Reassociate.cpp revision 469001000620df176decd093a300db84a06cc78b
14fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2fd93908ae8b9684fe71c239e3c6cfe13ff6a2663Misha Brukman//
3b576c94c15af9a440f69d9d03c2afead7971118cJohn Criswell//                     The LLVM Compiler Infrastructure
4b576c94c15af9a440f69d9d03c2afead7971118cJohn Criswell//
5b576c94c15af9a440f69d9d03c2afead7971118cJohn Criswell// This file was developed by the LLVM research group and is distributed under
6b576c94c15af9a440f69d9d03c2afead7971118cJohn Criswell// the University of Illinois Open Source License. See LICENSE.TXT for details.
7fd93908ae8b9684fe71c239e3c6cfe13ff6a2663Misha Brukman//
8b576c94c15af9a440f69d9d03c2afead7971118cJohn Criswell//===----------------------------------------------------------------------===//
94fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner//
104fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner// This pass reassociates commutative expressions in an order that is designed
11e96fda3002dd0769d3dd758ac5008ba8cda92349Chris Lattner// to promote better constant propagation, GCSE, LICM, PRE...
124fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner//
134fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner// For example: 4 + (x + 5) -> x + (4 + 5)
144fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner//
154fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner// In the implementation of this algorithm, constants are assigned rank = 0,
164fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner// function arguments are rank = 1, and other values are assigned ranks
174fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner// corresponding to the reverse post order traversal of current function
184fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner// (starting at 2), which effectively gives values in deep loops higher rank
194fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner// than values not in loops.
204fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner//
214fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner//===----------------------------------------------------------------------===//
224fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
2308b43921e18f314c4fd38049291d323830934c36Chris Lattner#define DEBUG_TYPE "reassociate"
244fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner#include "llvm/Transforms/Scalar.h"
250975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner#include "llvm/Constants.h"
264fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner#include "llvm/Function.h"
27d8e1eea678833cc2b15e4ea69a5a403ba9c3b013Misha Brukman#include "llvm/Instructions.h"
284fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner#include "llvm/Pass.h"
290975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner#include "llvm/Type.h"
304fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner#include "llvm/Support/CFG.h"
31551ccae044b0ff658fe629dd67edd5ffe75d10e8Reid Spencer#include "llvm/Support/Debug.h"
32551ccae044b0ff658fe629dd67edd5ffe75d10e8Reid Spencer#include "llvm/ADT/PostOrderIterator.h"
33551ccae044b0ff658fe629dd67edd5ffe75d10e8Reid Spencer#include "llvm/ADT/Statistic.h"
34c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner#include <algorithm>
35d7456026629fc1760a45e6e955e9834246493147Chris Lattnerusing namespace llvm;
36d0fde30ce850b78371fd1386338350591f9ff494Brian Gaeke
374fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattnernamespace {
38a92f696b74a99325026ebbdbffd2a44317e0c10bChris Lattner  Statistic<> NumLinear ("reassociate","Number of insts linearized");
39a92f696b74a99325026ebbdbffd2a44317e0c10bChris Lattner  Statistic<> NumChanged("reassociate","Number of insts reassociated");
40a92f696b74a99325026ebbdbffd2a44317e0c10bChris Lattner  Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
41a92f696b74a99325026ebbdbffd2a44317e0c10bChris Lattner
42c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  struct ValueEntry {
43c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    unsigned Rank;
44c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    Value *Op;
45c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
46c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  };
47c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
48c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
49c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  }
50c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
514fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner  class Reassociate : public FunctionPass {
520c0edf8afc35a42b15a24ebb5fa5f3fc674290aeChris Lattner    std::map<BasicBlock*, unsigned> RankMap;
53fb5be090f59997deb7a2e89c92bac19528ba6755Chris Lattner    std::map<Value*, unsigned> ValueRankMap;
54c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    bool MadeChange;
554fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner  public:
567e70829632f82de15db187845666aaca6e04b792Chris Lattner    bool runOnFunction(Function &F);
574fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
584fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
59cb2610ea037a17115ef3a01a6bdaab4e3cfdca27Chris Lattner      AU.setPreservesCFG();
604fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner    }
614fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner  private:
627e70829632f82de15db187845666aaca6e04b792Chris Lattner    void BuildRankMap(Function &F);
634fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner    unsigned getRank(Value *V);
64c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    void RewriteExprTree(BinaryOperator *I, unsigned Idx,
65c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner                         std::vector<ValueEntry> &Ops);
66469001000620df176decd093a300db84a06cc78bChris Lattner    void OptimizeExpression(unsigned Opcode, std::vector<ValueEntry> &Ops);
67c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
68c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    void LinearizeExpr(BinaryOperator *I);
69c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    void ReassociateBB(BasicBlock *BB);
704fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner  };
71f629309f74cf1a64aa7fd1cd5784fd7db9a8f59eChris Lattner
72a6275ccdf5e1aa208afde56c498e2b13e16442f0Chris Lattner  RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
734fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner}
744fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
75d0fde30ce850b78371fd1386338350591f9ff494Brian Gaeke// Public interface to the Reassociate pass
76d7456026629fc1760a45e6e955e9834246493147Chris LattnerFunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
774fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
787e70829632f82de15db187845666aaca6e04b792Chris Lattnervoid Reassociate::BuildRankMap(Function &F) {
796007cb6c4d923e2dee4a1133fb6d1bb00a37062dChris Lattner  unsigned i = 2;
80fb5be090f59997deb7a2e89c92bac19528ba6755Chris Lattner
81fb5be090f59997deb7a2e89c92bac19528ba6755Chris Lattner  // Assign distinct ranks to function arguments
82e4d5c441e04bdc00ccf1804744af670655123b07Chris Lattner  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
83fb5be090f59997deb7a2e89c92bac19528ba6755Chris Lattner    ValueRankMap[I] = ++i;
84fb5be090f59997deb7a2e89c92bac19528ba6755Chris Lattner
857e70829632f82de15db187845666aaca6e04b792Chris Lattner  ReversePostOrderTraversal<Function*> RPOT(&F);
864fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
874fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner         E = RPOT.end(); I != E; ++I)
886007cb6c4d923e2dee4a1133fb6d1bb00a37062dChris Lattner    RankMap[*I] = ++i << 16;
894fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner}
904fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
914fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattnerunsigned Reassociate::getRank(Value *V) {
92fb5be090f59997deb7a2e89c92bac19528ba6755Chris Lattner  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
93fb5be090f59997deb7a2e89c92bac19528ba6755Chris Lattner
9408b43921e18f314c4fd38049291d323830934c36Chris Lattner  Instruction *I = dyn_cast<Instruction>(V);
9508b43921e18f314c4fd38049291d323830934c36Chris Lattner  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
964fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
9708b43921e18f314c4fd38049291d323830934c36Chris Lattner  unsigned &CachedRank = ValueRankMap[I];
9808b43921e18f314c4fd38049291d323830934c36Chris Lattner  if (CachedRank) return CachedRank;    // Rank already known?
9908b43921e18f314c4fd38049291d323830934c36Chris Lattner
10008b43921e18f314c4fd38049291d323830934c36Chris Lattner  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
10108b43921e18f314c4fd38049291d323830934c36Chris Lattner  // we can reassociate expressions for code motion!  Since we do not recurse
10208b43921e18f314c4fd38049291d323830934c36Chris Lattner  // for PHI nodes, we cannot have infinite recursion here, because there
10308b43921e18f314c4fd38049291d323830934c36Chris Lattner  // cannot be loops in the value graph that do not go through PHI nodes.
10408b43921e18f314c4fd38049291d323830934c36Chris Lattner  //
10508b43921e18f314c4fd38049291d323830934c36Chris Lattner  if (I->getOpcode() == Instruction::PHI ||
10608b43921e18f314c4fd38049291d323830934c36Chris Lattner      I->getOpcode() == Instruction::Alloca ||
10708b43921e18f314c4fd38049291d323830934c36Chris Lattner      I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) ||
10808b43921e18f314c4fd38049291d323830934c36Chris Lattner      I->mayWriteToMemory())  // Cannot move inst if it writes to memory!
10908b43921e18f314c4fd38049291d323830934c36Chris Lattner    return RankMap[I->getParent()];
11008b43921e18f314c4fd38049291d323830934c36Chris Lattner
11108b43921e18f314c4fd38049291d323830934c36Chris Lattner  // If not, compute it!
11208b43921e18f314c4fd38049291d323830934c36Chris Lattner  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
11308b43921e18f314c4fd38049291d323830934c36Chris Lattner  for (unsigned i = 0, e = I->getNumOperands();
11408b43921e18f314c4fd38049291d323830934c36Chris Lattner       i != e && Rank != MaxRank; ++i)
11508b43921e18f314c4fd38049291d323830934c36Chris Lattner    Rank = std::max(Rank, getRank(I->getOperand(i)));
11608b43921e18f314c4fd38049291d323830934c36Chris Lattner
117cc8a2b98f28c10d93f45489b8c6f0c8b8205bb3bChris Lattner  // If this is a not or neg instruction, do not count it for rank.  This
118cc8a2b98f28c10d93f45489b8c6f0c8b8205bb3bChris Lattner  // assures us that X and ~X will have the same rank.
119cc8a2b98f28c10d93f45489b8c6f0c8b8205bb3bChris Lattner  if (!I->getType()->isIntegral() ||
120cc8a2b98f28c10d93f45489b8c6f0c8b8205bb3bChris Lattner      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
121cc8a2b98f28c10d93f45489b8c6f0c8b8205bb3bChris Lattner    ++Rank;
122cc8a2b98f28c10d93f45489b8c6f0c8b8205bb3bChris Lattner
12308b43921e18f314c4fd38049291d323830934c36Chris Lattner  DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
124cc8a2b98f28c10d93f45489b8c6f0c8b8205bb3bChris Lattner        << Rank << "\n");
12508b43921e18f314c4fd38049291d323830934c36Chris Lattner
126cc8a2b98f28c10d93f45489b8c6f0c8b8205bb3bChris Lattner  return CachedRank = Rank;
1274fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner}
1284fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
129c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner/// isReassociableOp - Return true if V is an instruction of the specified
130c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner/// opcode and if it only has one use.
131c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattnerstatic BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
132c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  if (V->hasOneUse() && isa<Instruction>(V) &&
133c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      cast<Instruction>(V)->getOpcode() == Opcode)
134c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    return cast<BinaryOperator>(V);
135c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  return 0;
136c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner}
1374fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
138c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
139c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner// Note that if D is also part of the expression tree that we recurse to
140c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner// linearize it as well.  Besides that case, this does not recurse into A,B, or
141c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner// C.
142c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattnervoid Reassociate::LinearizeExpr(BinaryOperator *I) {
143c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
144c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
145c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  assert(isReassociableOp(LHS, I->getOpcode()) &&
146c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner         isReassociableOp(RHS, I->getOpcode()) &&
147c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner         "Not an expression that needs linearization?");
148c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
149c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);
150c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
151c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  // Move the RHS instruction to live immediately before I, avoiding breaking
152c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  // dominator properties.
153c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  I->getParent()->getInstList().splice(I, RHS->getParent()->getInstList(), RHS);
154c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
155c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  // Move operands around to do the linearization.
156c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  I->setOperand(1, RHS->getOperand(0));
157c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  RHS->setOperand(0, LHS);
158c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  I->setOperand(0, RHS);
159c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
160c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  ++NumLinear;
161c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  MadeChange = true;
162c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  DEBUG(std::cerr << "Linearized: " << *I);
163fd93908ae8b9684fe71c239e3c6cfe13ff6a2663Misha Brukman
164c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  // If D is part of this expression tree, tail recurse.
165c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
166c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    LinearizeExpr(I);
167c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner}
1684fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
169e4b730441dab4aff9a69aeddbdea98990e7703c4Chris Lattner
170c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner/// LinearizeExprTree - Given an associative binary expression tree, traverse
171c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner/// all of the uses putting it into canonical form.  This forces a left-linear
172c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner/// form of the the expression (((a+b)+c)+d), and collects information about the
173c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner/// rank of the non-tree operands.
174c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner///
175c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner/// This returns the rank of the RHS operand, which is known to be the highest
176c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner/// rank value in the expression tree.
177c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner///
178c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattnervoid Reassociate::LinearizeExprTree(BinaryOperator *I,
179c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner                                    std::vector<ValueEntry> &Ops) {
180c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
181c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  unsigned Opcode = I->getOpcode();
182c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
183c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
184c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
185c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
186c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
187c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  if (!LHSBO) {
188c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    if (!RHSBO) {
189c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
190c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      // such, just remember these operands and their rank.
191c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      Ops.push_back(ValueEntry(getRank(LHS), LHS));
192c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      Ops.push_back(ValueEntry(getRank(RHS), RHS));
193c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      return;
194c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    } else {
195c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      // Turn X+(Y+Z) -> (Y+Z)+X
196c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      std::swap(LHSBO, RHSBO);
197c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      std::swap(LHS, RHS);
198c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      bool Success = !I->swapOperands();
199c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      assert(Success && "swapOperands failed");
200c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      MadeChange = true;
201c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    }
202c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  } else if (RHSBO) {
203c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
204c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    // part of the expression tree.
205c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    LinearizeExpr(I);
206c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
207c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    RHS = I->getOperand(1);
208c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    RHSBO = 0;
2094fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner  }
210fd93908ae8b9684fe71c239e3c6cfe13ff6a2663Misha Brukman
211c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  // Okay, now we know that the LHS is a nested expression and that the RHS is
212c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  // not.  Perform reassociation.
213c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
2144fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
215c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  // Move LHS right before I to make sure that the tree expression dominates all
216c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  // values.
217c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  I->getParent()->getInstList().splice(I,
218c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner                                      LHSBO->getParent()->getInstList(), LHSBO);
219c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
220c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  // Linearize the expression tree on the LHS.
221c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  LinearizeExprTree(LHSBO, Ops);
222c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
223c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  // Remember the RHS operand and its rank.
224c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  Ops.push_back(ValueEntry(getRank(RHS), RHS));
225c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner}
226c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
227c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner// RewriteExprTree - Now that the operands for this expression tree are
228c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner// linearized and optimized, emit them in-order.  This function is written to be
229c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner// tail recursive.
230c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattnervoid Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i,
231c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner                                  std::vector<ValueEntry> &Ops) {
232c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  if (i+2 == Ops.size()) {
233c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    if (I->getOperand(0) != Ops[i].Op ||
234c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner        I->getOperand(1) != Ops[i+1].Op) {
235c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      DEBUG(std::cerr << "RA: " << *I);
236c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      I->setOperand(0, Ops[i].Op);
237c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      I->setOperand(1, Ops[i+1].Op);
238c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      DEBUG(std::cerr << "TO: " << *I);
239c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      MadeChange = true;
240c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      ++NumChanged;
241c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    }
242c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    return;
243c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  }
244c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  assert(i+2 < Ops.size() && "Ops index out of range!");
245c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
246c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  if (I->getOperand(1) != Ops[i].Op) {
247c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    DEBUG(std::cerr << "RA: " << *I);
248c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    I->setOperand(1, Ops[i].Op);
249c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    DEBUG(std::cerr << "TO: " << *I);
250c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    MadeChange = true;
251c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    ++NumChanged;
252c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  }
253c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  RewriteExprTree(cast<BinaryOperator>(I->getOperand(0)), i+1, Ops);
2544fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner}
2554fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
2564fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
257c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
258a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner// NegateValue - Insert instructions before the instruction pointed to by BI,
259a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner// that computes the negative version of the value specified.  The negative
260a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner// version of the value is returned, and BI is left pointing at the instruction
261a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner// that should be processed next by the reassociation pass.
262a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner//
26308b43921e18f314c4fd38049291d323830934c36Chris Lattnerstatic Value *NegateValue(Value *V, Instruction *BI) {
264a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner  // We are trying to expose opportunity for reassociation.  One of the things
265a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner  // that we want to do to achieve this is to push a negation as deep into an
266a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner  // expression chain as possible, to expose the add instructions.  In practice,
267a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner  // this means that we turn this:
268a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
269a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
270a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner  // the constants.  We assume that instcombine will clean up the mess later if
2715560c9d49ccae132cabf1155f18aa0480dce3edaMisha Brukman  // we introduce tons of unnecessary negation instructions...
272a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner  //
273a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner  if (Instruction *I = dyn_cast<Instruction>(V))
274fd05924946ebfcfb3409b21996cfd0836e4ddb31Chris Lattner    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
275e4b730441dab4aff9a69aeddbdea98990e7703c4Chris Lattner      Value *RHS = NegateValue(I->getOperand(1), BI);
276e4b730441dab4aff9a69aeddbdea98990e7703c4Chris Lattner      Value *LHS = NegateValue(I->getOperand(0), BI);
277a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner
278a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner      // We must actually insert a new add instruction here, because the neg
279a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner      // instructions do not dominate the old add instruction in general.  By
280a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner      // adding it now, we are assured that the neg instructions we just
281a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner      // inserted dominate the instruction we are about to insert after them.
282a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner      //
2832a7c23ef9156a97f426a3fe8d1f5935b75d076d1Chris Lattner      return BinaryOperator::create(Instruction::Add, LHS, RHS,
28408b43921e18f314c4fd38049291d323830934c36Chris Lattner                                    I->getName()+".neg", BI);
285a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner    }
286a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner
287a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner  // Insert a 'neg' instruction that subtracts the value from zero to get the
288a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner  // negation.
289a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner  //
29008b43921e18f314c4fd38049291d323830934c36Chris Lattner  return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
291a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner}
292a36e6c8cd58c2876decd2d0402064ac349bbec71Chris Lattner
29308b43921e18f314c4fd38049291d323830934c36Chris Lattner/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
29408b43921e18f314c4fd38049291d323830934c36Chris Lattner/// only used by an add, transform this into (X+(0-Y)) to promote better
29508b43921e18f314c4fd38049291d323830934c36Chris Lattner/// reassociation.
29608b43921e18f314c4fd38049291d323830934c36Chris Lattnerstatic Instruction *BreakUpSubtract(Instruction *Sub) {
29708b43921e18f314c4fd38049291d323830934c36Chris Lattner  // Reject cases where it is pointless to do this.
29808b43921e18f314c4fd38049291d323830934c36Chris Lattner  if (Sub->getType()->isFloatingPoint())
29908b43921e18f314c4fd38049291d323830934c36Chris Lattner    return 0;  // Floating point adds are not associative.
30008b43921e18f314c4fd38049291d323830934c36Chris Lattner
30108b43921e18f314c4fd38049291d323830934c36Chris Lattner  // Don't bother to break this up unless either the LHS is an associable add or
30208b43921e18f314c4fd38049291d323830934c36Chris Lattner  // if this is only used by one.
30308b43921e18f314c4fd38049291d323830934c36Chris Lattner  if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
30408b43921e18f314c4fd38049291d323830934c36Chris Lattner      !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
30508b43921e18f314c4fd38049291d323830934c36Chris Lattner      !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
30608b43921e18f314c4fd38049291d323830934c36Chris Lattner    return 0;
30708b43921e18f314c4fd38049291d323830934c36Chris Lattner
30808b43921e18f314c4fd38049291d323830934c36Chris Lattner  // Convert a subtract into an add and a neg instruction... so that sub
30908b43921e18f314c4fd38049291d323830934c36Chris Lattner  // instructions can be commuted with other add instructions...
31008b43921e18f314c4fd38049291d323830934c36Chris Lattner  //
31108b43921e18f314c4fd38049291d323830934c36Chris Lattner  // Calculate the negative value of Operand 1 of the sub instruction...
31208b43921e18f314c4fd38049291d323830934c36Chris Lattner  // and set it as the RHS of the add instruction we just made...
31308b43921e18f314c4fd38049291d323830934c36Chris Lattner  //
31408b43921e18f314c4fd38049291d323830934c36Chris Lattner  std::string Name = Sub->getName();
31508b43921e18f314c4fd38049291d323830934c36Chris Lattner  Sub->setName("");
31608b43921e18f314c4fd38049291d323830934c36Chris Lattner  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
31708b43921e18f314c4fd38049291d323830934c36Chris Lattner  Instruction *New =
31808b43921e18f314c4fd38049291d323830934c36Chris Lattner    BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
31908b43921e18f314c4fd38049291d323830934c36Chris Lattner
32008b43921e18f314c4fd38049291d323830934c36Chris Lattner  // Everyone now refers to the add instruction.
32108b43921e18f314c4fd38049291d323830934c36Chris Lattner  Sub->replaceAllUsesWith(New);
32208b43921e18f314c4fd38049291d323830934c36Chris Lattner  Sub->eraseFromParent();
32308b43921e18f314c4fd38049291d323830934c36Chris Lattner
32408b43921e18f314c4fd38049291d323830934c36Chris Lattner  DEBUG(std::cerr << "Negated: " << *New);
32508b43921e18f314c4fd38049291d323830934c36Chris Lattner  return New;
32608b43921e18f314c4fd38049291d323830934c36Chris Lattner}
32708b43921e18f314c4fd38049291d323830934c36Chris Lattner
3280975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
3290975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner/// by one, change this into a multiply by a constant to assist with further
3300975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner/// reassociation.
3310975ed5f4ef7264b45995241717055f8a116bb27Chris Lattnerstatic Instruction *ConvertShiftToMul(Instruction *Shl) {
3320975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner  if (!isReassociableOp(Shl->getOperand(0), Instruction::Mul) &&
3330975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner      !(Shl->hasOneUse() && isReassociableOp(Shl->use_back(),Instruction::Mul)))
3340975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner    return 0;
3350975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner
3360975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
3370975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
3380975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner
3390975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner  std::string Name = Shl->getName();  Shl->setName("");
3400975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner  Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
3410975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner                                               Name, Shl);
3420975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner  Shl->replaceAllUsesWith(Mul);
3430975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner  Shl->eraseFromParent();
3440975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner  return Mul;
3450975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner}
3460975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner
347469001000620df176decd093a300db84a06cc78bChris Lattnervoid Reassociate::OptimizeExpression(unsigned Opcode,
348469001000620df176decd093a300db84a06cc78bChris Lattner                                     std::vector<ValueEntry> &Ops) {
349469001000620df176decd093a300db84a06cc78bChris Lattner  // Now that we have the linearized expression tree, try to optimize it.
350469001000620df176decd093a300db84a06cc78bChris Lattner  // Start by folding any constants that we found.
351469001000620df176decd093a300db84a06cc78bChris Lattner FoldConstants:
352469001000620df176decd093a300db84a06cc78bChris Lattner  if (Ops.size() == 1) return;
353469001000620df176decd093a300db84a06cc78bChris Lattner
354469001000620df176decd093a300db84a06cc78bChris Lattner  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
355469001000620df176decd093a300db84a06cc78bChris Lattner    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
356469001000620df176decd093a300db84a06cc78bChris Lattner      Ops.pop_back();
357469001000620df176decd093a300db84a06cc78bChris Lattner      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
358469001000620df176decd093a300db84a06cc78bChris Lattner      goto FoldConstants;
359469001000620df176decd093a300db84a06cc78bChris Lattner    }
360469001000620df176decd093a300db84a06cc78bChris Lattner
361469001000620df176decd093a300db84a06cc78bChris Lattner  // Check for destructive annihilation due to a constant being used.
362469001000620df176decd093a300db84a06cc78bChris Lattner  if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
363469001000620df176decd093a300db84a06cc78bChris Lattner    switch (Opcode) {
364469001000620df176decd093a300db84a06cc78bChris Lattner    default: break;
365469001000620df176decd093a300db84a06cc78bChris Lattner    case Instruction::And:
366469001000620df176decd093a300db84a06cc78bChris Lattner      if (CstVal->isNullValue()) {           // ... & 0 -> 0
367469001000620df176decd093a300db84a06cc78bChris Lattner        Ops[0].Op = CstVal;
368469001000620df176decd093a300db84a06cc78bChris Lattner        Ops.erase(Ops.begin()+1, Ops.end());
369469001000620df176decd093a300db84a06cc78bChris Lattner      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
370469001000620df176decd093a300db84a06cc78bChris Lattner        Ops.pop_back();
371469001000620df176decd093a300db84a06cc78bChris Lattner      }
372469001000620df176decd093a300db84a06cc78bChris Lattner      break;
373469001000620df176decd093a300db84a06cc78bChris Lattner    case Instruction::Mul:
374469001000620df176decd093a300db84a06cc78bChris Lattner      if (CstVal->isNullValue()) {           // ... * 0 -> 0
375469001000620df176decd093a300db84a06cc78bChris Lattner        Ops[0].Op = CstVal;
376469001000620df176decd093a300db84a06cc78bChris Lattner        Ops.erase(Ops.begin()+1, Ops.end());
377469001000620df176decd093a300db84a06cc78bChris Lattner      } else if (cast<ConstantInt>(CstVal)->getRawValue() == 1) {
378469001000620df176decd093a300db84a06cc78bChris Lattner        Ops.pop_back();                      // ... * 1 -> ...
379469001000620df176decd093a300db84a06cc78bChris Lattner      }
380469001000620df176decd093a300db84a06cc78bChris Lattner      break;
381469001000620df176decd093a300db84a06cc78bChris Lattner    case Instruction::Or:
382469001000620df176decd093a300db84a06cc78bChris Lattner      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
383469001000620df176decd093a300db84a06cc78bChris Lattner        Ops[0].Op = CstVal;
384469001000620df176decd093a300db84a06cc78bChris Lattner        Ops.erase(Ops.begin()+1, Ops.end());
385469001000620df176decd093a300db84a06cc78bChris Lattner      }
386469001000620df176decd093a300db84a06cc78bChris Lattner      // FALLTHROUGH!
387469001000620df176decd093a300db84a06cc78bChris Lattner    case Instruction::Add:
388469001000620df176decd093a300db84a06cc78bChris Lattner    case Instruction::Xor:
389469001000620df176decd093a300db84a06cc78bChris Lattner      if (CstVal->isNullValue())             // ... [|^+] 0 -> ...
390469001000620df176decd093a300db84a06cc78bChris Lattner        Ops.pop_back();
391469001000620df176decd093a300db84a06cc78bChris Lattner      break;
392469001000620df176decd093a300db84a06cc78bChris Lattner    }
393469001000620df176decd093a300db84a06cc78bChris Lattner
394469001000620df176decd093a300db84a06cc78bChris Lattner  // Handle destructive annihilation do to identities between elements in the
395469001000620df176decd093a300db84a06cc78bChris Lattner  // argument list here.
396469001000620df176decd093a300db84a06cc78bChris Lattner}
397469001000620df176decd093a300db84a06cc78bChris Lattner
39808b43921e18f314c4fd38049291d323830934c36Chris Lattner
39908b43921e18f314c4fd38049291d323830934c36Chris Lattner/// ReassociateBB - Inspect all of the instructions in this basic block,
40008b43921e18f314c4fd38049291d323830934c36Chris Lattner/// reassociating them as we go.
401c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattnervoid Reassociate::ReassociateBB(BasicBlock *BB) {
4024fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner  for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
40308b43921e18f314c4fd38049291d323830934c36Chris Lattner    // If this is a subtract instruction which is not already in negate form,
40408b43921e18f314c4fd38049291d323830934c36Chris Lattner    // see if we can convert it to X+-Y.
40508b43921e18f314c4fd38049291d323830934c36Chris Lattner    if (BI->getOpcode() == Instruction::Sub && !BinaryOperator::isNeg(BI))
40608b43921e18f314c4fd38049291d323830934c36Chris Lattner      if (Instruction *NI = BreakUpSubtract(BI)) {
407c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner        MadeChange = true;
40808b43921e18f314c4fd38049291d323830934c36Chris Lattner        BI = NI;
40908b43921e18f314c4fd38049291d323830934c36Chris Lattner      }
4100975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner    if (BI->getOpcode() == Instruction::Shl &&
4110975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner        isa<ConstantInt>(BI->getOperand(1)))
4120975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner      if (Instruction *NI = ConvertShiftToMul(BI)) {
413c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner        MadeChange = true;
4140975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner        BI = NI;
4150975ed5f4ef7264b45995241717055f8a116bb27Chris Lattner      }
416e4b730441dab4aff9a69aeddbdea98990e7703c4Chris Lattner
417c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    // If this instruction is a commutative binary operator, process it.
418c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    if (!BI->isAssociative()) continue;
419c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    BinaryOperator *I = cast<BinaryOperator>(BI);
420c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
421c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    // If this is an interior node of a reassociable tree, ignore it until we
422c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    // get to the root of the tree, to avoid N^2 analysis.
423c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
424c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      continue;
425c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
426c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    // First, walk the expression tree, linearizing the tree, collecting
427c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    std::vector<ValueEntry> Ops;
428c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    LinearizeExprTree(I, Ops);
429c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
430c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    // Now that we have linearized the tree to a list and have gathered all of
431c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    // the operands and their ranks, sort the operands by their rank.  Use a
432c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    // stable_sort so that values with equal ranks will have their relative
433c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    // positions maintained (and so the compiler is deterministic).  Note that
434c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    // this sorts so that the highest ranking values end up at the beginning of
435c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    // the vector.
436c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    std::stable_sort(Ops.begin(), Ops.end());
437c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
438469001000620df176decd093a300db84a06cc78bChris Lattner    // OptimizeExpression - Now that we have the expression tree in a convenient
439469001000620df176decd093a300db84a06cc78bChris Lattner    // sorted form, optimize it globally if possible.
440469001000620df176decd093a300db84a06cc78bChris Lattner    OptimizeExpression(I->getOpcode(), Ops);
441c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner
442c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    if (Ops.size() == 1) {
443c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      // This expression tree simplified to something that isn't a tree,
444c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      // eliminate it.
445c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      I->replaceAllUsesWith(Ops[0].Op);
446c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    } else {
447c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      // Now that we ordered and optimized the expressions, splat them back into
448c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      // the expression tree, removing any unneeded nodes.
449c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner      RewriteExprTree(I, 0, Ops);
4504fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner    }
4514fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner  }
4524fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner}
4534fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
4544fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
4557e70829632f82de15db187845666aaca6e04b792Chris Lattnerbool Reassociate::runOnFunction(Function &F) {
4564fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner  // Recalculate the rank map for F
4574fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner  BuildRankMap(F);
4584fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
459c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  MadeChange = false;
4607e70829632f82de15db187845666aaca6e04b792Chris Lattner  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
461c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner    ReassociateBB(FI);
4624fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner
4634fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner  // We are done with the rank map...
4644fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner  RankMap.clear();
465fb5be090f59997deb7a2e89c92bac19528ba6755Chris Lattner  ValueRankMap.clear();
466c0649ac931d22b7118c1db292b887cd4eb52cd32Chris Lattner  return MadeChange;
4674fd56003ab29e3662c909bb10e47daa97ceb55abChris Lattner}
468d0fde30ce850b78371fd1386338350591f9ff494Brian Gaeke
469