InstCombineMulDivRem.cpp revision 639570c3117aaabb0c97b34a9bf05d09f8903ef4
1//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11// srem, urem, frem.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22
23/// simplifyValueKnownNonZero - The specific integer value is used in a context
24/// where it is known to be non-zero.  If this allows us to simplify the
25/// computation, do so and return the new operand, otherwise return null.
26static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
27  // If V has multiple uses, then we would have to do more analysis to determine
28  // if this is safe.  For example, the use could be in dynamically unreached
29  // code.
30  if (!V->hasOneUse()) return 0;
31
32  bool MadeChange = false;
33
34  // ((1 << A) >>u B) --> (1 << (A-B))
35  // Because V cannot be zero, we know that B is less than A.
36  Value *A = 0, *B = 0, *PowerOf2 = 0;
37  if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
38                      m_Value(B))) &&
39      // The "1" can be any value known to be a power of 2.
40      isPowerOfTwo(PowerOf2, IC.getTargetData())) {
41    A = IC.Builder->CreateSub(A, B);
42    return IC.Builder->CreateShl(PowerOf2, A);
43  }
44
45  // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
46  // inexact.  Similarly for <<.
47  if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
48    if (I->isLogicalShift() &&
49        isPowerOfTwo(I->getOperand(0), IC.getTargetData())) {
50      // We know that this is an exact/nuw shift and that the input is a
51      // non-zero context as well.
52      if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
53        I->setOperand(0, V2);
54        MadeChange = true;
55      }
56
57      if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
58        I->setIsExact();
59        MadeChange = true;
60      }
61
62      if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
63        I->setHasNoUnsignedWrap();
64        MadeChange = true;
65      }
66    }
67
68  // TODO: Lots more we could do here:
69  //    If V is a phi node, we can call this on each of its operands.
70  //    "select cond, X, 0" can simplify to "X".
71
72  return MadeChange ? V : 0;
73}
74
75
76/// MultiplyOverflows - True if the multiply can not be expressed in an int
77/// this size.
78static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
79  uint32_t W = C1->getBitWidth();
80  APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
81  if (sign) {
82    LHSExt = LHSExt.sext(W * 2);
83    RHSExt = RHSExt.sext(W * 2);
84  } else {
85    LHSExt = LHSExt.zext(W * 2);
86    RHSExt = RHSExt.zext(W * 2);
87  }
88
89  APInt MulExt = LHSExt * RHSExt;
90
91  if (!sign)
92    return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
93
94  APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
95  APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
96  return MulExt.slt(Min) || MulExt.sgt(Max);
97}
98
99Instruction *InstCombiner::visitMul(BinaryOperator &I) {
100  bool Changed = SimplifyAssociativeOrCommutative(I);
101  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
102
103  if (Value *V = SimplifyMulInst(Op0, Op1, TD))
104    return ReplaceInstUsesWith(I, V);
105
106  if (Value *V = SimplifyUsingDistributiveLaws(I))
107    return ReplaceInstUsesWith(I, V);
108
109  if (match(Op1, m_AllOnes()))  // X * -1 == 0 - X
110    return BinaryOperator::CreateNeg(Op0, I.getName());
111
112  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
113
114    // ((X << C1)*C2) == (X * (C2 << C1))
115    if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
116      if (SI->getOpcode() == Instruction::Shl)
117        if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
118          return BinaryOperator::CreateMul(SI->getOperand(0),
119                                           ConstantExpr::getShl(CI, ShOp));
120
121    const APInt &Val = CI->getValue();
122    if (Val.isPowerOf2()) {          // Replace X*(2^C) with X << C
123      Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
124      BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
125      if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
126      if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
127      return Shl;
128    }
129
130    // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
131    { Value *X; ConstantInt *C1;
132      if (Op0->hasOneUse() &&
133          match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
134        Value *Add = Builder->CreateMul(X, CI);
135        return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
136      }
137    }
138
139    // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
140    // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
141    // The "* (2**n)" thus becomes a potential shifting opportunity.
142    {
143      const APInt &   Val = CI->getValue();
144      const APInt &PosVal = Val.abs();
145      if (Val.isNegative() && PosVal.isPowerOf2()) {
146        Value *X = 0, *Y = 0;
147        if (Op0->hasOneUse()) {
148          ConstantInt *C1;
149          Value *Sub = 0;
150          if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
151            Sub = Builder->CreateSub(X, Y, "suba");
152          else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
153            Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
154          if (Sub)
155            return
156              BinaryOperator::CreateMul(Sub,
157                                        ConstantInt::get(Y->getType(), PosVal));
158        }
159      }
160    }
161  }
162
163  // Simplify mul instructions with a constant RHS.
164  if (isa<Constant>(Op1)) {
165    // Try to fold constant mul into select arguments.
166    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
167      if (Instruction *R = FoldOpIntoSelect(I, SI))
168        return R;
169
170    if (isa<PHINode>(Op0))
171      if (Instruction *NV = FoldOpIntoPhi(I))
172        return NV;
173  }
174
175  if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
176    if (Value *Op1v = dyn_castNegVal(Op1))
177      return BinaryOperator::CreateMul(Op0v, Op1v);
178
179  // (X / Y) *  Y = X - (X % Y)
180  // (X / Y) * -Y = (X % Y) - X
181  {
182    Value *Op1C = Op1;
183    BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
184    if (!BO ||
185        (BO->getOpcode() != Instruction::UDiv &&
186         BO->getOpcode() != Instruction::SDiv)) {
187      Op1C = Op0;
188      BO = dyn_cast<BinaryOperator>(Op1);
189    }
190    Value *Neg = dyn_castNegVal(Op1C);
191    if (BO && BO->hasOneUse() &&
192        (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
193        (BO->getOpcode() == Instruction::UDiv ||
194         BO->getOpcode() == Instruction::SDiv)) {
195      Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
196
197      // If the division is exact, X % Y is zero, so we end up with X or -X.
198      if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
199        if (SDiv->isExact()) {
200          if (Op1BO == Op1C)
201            return ReplaceInstUsesWith(I, Op0BO);
202          return BinaryOperator::CreateNeg(Op0BO);
203        }
204
205      Value *Rem;
206      if (BO->getOpcode() == Instruction::UDiv)
207        Rem = Builder->CreateURem(Op0BO, Op1BO);
208      else
209        Rem = Builder->CreateSRem(Op0BO, Op1BO);
210      Rem->takeName(BO);
211
212      if (Op1BO == Op1C)
213        return BinaryOperator::CreateSub(Op0BO, Rem);
214      return BinaryOperator::CreateSub(Rem, Op0BO);
215    }
216  }
217
218  /// i1 mul -> i1 and.
219  if (I.getType()->isIntegerTy(1))
220    return BinaryOperator::CreateAnd(Op0, Op1);
221
222  // X*(1 << Y) --> X << Y
223  // (1 << Y)*X --> X << Y
224  {
225    Value *Y;
226    if (match(Op0, m_Shl(m_One(), m_Value(Y))))
227      return BinaryOperator::CreateShl(Op1, Y);
228    if (match(Op1, m_Shl(m_One(), m_Value(Y))))
229      return BinaryOperator::CreateShl(Op0, Y);
230  }
231
232  // If one of the operands of the multiply is a cast from a boolean value, then
233  // we know the bool is either zero or one, so this is a 'masking' multiply.
234  //   X * Y (where Y is 0 or 1) -> X & (0-Y)
235  if (!I.getType()->isVectorTy()) {
236    // -2 is "-1 << 1" so it is all bits set except the low one.
237    APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
238
239    Value *BoolCast = 0, *OtherOp = 0;
240    if (MaskedValueIsZero(Op0, Negative2))
241      BoolCast = Op0, OtherOp = Op1;
242    else if (MaskedValueIsZero(Op1, Negative2))
243      BoolCast = Op1, OtherOp = Op0;
244
245    if (BoolCast) {
246      Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
247                                    BoolCast);
248      return BinaryOperator::CreateAnd(V, OtherOp);
249    }
250  }
251
252  return Changed ? &I : 0;
253}
254
255Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
256  bool Changed = SimplifyAssociativeOrCommutative(I);
257  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
258
259  // Simplify mul instructions with a constant RHS.
260  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
261    if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
262      // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
263      // ANSI says we can drop signals, so we can do this anyway." (from GCC)
264      if (Op1F->isExactlyValue(1.0))
265        return ReplaceInstUsesWith(I, Op0);  // Eliminate 'fmul double %X, 1.0'
266    } else if (ConstantDataVector *Op1V = dyn_cast<ConstantDataVector>(Op1C)) {
267      // As above, vector X*splat(1.0) -> X in all defined cases.
268      if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
269        if (F->isExactlyValue(1.0))
270          return ReplaceInstUsesWith(I, Op0);
271    }
272
273    // Try to fold constant mul into select arguments.
274    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
275      if (Instruction *R = FoldOpIntoSelect(I, SI))
276        return R;
277
278    if (isa<PHINode>(Op0))
279      if (Instruction *NV = FoldOpIntoPhi(I))
280        return NV;
281  }
282
283  if (Value *Op0v = dyn_castFNegVal(Op0))     // -X * -Y = X*Y
284    if (Value *Op1v = dyn_castFNegVal(Op1))
285      return BinaryOperator::CreateFMul(Op0v, Op1v);
286
287  return Changed ? &I : 0;
288}
289
290/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
291/// instruction.
292bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
293  SelectInst *SI = cast<SelectInst>(I.getOperand(1));
294
295  // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
296  int NonNullOperand = -1;
297  if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
298    if (ST->isNullValue())
299      NonNullOperand = 2;
300  // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
301  if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
302    if (ST->isNullValue())
303      NonNullOperand = 1;
304
305  if (NonNullOperand == -1)
306    return false;
307
308  Value *SelectCond = SI->getOperand(0);
309
310  // Change the div/rem to use 'Y' instead of the select.
311  I.setOperand(1, SI->getOperand(NonNullOperand));
312
313  // Okay, we know we replace the operand of the div/rem with 'Y' with no
314  // problem.  However, the select, or the condition of the select may have
315  // multiple uses.  Based on our knowledge that the operand must be non-zero,
316  // propagate the known value for the select into other uses of it, and
317  // propagate a known value of the condition into its other users.
318
319  // If the select and condition only have a single use, don't bother with this,
320  // early exit.
321  if (SI->use_empty() && SelectCond->hasOneUse())
322    return true;
323
324  // Scan the current block backward, looking for other uses of SI.
325  BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
326
327  while (BBI != BBFront) {
328    --BBI;
329    // If we found a call to a function, we can't assume it will return, so
330    // information from below it cannot be propagated above it.
331    if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
332      break;
333
334    // Replace uses of the select or its condition with the known values.
335    for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
336         I != E; ++I) {
337      if (*I == SI) {
338        *I = SI->getOperand(NonNullOperand);
339        Worklist.Add(BBI);
340      } else if (*I == SelectCond) {
341        *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
342                                   ConstantInt::getFalse(BBI->getContext());
343        Worklist.Add(BBI);
344      }
345    }
346
347    // If we past the instruction, quit looking for it.
348    if (&*BBI == SI)
349      SI = 0;
350    if (&*BBI == SelectCond)
351      SelectCond = 0;
352
353    // If we ran out of things to eliminate, break out of the loop.
354    if (SelectCond == 0 && SI == 0)
355      break;
356
357  }
358  return true;
359}
360
361
362/// This function implements the transforms common to both integer division
363/// instructions (udiv and sdiv). It is called by the visitors to those integer
364/// division instructions.
365/// @brief Common integer divide transforms
366Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
367  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
368
369  // The RHS is known non-zero.
370  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
371    I.setOperand(1, V);
372    return &I;
373  }
374
375  // Handle cases involving: [su]div X, (select Cond, Y, Z)
376  // This does not apply for fdiv.
377  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
378    return &I;
379
380  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
381    // (X / C1) / C2  -> X / (C1*C2)
382    if (Instruction *LHS = dyn_cast<Instruction>(Op0))
383      if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
384        if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
385          if (MultiplyOverflows(RHS, LHSRHS,
386                                I.getOpcode()==Instruction::SDiv))
387            return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
388          return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
389                                        ConstantExpr::getMul(RHS, LHSRHS));
390        }
391
392    if (!RHS->isZero()) { // avoid X udiv 0
393      if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
394        if (Instruction *R = FoldOpIntoSelect(I, SI))
395          return R;
396      if (isa<PHINode>(Op0))
397        if (Instruction *NV = FoldOpIntoPhi(I))
398          return NV;
399    }
400  }
401
402  // See if we can fold away this div instruction.
403  if (SimplifyDemandedInstructionBits(I))
404    return &I;
405
406  // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
407  Value *X = 0, *Z = 0;
408  if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
409    bool isSigned = I.getOpcode() == Instruction::SDiv;
410    if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
411        (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
412      return BinaryOperator::Create(I.getOpcode(), X, Op1);
413  }
414
415  return 0;
416}
417
418/// dyn_castZExtVal - Checks if V is a zext or constant that can
419/// be truncated to Ty without losing bits.
420static Value *dyn_castZExtVal(Value *V, Type *Ty) {
421  if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
422    if (Z->getSrcTy() == Ty)
423      return Z->getOperand(0);
424  } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
425    if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
426      return ConstantExpr::getTrunc(C, Ty);
427  }
428  return 0;
429}
430
431Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
432  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
433
434  if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
435    return ReplaceInstUsesWith(I, V);
436
437  // Handle the integer div common cases
438  if (Instruction *Common = commonIDivTransforms(I))
439    return Common;
440
441  {
442    // X udiv 2^C -> X >> C
443    // Check to see if this is an unsigned division with an exact power of 2,
444    // if so, convert to a right shift.
445    const APInt *C;
446    if (match(Op1, m_Power2(C))) {
447      BinaryOperator *LShr =
448      BinaryOperator::CreateLShr(Op0,
449                                 ConstantInt::get(Op0->getType(),
450                                                  C->logBase2()));
451      if (I.isExact()) LShr->setIsExact();
452      return LShr;
453    }
454  }
455
456  if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
457    // X udiv C, where C >= signbit
458    if (C->getValue().isNegative()) {
459      Value *IC = Builder->CreateICmpULT(Op0, C);
460      return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
461                                ConstantInt::get(I.getType(), 1));
462    }
463  }
464
465  // Udiv ((Lshl x, C1) , C2) ->  x / (C2 * 1<<C1);
466  if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
467    Value *X;
468    ConstantInt *C1;
469    if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
470      APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
471      return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
472    }
473  }
474
475  // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
476  { const APInt *CI; Value *N;
477    if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
478        match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
479      if (*CI != 1)
480        N = Builder->CreateAdd(N, ConstantInt::get(I.getType(),CI->logBase2()));
481      if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
482        N = Builder->CreateZExt(N, Z->getDestTy());
483      if (I.isExact())
484        return BinaryOperator::CreateExactLShr(Op0, N);
485      return BinaryOperator::CreateLShr(Op0, N);
486    }
487  }
488
489  // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
490  // where C1&C2 are powers of two.
491  { Value *Cond; const APInt *C1, *C2;
492    if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
493      // Construct the "on true" case of the select
494      Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
495                                       I.isExact());
496
497      // Construct the "on false" case of the select
498      Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
499                                       I.isExact());
500
501      // construct the select instruction and return it.
502      return SelectInst::Create(Cond, TSI, FSI);
503    }
504  }
505
506  // (zext A) udiv (zext B) --> zext (A udiv B)
507  if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
508    if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
509      return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
510                                              I.isExact()),
511                          I.getType());
512
513  return 0;
514}
515
516Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
517  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
518
519  if (Value *V = SimplifySDivInst(Op0, Op1, TD))
520    return ReplaceInstUsesWith(I, V);
521
522  // Handle the integer div common cases
523  if (Instruction *Common = commonIDivTransforms(I))
524    return Common;
525
526  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
527    // sdiv X, -1 == -X
528    if (RHS->isAllOnesValue())
529      return BinaryOperator::CreateNeg(Op0);
530
531    // sdiv X, C  -->  ashr exact X, log2(C)
532    if (I.isExact() && RHS->getValue().isNonNegative() &&
533        RHS->getValue().isPowerOf2()) {
534      Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
535                                            RHS->getValue().exactLogBase2());
536      return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
537    }
538
539    // -X/C  -->  X/-C  provided the negation doesn't overflow.
540    if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
541      if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
542        return BinaryOperator::CreateSDiv(Sub->getOperand(1),
543                                          ConstantExpr::getNeg(RHS));
544  }
545
546  // If the sign bits of both operands are zero (i.e. we can prove they are
547  // unsigned inputs), turn this into a udiv.
548  if (I.getType()->isIntegerTy()) {
549    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
550    if (MaskedValueIsZero(Op0, Mask)) {
551      if (MaskedValueIsZero(Op1, Mask)) {
552        // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
553        return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
554      }
555
556      if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
557        // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
558        // Safe because the only negative value (1 << Y) can take on is
559        // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
560        // the sign bit set.
561        return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
562      }
563    }
564  }
565
566  return 0;
567}
568
569Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
570  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
571
572  if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
573    return ReplaceInstUsesWith(I, V);
574
575  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
576    const APFloat &Op1F = Op1C->getValueAPF();
577
578    // If the divisor has an exact multiplicative inverse we can turn the fdiv
579    // into a cheaper fmul.
580    APFloat Reciprocal(Op1F.getSemantics());
581    if (Op1F.getExactInverse(&Reciprocal)) {
582      ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
583      return BinaryOperator::CreateFMul(Op0, RFP);
584    }
585  }
586
587  return 0;
588}
589
590/// This function implements the transforms common to both integer remainder
591/// instructions (urem and srem). It is called by the visitors to those integer
592/// remainder instructions.
593/// @brief Common integer remainder transforms
594Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
595  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
596
597  // The RHS is known non-zero.
598  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
599    I.setOperand(1, V);
600    return &I;
601  }
602
603  // Handle cases involving: rem X, (select Cond, Y, Z)
604  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
605    return &I;
606
607  if (isa<ConstantInt>(Op1)) {
608    if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
609      if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
610        if (Instruction *R = FoldOpIntoSelect(I, SI))
611          return R;
612      } else if (isa<PHINode>(Op0I)) {
613        if (Instruction *NV = FoldOpIntoPhi(I))
614          return NV;
615      }
616
617      // See if we can fold away this rem instruction.
618      if (SimplifyDemandedInstructionBits(I))
619        return &I;
620    }
621  }
622
623  return 0;
624}
625
626Instruction *InstCombiner::visitURem(BinaryOperator &I) {
627  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
628
629  if (Value *V = SimplifyURemInst(Op0, Op1, TD))
630    return ReplaceInstUsesWith(I, V);
631
632  if (Instruction *common = commonIRemTransforms(I))
633    return common;
634
635  // X urem C^2 -> X and C-1
636  { const APInt *C;
637    if (match(Op1, m_Power2(C)))
638      return BinaryOperator::CreateAnd(Op0,
639                                       ConstantInt::get(I.getType(), *C-1));
640  }
641
642  // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
643  if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
644    Constant *N1 = Constant::getAllOnesValue(I.getType());
645    Value *Add = Builder->CreateAdd(Op1, N1);
646    return BinaryOperator::CreateAnd(Op0, Add);
647  }
648
649  // urem X, (select Cond, 2^C1, 2^C2) -->
650  //    select Cond, (and X, C1-1), (and X, C2-1)
651  // when C1&C2 are powers of two.
652  { Value *Cond; const APInt *C1, *C2;
653    if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
654      Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
655      Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
656      return SelectInst::Create(Cond, TrueAnd, FalseAnd);
657    }
658  }
659
660  // (zext A) urem (zext B) --> zext (A urem B)
661  if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
662    if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
663      return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
664                          I.getType());
665
666  return 0;
667}
668
669Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
670  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
671
672  if (Value *V = SimplifySRemInst(Op0, Op1, TD))
673    return ReplaceInstUsesWith(I, V);
674
675  // Handle the integer rem common cases
676  if (Instruction *Common = commonIRemTransforms(I))
677    return Common;
678
679  if (Value *RHSNeg = dyn_castNegVal(Op1))
680    if (!isa<Constant>(RHSNeg) ||
681        (isa<ConstantInt>(RHSNeg) &&
682         cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
683      // X % -Y -> X % Y
684      Worklist.AddValue(I.getOperand(1));
685      I.setOperand(1, RHSNeg);
686      return &I;
687    }
688
689  // If the sign bits of both operands are zero (i.e. we can prove they are
690  // unsigned inputs), turn this into a urem.
691  if (I.getType()->isIntegerTy()) {
692    APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
693    if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
694      // X srem Y -> X urem Y, iff X and Y don't have sign bit set
695      return BinaryOperator::CreateURem(Op0, Op1, I.getName());
696    }
697  }
698
699  // If it's a constant vector, flip any negative values positive.
700  if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
701    Constant *C = cast<Constant>(Op1);
702    unsigned VWidth = C->getType()->getVectorNumElements();
703
704    bool hasNegative = false;
705    bool hasMissing = false;
706    for (unsigned i = 0; i != VWidth; ++i) {
707      Constant *Elt = C->getAggregateElement(i);
708      if (Elt == 0) {
709        hasMissing = true;
710        break;
711      }
712
713      if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
714        if (RHS->isNegative())
715          hasNegative = true;
716    }
717
718    if (hasNegative && !hasMissing) {
719      SmallVector<Constant *, 16> Elts(VWidth);
720      for (unsigned i = 0; i != VWidth; ++i) {
721        Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
722        if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
723          if (RHS->isNegative())
724            Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
725        }
726      }
727
728      Constant *NewRHSV = ConstantVector::get(Elts);
729      if (NewRHSV != C) {  // Don't loop on -MININT
730        Worklist.AddValue(I.getOperand(1));
731        I.setOperand(1, NewRHSV);
732        return &I;
733      }
734    }
735  }
736
737  return 0;
738}
739
740Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
741  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
742
743  if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
744    return ReplaceInstUsesWith(I, V);
745
746  // Handle cases involving: rem X, (select Cond, Y, Z)
747  if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
748    return &I;
749
750  return 0;
751}
752