
557      return false;
558  } else {
559    // Otherwise, the other block ended with a conditional branch. If one of the
560    // destinations is StoreBB, then we have the if/then case.
561    if (OtherBr->getSuccessor(0) != StoreBB &&
562        OtherBr->getSuccessor(1) != StoreBB)
563      return false;
564
565    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
566    // if/then triangle.  See if there is a store to the same ptr as SI that
567    // lives in OtherBB.
568    for (;; --BBI) {
569      // Check to see if we find the matching store.
570      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
571        if (OtherStore->getOperand(1) != SI.getOperand(1) ||
572            OtherStore->getAlignment() != SI.getAlignment())
573          return false;
574        break;
575      }
576      // If we find something that may be using or overwriting the stored
577      // value, or if we run out of instructions, we can't do the xform.
578      if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
579          BBI == OtherBB->begin())
580        return false;
581    }
582
583    // In order to eliminate the store in OtherBr, we have to
584    // make sure nothing reads or overwrites the stored value in
585    // StoreBB.
586    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
587      // FIXME: This should really be AA driven.
588      if (I->mayReadFromMemory() || I->mayWriteToMemory())
589        return false;
590    }
591  }
592
593  // Insert a PHI node now if we need it.
594  Value *MergedVal = OtherStore->getOperand(0);
595  if (MergedVal != SI.getOperand(0)) {
596    PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
597    PN->reserveOperandSpace(2);
598    PN->addIncoming(SI.getOperand(0), SI.getParent());
599    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
600    MergedVal = InsertNewInstBefore(PN, DestBB->front());
601  }
602
603  // Advance to a place where it is safe to insert the new store and
604  // insert it.
605  BBI = DestBB->getFirstNonPHI();
606  InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
607                                    OtherStore->isVolatile(),
608                                    SI.getAlignment()), *BBI);
609
610  // Nuke the old stores.
611  EraseInstFromFunction(SI);
612  EraseInstFromFunction(*OtherStore);
613  return true;
614}
615