InstCombineMulDivRem.cpp revision 3200c4b53ca742bd0103454250ca89fec2776211
1//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11// srem, urem, frem.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22
23/// simplifyValueKnownNonZero - The specific integer value is used in a context
24/// where it is known to be non-zero.  If this allows us to simplify the
25/// computation, do so and return the new operand, otherwise return null.
26static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
27  // If V has multiple uses, then we would have to do more analysis to determine
28  // if this is safe.  For example, the use could be in dynamically unreached
29  // code.
30  if (!V->hasOneUse()) return 0;
31
32  bool MadeChange = false;
33
34  // ((1 << A) >>u B) --> (1 << (A-B))
35  // Because V cannot be zero, we know that B is less than A.
36  Value *A = 0, *B = 0, *PowerOf2 = 0;
37  if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
38                      m_Value(B))) &&
39      // The "1" can be any value known to be a power of 2.
40      isPowerOfTwo(PowerOf2, IC.getTargetData())) {
41    A = IC.Builder->CreateSub(A, B, "tmp");
42    return IC.Builder->CreateShl(PowerOf2, A);
43  }
44
45  // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
46  // inexact.  Similarly for <<.
47  if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
48    if (I->isLogicalShift() &&
49        isPowerOfTwo(I->getOperand(0), IC.getTargetData())) {
50      // We know that this is an exact/nuw shift and that the input is a
51      // non-zero context as well.
52      if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
53        I->setOperand(0, V2);
54        MadeChange = true;
55      }
56
57      if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
58        I->setIsExact();
59        MadeChange = true;
60      }
61
62      if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
63        I->setHasNoUnsignedWrap();
64        MadeChange = true;
65      }
66    }
67
68  // TODO: Lots more we could do here:
69  //    If V is a phi node, we can call this on each of its operands.
70  //    "select cond, X, 0" can simplify to "X".
71
72  return MadeChange ? V : 0;
73}
74
75
76/// MultiplyOverflows - True if the multiply can not be expressed in an int
77/// this size.
78static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
79  uint32_t W = C1->getBitWidth();
80  APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
81  if (sign) {
82    LHSExt = LHSExt.sext(W * 2);
83    RHSExt = RHSExt.sext(W * 2);
84  } else {
85    LHSExt = LHSExt.zext(W * 2);
86    RHSExt = RHSExt.zext(W * 2);
87  }
88
89  APInt MulExt = LHSExt * RHSExt;
90
91  if (!sign)
92    return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
93
94  APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
95  APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
96  return MulExt.slt(Min) || MulExt.sgt(Max);
97}
98
99Instruction *InstCombiner::visitMul(BinaryOperator &I) {
100  bool Changed = SimplifyAssociativeOrCommutative(I);
101  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
102
103  if (Value *V = SimplifyMulInst(Op0, Op1, TD))
104    return ReplaceInstUsesWith(I, V);
105
106  if (Value *V = SimplifyUsingDistributiveLaws(I))
107    return ReplaceInstUsesWith(I, V);
108
109  if (match(Op1, m_AllOnes()))  // X * -1 == 0 - X
110    return BinaryOperator::CreateNeg(Op0, I.getName());
111
112  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
113
114    // ((X << C1)*C2) == (X * (C2 << C1))
115    if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
116      if (SI->getOpcode() == Instruction::Shl)
117        if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
118          return BinaryOperator::CreateMul(SI->getOperand(0),
119                                           ConstantExpr::getShl(CI, ShOp));
120
121    const APInt &Val = CI->getValue();
122    if (Val.isPowerOf2()) {          // Replace X*(2^C) with X << C
123      Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
124      BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
125      if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
126      if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
127      return Shl;
128    }
129
130    // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
131    { Value *X; ConstantInt *C1;
132      if (Op0->hasOneUse() &&
133          match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
134        Value *Add = Builder->CreateMul(X, CI, "tmp");
135        return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
136      }
137    }
138
139    // (1 - X) * (-2) -> (x - 1) * 2, for all positive nonzero powers of 2
140    // The "* 2" thus becomes a potential shifting opportunity.
141    {
142      const APInt &   Val = CI->getValue();
143      const APInt &PosVal = Val.abs();
144      if (Val.isNegative() && PosVal.isPowerOf2()) {
145        Value *X = 0;
146        if (match(Op0, m_Sub(m_One(), m_Value(X)))) {
147          // ConstantInt::get(Op0->getType(), 2);
148          Value *Sub = Builder->CreateSub(X, ConstantInt::get(X->getType(), 1),
149                                          "dec1");
150          return BinaryOperator::CreateMul(Sub, ConstantInt::get(X->getType(),
151                                                                 PosVal));
152        }
153      }
154    }
155  }
156
157  // Simplify mul instructions with a constant RHS.
158  if (isa<Constant>(Op1)) {
159    // Try to fold constant mul into select arguments.
160    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
161      if (Instruction *R = FoldOpIntoSelect(I, SI))
162        return R;
163
164    if (isa<PHINode>(Op0))
165      if (Instruction *NV = FoldOpIntoPhi(I))
166        return NV;
167  }
168
169  if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
170    if (Value *Op1v = dyn_castNegVal(Op1))
171      return BinaryOperator::CreateMul(Op0v, Op1v);
172
173  // (X / Y) *  Y = X - (X % Y)
174  // (X / Y) * -Y = (X % Y) - X
175  {
176    Value *Op1C = Op1;
177    BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
178    if (!BO ||
179        (BO->getOpcode() != Instruction::UDiv &&
180         BO->getOpcode() != Instruction::SDiv)) {
181      Op1C = Op0;
182      BO = dyn_cast<BinaryOperator>(Op1);
183    }
184    Value *Neg = dyn_castNegVal(Op1C);
185    if (BO && BO->hasOneUse() &&
186        (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
187        (BO->getOpcode() == Instruction::UDiv ||
188         BO->getOpcode() == Instruction::SDiv)) {
189      Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
190
191      // If the division is exact, X % Y is zero, so we end up with X or -X.
192      if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
193        if (SDiv->isExact()) {
194          if (Op1BO == Op1C)
195            return ReplaceInstUsesWith(I, Op0BO);
196          return BinaryOperator::CreateNeg(Op0BO);
197        }
198
199      Value *Rem;
200      if (BO->getOpcode() == Instruction::UDiv)
201        Rem = Builder->CreateURem(Op0BO, Op1BO);
202      else
203        Rem = Builder->CreateSRem(Op0BO, Op1BO);
204      Rem->takeName(BO);
205
206      if (Op1BO == Op1C)
207        return BinaryOperator::CreateSub(Op0BO, Rem);
208      return BinaryOperator::CreateSub(Rem, Op0BO);
209    }
210  }
211
212  /// i1 mul -> i1 and.
213  if (I.getType()->isIntegerTy(1))
214    return BinaryOperator::CreateAnd(Op0, Op1);
215
216  // X*(1 << Y) --> X << Y
217  // (1 << Y)*X --> X << Y
218  {
219    Value *Y;
220    if (match(Op0, m_Shl(m_One(), m_Value(Y))))
221      return BinaryOperator::CreateShl(Op1, Y);
222    if (match(Op1, m_Shl(m_One(), m_Value(Y))))
223      return BinaryOperator::CreateShl(Op0, Y);
224  }
225
226  // If one of the operands of the multiply is a cast from a boolean value, then
227  // we know the bool is either zero or one, so this is a 'masking' multiply.
228  //   X * Y (where Y is 0 or 1) -> X & (0-Y)
229  if (!I.getType()->isVectorTy()) {
230    // -2 is "-1 << 1" so it is all bits set except the low one.
231    APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
232
233    Value *BoolCast = 0, *OtherOp = 0;
234    if (MaskedValueIsZero(Op0, Negative2))
235      BoolCast = Op0, OtherOp = Op1;
236    else if (MaskedValueIsZero(Op1, Negative2))
237      BoolCast = Op1, OtherOp = Op0;
238
239    if (BoolCast) {
240      Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
241                                    BoolCast, "tmp");
242      return BinaryOperator::CreateAnd(V, OtherOp);
243    }
244  }
245
246  return Changed ? &I : 0;
247}
248
249Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
250  bool Changed = SimplifyAssociativeOrCommutative(I);
251  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
252
253  // Simplify mul instructions with a constant RHS...
254  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
255    if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
256      // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
257      // ANSI says we can drop signals, so we can do this anyway." (from GCC)
258      if (Op1F->isExactlyValue(1.0))
259        return ReplaceInstUsesWith(I, Op0);  // Eliminate 'fmul double %X, 1.0'
260    } else if (Op1C->getType()->isVectorTy()) {
261      if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
262        // As above, vector X*splat(1.0) -> X in all defined cases.
263        if (Constant *Splat = Op1V->getSplatValue()) {
264          if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
265            if (F->isExactlyValue(1.0))
266              return ReplaceInstUsesWith(I, Op0);
267        }
268      }
269    }
270
271    // Try to fold constant mul into select arguments.
272    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
273      if (Instruction *R = FoldOpIntoSelect(I, SI))
274        return R;
275
276    if (isa<PHINode>(Op0))
277      if (Instruction *NV = FoldOpIntoPhi(I))
278        return NV;
279  }
280
281  if (Value *Op0v = dyn_castFNegVal(Op0))     // -X * -Y = X*Y
282    if (Value *Op1v = dyn_castFNegVal(Op1))
283      return BinaryOperator::CreateFMul(Op0v, Op1v);
284
285  return Changed ? &I : 0;
286}
287
288/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
289/// instruction.
290bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
291  SelectInst *SI = cast<SelectInst>(I.getOperand(1));
292
293  // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
294  int NonNullOperand = -1;
295  if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
296    if (ST->isNullValue())
297      NonNullOperand = 2;
298  // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
299  if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
300    if (ST->isNullValue())
301      NonNullOperand = 1;
302
303  if (NonNullOperand == -1)
304    return false;
305
306  Value *SelectCond = SI->getOperand(0);
307
308  // Change the div/rem to use 'Y' instead of the select.
309  I.setOperand(1, SI->getOperand(NonNullOperand));
310
311  // Okay, we know we replace the operand of the div/rem with 'Y' with no
312  // problem.  However, the select, or the condition of the select may have
313  // multiple uses.  Based on our knowledge that the operand must be non-zero,
314  // propagate the known value for the select into other uses of it, and
315  // propagate a known value of the condition into its other users.
316
317  // If the select and condition only have a single use, don't bother with this,
318  // early exit.
319  if (SI->use_empty() && SelectCond->hasOneUse())
320    return true;
321
322  // Scan the current block backward, looking for other uses of SI.
323  BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
324
325  while (BBI != BBFront) {
326    --BBI;
327    // If we found a call to a function, we can't assume it will return, so
328    // information from below it cannot be propagated above it.
329    if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
330      break;
331
332    // Replace uses of the select or its condition with the known values.
333    for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
334         I != E; ++I) {
335      if (*I == SI) {
336        *I = SI->getOperand(NonNullOperand);
337        Worklist.Add(BBI);
338      } else if (*I == SelectCond) {
339        *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
340                                   ConstantInt::getFalse(BBI->getContext());
341        Worklist.Add(BBI);
342      }
343    }
344
345    // If we past the instruction, quit looking for it.
346    if (&*BBI == SI)
347      SI = 0;
348    if (&*BBI == SelectCond)
349      SelectCond = 0;
350
351    // If we ran out of things to eliminate, break out of the loop.
352    if (SelectCond == 0 && SI == 0)
353      break;
354
355  }
356  return true;
357}
358
359
360/// This function implements the transforms common to both integer division
361/// instructions (udiv and sdiv). It is called by the visitors to those integer
362/// division instructions.
363/// @brief Common integer divide transforms
364Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
365  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
366
367  // The RHS is known non-zero.
368  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
369    I.setOperand(1, V);
370    return &I;
371  }
372
373  // Handle cases involving: [su]div X, (select Cond, Y, Z)
374  // This does not apply for fdiv.
375  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
376    return &I;
377
378  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
379    // (X / C1) / C2  -> X / (C1*C2)
380    if (Instruction *LHS = dyn_cast<Instruction>(Op0))
381      if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
382        if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
383          if (MultiplyOverflows(RHS, LHSRHS,
384                                I.getOpcode()==Instruction::SDiv))
385            return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
386          return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
387                                        ConstantExpr::getMul(RHS, LHSRHS));
388        }
389
390    if (!RHS->isZero()) { // avoid X udiv 0
391      if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
392        if (Instruction *R = FoldOpIntoSelect(I, SI))
393          return R;
394      if (isa<PHINode>(Op0))
395        if (Instruction *NV = FoldOpIntoPhi(I))
396          return NV;
397    }
398  }
399
400  // See if we can fold away this div instruction.
401  if (SimplifyDemandedInstructionBits(I))
402    return &I;
403
404  // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
405  Value *X = 0, *Z = 0;
406  if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
407    bool isSigned = I.getOpcode() == Instruction::SDiv;
408    if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
409        (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
410      return BinaryOperator::Create(I.getOpcode(), X, Op1);
411  }
412
413  return 0;
414}
415
416/// dyn_castZExtVal - Checks if V is a zext or constant that can
417/// be truncated to Ty without losing bits.
418static Value *dyn_castZExtVal(Value *V, const Type *Ty) {
419  if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
420    if (Z->getSrcTy() == Ty)
421      return Z->getOperand(0);
422  } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
423    if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
424      return ConstantExpr::getTrunc(C, Ty);
425  }
426  return 0;
427}
428
429Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
430  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
431
432  if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
433    return ReplaceInstUsesWith(I, V);
434
435  // Handle the integer div common cases
436  if (Instruction *Common = commonIDivTransforms(I))
437    return Common;
438
439  if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
440    // X udiv 2^C -> X >> C
441    // Check to see if this is an unsigned division with an exact power of 2,
442    // if so, convert to a right shift.
443    if (C->getValue().isPowerOf2()) { // 0 not included in isPowerOf2
444      BinaryOperator *LShr =
445        BinaryOperator::CreateLShr(Op0,
446            ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
447      if (I.isExact()) LShr->setIsExact();
448      return LShr;
449    }
450
451    // X udiv C, where C >= signbit
452    if (C->getValue().isNegative()) {
453      Value *IC = Builder->CreateICmpULT(Op0, C);
454      return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
455                                ConstantInt::get(I.getType(), 1));
456    }
457  }
458
459  // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
460  { const APInt *CI; Value *N;
461    if (match(Op1, m_Shl(m_Power2(CI), m_Value(N)))) {
462      if (*CI != 1)
463        N = Builder->CreateAdd(N, ConstantInt::get(I.getType(), CI->logBase2()),
464                               "tmp");
465      if (I.isExact())
466        return BinaryOperator::CreateExactLShr(Op0, N);
467      return BinaryOperator::CreateLShr(Op0, N);
468    }
469  }
470
471  // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
472  // where C1&C2 are powers of two.
473  { Value *Cond; const APInt *C1, *C2;
474    if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
475      // Construct the "on true" case of the select
476      Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
477                                       I.isExact());
478
479      // Construct the "on false" case of the select
480      Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
481                                       I.isExact());
482
483      // construct the select instruction and return it.
484      return SelectInst::Create(Cond, TSI, FSI);
485    }
486  }
487
488  // (zext A) udiv (zext B) --> zext (A udiv B)
489  if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
490    if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
491      return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
492                                              I.isExact()),
493                          I.getType());
494
495  return 0;
496}
497
498Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
499  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
500
501  if (Value *V = SimplifySDivInst(Op0, Op1, TD))
502    return ReplaceInstUsesWith(I, V);
503
504  // Handle the integer div common cases
505  if (Instruction *Common = commonIDivTransforms(I))
506    return Common;
507
508  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
509    // sdiv X, -1 == -X
510    if (RHS->isAllOnesValue())
511      return BinaryOperator::CreateNeg(Op0);
512
513    // sdiv X, C  -->  ashr exact X, log2(C)
514    if (I.isExact() && RHS->getValue().isNonNegative() &&
515        RHS->getValue().isPowerOf2()) {
516      Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
517                                            RHS->getValue().exactLogBase2());
518      return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
519    }
520
521    // -X/C  -->  X/-C  provided the negation doesn't overflow.
522    if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
523      if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
524        return BinaryOperator::CreateSDiv(Sub->getOperand(1),
525                                          ConstantExpr::getNeg(RHS));
526  }
527
528  // If the sign bits of both operands are zero (i.e. we can prove they are
529  // unsigned inputs), turn this into a udiv.
530  if (I.getType()->isIntegerTy()) {
531    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
532    if (MaskedValueIsZero(Op0, Mask)) {
533      if (MaskedValueIsZero(Op1, Mask)) {
534        // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
535        return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
536      }
537
538      if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
539        // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
540        // Safe because the only negative value (1 << Y) can take on is
541        // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
542        // the sign bit set.
543        return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
544      }
545    }
546  }
547
548  return 0;
549}
550
551Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
552  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
553
554  if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
555    return ReplaceInstUsesWith(I, V);
556
557  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
558    const APFloat &Op1F = Op1C->getValueAPF();
559
560    // If the divisor has an exact multiplicative inverse we can turn the fdiv
561    // into a cheaper fmul.
562    APFloat Reciprocal(Op1F.getSemantics());
563    if (Op1F.getExactInverse(&Reciprocal)) {
564      ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
565      return BinaryOperator::CreateFMul(Op0, RFP);
566    }
567  }
568
569  return 0;
570}
571
572/// This function implements the transforms common to both integer remainder
573/// instructions (urem and srem). It is called by the visitors to those integer
574/// remainder instructions.
575/// @brief Common integer remainder transforms
576Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
577  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
578
579  // The RHS is known non-zero.
580  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
581    I.setOperand(1, V);
582    return &I;
583  }
584
585  // Handle cases involving: rem X, (select Cond, Y, Z)
586  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
587    return &I;
588
589  if (isa<ConstantInt>(Op1)) {
590    if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
591      if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
592        if (Instruction *R = FoldOpIntoSelect(I, SI))
593          return R;
594      } else if (isa<PHINode>(Op0I)) {
595        if (Instruction *NV = FoldOpIntoPhi(I))
596          return NV;
597      }
598
599      // See if we can fold away this rem instruction.
600      if (SimplifyDemandedInstructionBits(I))
601        return &I;
602    }
603  }
604
605  return 0;
606}
607
608Instruction *InstCombiner::visitURem(BinaryOperator &I) {
609  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
610
611  if (Value *V = SimplifyURemInst(Op0, Op1, TD))
612    return ReplaceInstUsesWith(I, V);
613
614  if (Instruction *common = commonIRemTransforms(I))
615    return common;
616
617  // X urem C^2 -> X and C-1
618  { const APInt *C;
619    if (match(Op1, m_Power2(C)))
620      return BinaryOperator::CreateAnd(Op0,
621                                       ConstantInt::get(I.getType(), *C-1));
622  }
623
624  // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
625  if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
626    Constant *N1 = Constant::getAllOnesValue(I.getType());
627    Value *Add = Builder->CreateAdd(Op1, N1, "tmp");
628    return BinaryOperator::CreateAnd(Op0, Add);
629  }
630
631  // urem X, (select Cond, 2^C1, 2^C2) -->
632  //    select Cond, (and X, C1-1), (and X, C2-1)
633  // when C1&C2 are powers of two.
634  { Value *Cond; const APInt *C1, *C2;
635    if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
636      Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
637      Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
638      return SelectInst::Create(Cond, TrueAnd, FalseAnd);
639    }
640  }
641
642  // (zext A) urem (zext B) --> zext (A urem B)
643  if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
644    if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
645      return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
646                          I.getType());
647
648  return 0;
649}
650
651Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
652  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
653
654  if (Value *V = SimplifySRemInst(Op0, Op1, TD))
655    return ReplaceInstUsesWith(I, V);
656
657  // Handle the integer rem common cases
658  if (Instruction *Common = commonIRemTransforms(I))
659    return Common;
660
661  if (Value *RHSNeg = dyn_castNegVal(Op1))
662    if (!isa<Constant>(RHSNeg) ||
663        (isa<ConstantInt>(RHSNeg) &&
664         cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
665      // X % -Y -> X % Y
666      Worklist.AddValue(I.getOperand(1));
667      I.setOperand(1, RHSNeg);
668      return &I;
669    }
670
671  // If the sign bits of both operands are zero (i.e. we can prove they are
672  // unsigned inputs), turn this into a urem.
673  if (I.getType()->isIntegerTy()) {
674    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
675    if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
676      // X srem Y -> X urem Y, iff X and Y don't have sign bit set
677      return BinaryOperator::CreateURem(Op0, Op1, I.getName());
678    }
679  }
680
681  // If it's a constant vector, flip any negative values positive.
682  if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) {
683    unsigned VWidth = RHSV->getNumOperands();
684
685    bool hasNegative = false;
686    for (unsigned i = 0; !hasNegative && i != VWidth; ++i)
687      if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i)))
688        if (RHS->getValue().isNegative())
689          hasNegative = true;
690
691    if (hasNegative) {
692      std::vector<Constant *> Elts(VWidth);
693      for (unsigned i = 0; i != VWidth; ++i) {
694        if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
695          if (RHS->getValue().isNegative())
696            Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
697          else
698            Elts[i] = RHS;
699        }
700      }
701
702      Constant *NewRHSV = ConstantVector::get(Elts);
703      if (NewRHSV != RHSV) {
704        Worklist.AddValue(I.getOperand(1));
705        I.setOperand(1, NewRHSV);
706        return &I;
707      }
708    }
709  }
710
711  return 0;
712}
713
714Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
715  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
716
717  if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
718    return ReplaceInstUsesWith(I, V);
719
720  // Handle cases involving: rem X, (select Cond, Y, Z)
721  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
722    return &I;
723
724  return 0;
725}
726