Reassociate.cpp revision 03afd02ca2486aebb3b29edd2f77920d4e5020fd
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/ADT/PostOrderIterator.h"
36#include "llvm/ADT/Statistic.h"
37#include <algorithm>
38#include <map>
39using namespace llvm;
40
41STATISTIC(NumLinear , "Number of insts linearized");
42STATISTIC(NumChanged, "Number of insts reassociated");
43STATISTIC(NumAnnihil, "Number of expr tree annihilated");
44STATISTIC(NumFactor , "Number of multiplies factored");
45
46namespace {
47  struct VISIBILITY_HIDDEN ValueEntry {
48    unsigned Rank;
49    Value *Op;
50    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
51  };
52  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
53    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
54  }
55}
56
57#ifndef NDEBUG
58/// PrintOps - Print out the expression identified in the Ops list.
59///
60static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
61  Module *M = I->getParent()->getParent()->getParent();
62  cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
63       << *Ops[0].Op->getType();
64  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
65    WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M);
66    cerr << "," << Ops[i].Rank;
67  }
68}
69#endif
70
71namespace {
72  class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
73    std::map<BasicBlock*, unsigned> RankMap;
74    std::map<Value*, unsigned> ValueRankMap;
75    bool MadeChange;
76  public:
77    static char ID; // Pass identification, replacement for typeid
78    Reassociate() : FunctionPass(&ID) {}
79
80    bool runOnFunction(Function &F);
81
82    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83      AU.setPreservesCFG();
84    }
85  private:
86    void BuildRankMap(Function &F);
87    unsigned getRank(Value *V);
88    void ReassociateExpression(BinaryOperator *I);
89    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
90                         unsigned Idx = 0);
91    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
92    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
93    void LinearizeExpr(BinaryOperator *I);
94    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
95    void ReassociateBB(BasicBlock *BB);
96
97    void RemoveDeadBinaryOp(Value *V);
98  };
99}
100
101char Reassociate::ID = 0;
102static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
103
104// Public interface to the Reassociate pass
105FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
106
107void Reassociate::RemoveDeadBinaryOp(Value *V) {
108  Instruction *Op = dyn_cast<Instruction>(V);
109  if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
110    return;
111
112  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
113  RemoveDeadBinaryOp(LHS);
114  RemoveDeadBinaryOp(RHS);
115}
116
117
118static bool isUnmovableInstruction(Instruction *I) {
119  if (I->getOpcode() == Instruction::PHI ||
120      I->getOpcode() == Instruction::Alloca ||
121      I->getOpcode() == Instruction::Load ||
122      I->getOpcode() == Instruction::Malloc ||
123      I->getOpcode() == Instruction::Invoke ||
124      (I->getOpcode() == Instruction::Call &&
125       !isa<DbgInfoIntrinsic>(I)) ||
126      I->getOpcode() == Instruction::UDiv ||
127      I->getOpcode() == Instruction::SDiv ||
128      I->getOpcode() == Instruction::FDiv ||
129      I->getOpcode() == Instruction::URem ||
130      I->getOpcode() == Instruction::SRem ||
131      I->getOpcode() == Instruction::FRem)
132    return true;
133  return false;
134}
135
136void Reassociate::BuildRankMap(Function &F) {
137  unsigned i = 2;
138
139  // Assign distinct ranks to function arguments
140  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
141    ValueRankMap[I] = ++i;
142
143  ReversePostOrderTraversal<Function*> RPOT(&F);
144  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
145         E = RPOT.end(); I != E; ++I) {
146    BasicBlock *BB = *I;
147    unsigned BBRank = RankMap[BB] = ++i << 16;
148
149    // Walk the basic block, adding precomputed ranks for any instructions that
150    // we cannot move.  This ensures that the ranks for these instructions are
151    // all different in the block.
152    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
153      if (isUnmovableInstruction(I))
154        ValueRankMap[I] = ++BBRank;
155  }
156}
157
158unsigned Reassociate::getRank(Value *V) {
159  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
160
161  Instruction *I = dyn_cast<Instruction>(V);
162  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
163
164  unsigned &CachedRank = ValueRankMap[I];
165  if (CachedRank) return CachedRank;    // Rank already known?
166
167  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
168  // we can reassociate expressions for code motion!  Since we do not recurse
169  // for PHI nodes, we cannot have infinite recursion here, because there
170  // cannot be loops in the value graph that do not go through PHI nodes.
171  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
172  for (unsigned i = 0, e = I->getNumOperands();
173       i != e && Rank != MaxRank; ++i)
174    Rank = std::max(Rank, getRank(I->getOperand(i)));
175
176  // If this is a not or neg instruction, do not count it for rank.  This
177  // assures us that X and ~X will have the same rank.
178  if (!I->getType()->isInteger() ||
179      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
180    ++Rank;
181
182  //DOUT << "Calculated Rank[" << V->getName() << "] = "
183  //     << Rank << "\n";
184
185  return CachedRank = Rank;
186}
187
188/// isReassociableOp - Return true if V is an instruction of the specified
189/// opcode and if it only has one use.
190static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
191  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
192      cast<Instruction>(V)->getOpcode() == Opcode)
193    return cast<BinaryOperator>(V);
194  return 0;
195}
196
197/// LowerNegateToMultiply - Replace 0-X with X*-1.
198///
199static Instruction *LowerNegateToMultiply(Instruction *Neg) {
200  Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
201
202  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
203  Res->takeName(Neg);
204  Neg->replaceAllUsesWith(Res);
205  Neg->eraseFromParent();
206  return Res;
207}
208
209// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
210// Note that if D is also part of the expression tree that we recurse to
211// linearize it as well.  Besides that case, this does not recurse into A,B, or
212// C.
213void Reassociate::LinearizeExpr(BinaryOperator *I) {
214  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
215  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
216  assert(isReassociableOp(LHS, I->getOpcode()) &&
217         isReassociableOp(RHS, I->getOpcode()) &&
218         "Not an expression that needs linearization?");
219
220  DOUT << "Linear" << *LHS << *RHS << *I;
221
222  // Move the RHS instruction to live immediately before I, avoiding breaking
223  // dominator properties.
224  RHS->moveBefore(I);
225
226  // Move operands around to do the linearization.
227  I->setOperand(1, RHS->getOperand(0));
228  RHS->setOperand(0, LHS);
229  I->setOperand(0, RHS);
230
231  ++NumLinear;
232  MadeChange = true;
233  DOUT << "Linearized: " << *I;
234
235  // If D is part of this expression tree, tail recurse.
236  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
237    LinearizeExpr(I);
238}
239
240
241/// LinearizeExprTree - Given an associative binary expression tree, traverse
242/// all of the uses putting it into canonical form.  This forces a left-linear
243/// form of the the expression (((a+b)+c)+d), and collects information about the
244/// rank of the non-tree operands.
245///
246/// NOTE: These intentionally destroys the expression tree operands (turning
247/// them into undef values) to reduce #uses of the values.  This means that the
248/// caller MUST use something like RewriteExprTree to put the values back in.
249///
250void Reassociate::LinearizeExprTree(BinaryOperator *I,
251                                    std::vector<ValueEntry> &Ops) {
252  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
253  unsigned Opcode = I->getOpcode();
254
255  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
256  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
257  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
258
259  // If this is a multiply expression tree and it contains internal negations,
260  // transform them into multiplies by -1 so they can be reassociated.
261  if (I->getOpcode() == Instruction::Mul) {
262    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
263      LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
264      LHSBO = isReassociableOp(LHS, Opcode);
265    }
266    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
267      RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
268      RHSBO = isReassociableOp(RHS, Opcode);
269    }
270  }
271
272  if (!LHSBO) {
273    if (!RHSBO) {
274      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
275      // such, just remember these operands and their rank.
276      Ops.push_back(ValueEntry(getRank(LHS), LHS));
277      Ops.push_back(ValueEntry(getRank(RHS), RHS));
278
279      // Clear the leaves out.
280      I->setOperand(0, UndefValue::get(I->getType()));
281      I->setOperand(1, UndefValue::get(I->getType()));
282      return;
283    } else {
284      // Turn X+(Y+Z) -> (Y+Z)+X
285      std::swap(LHSBO, RHSBO);
286      std::swap(LHS, RHS);
287      bool Success = !I->swapOperands();
288      assert(Success && "swapOperands failed");
289      Success = false;
290      MadeChange = true;
291    }
292  } else if (RHSBO) {
293    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
294    // part of the expression tree.
295    LinearizeExpr(I);
296    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
297    RHS = I->getOperand(1);
298    RHSBO = 0;
299  }
300
301  // Okay, now we know that the LHS is a nested expression and that the RHS is
302  // not.  Perform reassociation.
303  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
304
305  // Move LHS right before I to make sure that the tree expression dominates all
306  // values.
307  LHSBO->moveBefore(I);
308
309  // Linearize the expression tree on the LHS.
310  LinearizeExprTree(LHSBO, Ops);
311
312  // Remember the RHS operand and its rank.
313  Ops.push_back(ValueEntry(getRank(RHS), RHS));
314
315  // Clear the RHS leaf out.
316  I->setOperand(1, UndefValue::get(I->getType()));
317}
318
319// RewriteExprTree - Now that the operands for this expression tree are
320// linearized and optimized, emit them in-order.  This function is written to be
321// tail recursive.
322void Reassociate::RewriteExprTree(BinaryOperator *I,
323                                  std::vector<ValueEntry> &Ops,
324                                  unsigned i) {
325  if (i+2 == Ops.size()) {
326    if (I->getOperand(0) != Ops[i].Op ||
327        I->getOperand(1) != Ops[i+1].Op) {
328      Value *OldLHS = I->getOperand(0);
329      DOUT << "RA: " << *I;
330      I->setOperand(0, Ops[i].Op);
331      I->setOperand(1, Ops[i+1].Op);
332      DOUT << "TO: " << *I;
333      MadeChange = true;
334      ++NumChanged;
335
336      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
337      // delete the extra, now dead, nodes.
338      RemoveDeadBinaryOp(OldLHS);
339    }
340    return;
341  }
342  assert(i+2 < Ops.size() && "Ops index out of range!");
343
344  if (I->getOperand(1) != Ops[i].Op) {
345    DOUT << "RA: " << *I;
346    I->setOperand(1, Ops[i].Op);
347    DOUT << "TO: " << *I;
348    MadeChange = true;
349    ++NumChanged;
350  }
351
352  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
353  assert(LHS->getOpcode() == I->getOpcode() &&
354         "Improper expression tree!");
355
356  // Compactify the tree instructions together with each other to guarantee
357  // that the expression tree is dominated by all of Ops.
358  LHS->moveBefore(I);
359  RewriteExprTree(LHS, Ops, i+1);
360}
361
362
363
364// NegateValue - Insert instructions before the instruction pointed to by BI,
365// that computes the negative version of the value specified.  The negative
366// version of the value is returned, and BI is left pointing at the instruction
367// that should be processed next by the reassociation pass.
368//
369static Value *NegateValue(Value *V, Instruction *BI) {
370  // We are trying to expose opportunity for reassociation.  One of the things
371  // that we want to do to achieve this is to push a negation as deep into an
372  // expression chain as possible, to expose the add instructions.  In practice,
373  // this means that we turn this:
374  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
375  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
376  // the constants.  We assume that instcombine will clean up the mess later if
377  // we introduce tons of unnecessary negation instructions...
378  //
379  if (Instruction *I = dyn_cast<Instruction>(V))
380    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
381      // Push the negates through the add.
382      I->setOperand(0, NegateValue(I->getOperand(0), BI));
383      I->setOperand(1, NegateValue(I->getOperand(1), BI));
384
385      // We must move the add instruction here, because the neg instructions do
386      // not dominate the old add instruction in general.  By moving it, we are
387      // assured that the neg instructions we just inserted dominate the
388      // instruction we are about to insert after them.
389      //
390      I->moveBefore(BI);
391      I->setName(I->getName()+".neg");
392      return I;
393    }
394
395  // Insert a 'neg' instruction that subtracts the value from zero to get the
396  // negation.
397  //
398  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
399}
400
401/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
402/// X-Y into (X + -Y).
403static bool ShouldBreakUpSubtract(Instruction *Sub) {
404  // If this is a negation, we can't split it up!
405  if (BinaryOperator::isNeg(Sub))
406    return false;
407
408  // Don't bother to break this up unless either the LHS is an associable add or
409  // subtract or if this is only used by one.
410  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
411      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
412    return true;
413  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
414      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
415    return true;
416  if (Sub->hasOneUse() &&
417      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
418       isReassociableOp(Sub->use_back(), Instruction::Sub)))
419    return true;
420
421  return false;
422}
423
424/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
425/// only used by an add, transform this into (X+(0-Y)) to promote better
426/// reassociation.
427static Instruction *BreakUpSubtract(Instruction *Sub) {
428  // Convert a subtract into an add and a neg instruction... so that sub
429  // instructions can be commuted with other add instructions...
430  //
431  // Calculate the negative value of Operand 1 of the sub instruction...
432  // and set it as the RHS of the add instruction we just made...
433  //
434  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
435  Instruction *New =
436    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
437  New->takeName(Sub);
438
439  // Everyone now refers to the add instruction.
440  Sub->replaceAllUsesWith(New);
441  Sub->eraseFromParent();
442
443  DOUT << "Negated: " << *New;
444  return New;
445}
446
447/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
448/// by one, change this into a multiply by a constant to assist with further
449/// reassociation.
450static Instruction *ConvertShiftToMul(Instruction *Shl) {
451  // If an operand of this shift is a reassociable multiply, or if the shift
452  // is used by a reassociable multiply or add, turn into a multiply.
453  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
454      (Shl->hasOneUse() &&
455       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
456        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
457    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
458    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
459
460    Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
461                                                 "", Shl);
462    Mul->takeName(Shl);
463    Shl->replaceAllUsesWith(Mul);
464    Shl->eraseFromParent();
465    return Mul;
466  }
467  return 0;
468}
469
470// Scan backwards and forwards among values with the same rank as element i to
471// see if X exists.  If X does not exist, return i.
472static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
473                                  Value *X) {
474  unsigned XRank = Ops[i].Rank;
475  unsigned e = Ops.size();
476  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
477    if (Ops[j].Op == X)
478      return j;
479  // Scan backwards
480  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
481    if (Ops[j].Op == X)
482      return j;
483  return i;
484}
485
486/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
487/// and returning the result.  Insert the tree before I.
488static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
489  if (Ops.size() == 1) return Ops.back();
490
491  Value *V1 = Ops.back();
492  Ops.pop_back();
493  Value *V2 = EmitAddTreeOfValues(I, Ops);
494  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
495}
496
497/// RemoveFactorFromExpression - If V is an expression tree that is a
498/// multiplication sequence, and if this sequence contains a multiply by Factor,
499/// remove Factor from the tree and return the new tree.
500Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
501  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
502  if (!BO) return 0;
503
504  std::vector<ValueEntry> Factors;
505  LinearizeExprTree(BO, Factors);
506
507  bool FoundFactor = false;
508  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
509    if (Factors[i].Op == Factor) {
510      FoundFactor = true;
511      Factors.erase(Factors.begin()+i);
512      break;
513    }
514  if (!FoundFactor) {
515    // Make sure to restore the operands to the expression tree.
516    RewriteExprTree(BO, Factors);
517    return 0;
518  }
519
520  if (Factors.size() == 1) return Factors[0].Op;
521
522  RewriteExprTree(BO, Factors);
523  return BO;
524}
525
526/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
527/// add its operands as factors, otherwise add V to the list of factors.
528static void FindSingleUseMultiplyFactors(Value *V,
529                                         std::vector<Value*> &Factors) {
530  BinaryOperator *BO;
531  if ((!V->hasOneUse() && !V->use_empty()) ||
532      !(BO = dyn_cast<BinaryOperator>(V)) ||
533      BO->getOpcode() != Instruction::Mul) {
534    Factors.push_back(V);
535    return;
536  }
537
538  // Otherwise, add the LHS and RHS to the list of factors.
539  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
540  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
541}
542
543
544
545Value *Reassociate::OptimizeExpression(BinaryOperator *I,
546                                       std::vector<ValueEntry> &Ops) {
547  // Now that we have the linearized expression tree, try to optimize it.
548  // Start by folding any constants that we found.
549  bool IterateOptimization = false;
550  if (Ops.size() == 1) return Ops[0].Op;
551
552  unsigned Opcode = I->getOpcode();
553
554  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
555    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
556      Ops.pop_back();
557      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
558      return OptimizeExpression(I, Ops);
559    }
560
561  // Check for destructive annihilation due to a constant being used.
562  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
563    switch (Opcode) {
564    default: break;
565    case Instruction::And:
566      if (CstVal->isZero()) {                // ... & 0 -> 0
567        ++NumAnnihil;
568        return CstVal;
569      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
570        Ops.pop_back();
571      }
572      break;
573    case Instruction::Mul:
574      if (CstVal->isZero()) {                // ... * 0 -> 0
575        ++NumAnnihil;
576        return CstVal;
577      } else if (cast<ConstantInt>(CstVal)->isOne()) {
578        Ops.pop_back();                      // ... * 1 -> ...
579      }
580      break;
581    case Instruction::Or:
582      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
583        ++NumAnnihil;
584        return CstVal;
585      }
586      // FALLTHROUGH!
587    case Instruction::Add:
588    case Instruction::Xor:
589      if (CstVal->isZero())                  // ... [|^+] 0 -> ...
590        Ops.pop_back();
591      break;
592    }
593  if (Ops.size() == 1) return Ops[0].Op;
594
595  // Handle destructive annihilation do to identities between elements in the
596  // argument list here.
597  switch (Opcode) {
598  default: break;
599  case Instruction::And:
600  case Instruction::Or:
601  case Instruction::Xor:
602    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
603    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
604    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
605      // First, check for X and ~X in the operand list.
606      assert(i < Ops.size());
607      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
608        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
609        unsigned FoundX = FindInOperandList(Ops, i, X);
610        if (FoundX != i) {
611          if (Opcode == Instruction::And) {   // ...&X&~X = 0
612            ++NumAnnihil;
613            return Constant::getNullValue(X->getType());
614          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
615            ++NumAnnihil;
616            return ConstantInt::getAllOnesValue(X->getType());
617          }
618        }
619      }
620
621      // Next, check for duplicate pairs of values, which we assume are next to
622      // each other, due to our sorting criteria.
623      assert(i < Ops.size());
624      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
625        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
626          // Drop duplicate values.
627          Ops.erase(Ops.begin()+i);
628          --i; --e;
629          IterateOptimization = true;
630          ++NumAnnihil;
631        } else {
632          assert(Opcode == Instruction::Xor);
633          if (e == 2) {
634            ++NumAnnihil;
635            return Constant::getNullValue(Ops[0].Op->getType());
636          }
637          // ... X^X -> ...
638          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
639          i -= 1; e -= 2;
640          IterateOptimization = true;
641          ++NumAnnihil;
642        }
643      }
644    }
645    break;
646
647  case Instruction::Add:
648    // Scan the operand lists looking for X and -X pairs.  If we find any, we
649    // can simplify the expression. X+-X == 0.
650    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
651      assert(i < Ops.size());
652      // Check for X and -X in the operand list.
653      if (BinaryOperator::isNeg(Ops[i].Op)) {
654        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
655        unsigned FoundX = FindInOperandList(Ops, i, X);
656        if (FoundX != i) {
657          // Remove X and -X from the operand list.
658          if (Ops.size() == 2) {
659            ++NumAnnihil;
660            return Constant::getNullValue(X->getType());
661          } else {
662            Ops.erase(Ops.begin()+i);
663            if (i < FoundX)
664              --FoundX;
665            else
666              --i;   // Need to back up an extra one.
667            Ops.erase(Ops.begin()+FoundX);
668            IterateOptimization = true;
669            ++NumAnnihil;
670            --i;     // Revisit element.
671            e -= 2;  // Removed two elements.
672          }
673        }
674      }
675    }
676
677
678    // Scan the operand list, checking to see if there are any common factors
679    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
680    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
681    // To efficiently find this, we count the number of times a factor occurs
682    // for any ADD operands that are MULs.
683    std::map<Value*, unsigned> FactorOccurrences;
684    unsigned MaxOcc = 0;
685    Value *MaxOccVal = 0;
686    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
687      if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
688        if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
689          // Compute all of the factors of this added value.
690          std::vector<Value*> Factors;
691          FindSingleUseMultiplyFactors(BOp, Factors);
692          assert(Factors.size() > 1 && "Bad linearize!");
693
694          // Add one to FactorOccurrences for each unique factor in this op.
695          if (Factors.size() == 2) {
696            unsigned Occ = ++FactorOccurrences[Factors[0]];
697            if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
698            if (Factors[0] != Factors[1]) {   // Don't double count A*A.
699              Occ = ++FactorOccurrences[Factors[1]];
700              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
701            }
702          } else {
703            std::set<Value*> Duplicates;
704            for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
705              if (Duplicates.insert(Factors[i]).second) {
706                unsigned Occ = ++FactorOccurrences[Factors[i]];
707                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
708              }
709            }
710          }
711        }
712      }
713    }
714
715    // If any factor occurred more than one time, we can pull it out.
716    if (MaxOcc > 1) {
717      DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
718
719      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
720      // this, we could otherwise run into situations where removing a factor
721      // from an expression will drop a use of maxocc, and this can cause
722      // RemoveFactorFromExpression on successive values to behave differently.
723      Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
724      std::vector<Value*> NewMulOps;
725      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
726        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
727          NewMulOps.push_back(V);
728          Ops.erase(Ops.begin()+i);
729          --i; --e;
730        }
731      }
732
733      // No need for extra uses anymore.
734      delete DummyInst;
735
736      unsigned NumAddedValues = NewMulOps.size();
737      Value *V = EmitAddTreeOfValues(I, NewMulOps);
738      Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
739
740      // Now that we have inserted V and its sole use, optimize it. This allows
741      // us to handle cases that require multiple factoring steps, such as this:
742      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
743      if (NumAddedValues > 1)
744        ReassociateExpression(cast<BinaryOperator>(V));
745
746      ++NumFactor;
747
748      if (Ops.empty())
749        return V2;
750
751      // Add the new value to the list of things being added.
752      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
753
754      // Rewrite the tree so that there is now a use of V.
755      RewriteExprTree(I, Ops);
756      return OptimizeExpression(I, Ops);
757    }
758    break;
759  //case Instruction::Mul:
760  }
761
762  if (IterateOptimization)
763    return OptimizeExpression(I, Ops);
764  return 0;
765}
766
767
768/// ReassociateBB - Inspect all of the instructions in this basic block,
769/// reassociating them as we go.
770void Reassociate::ReassociateBB(BasicBlock *BB) {
771  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
772    Instruction *BI = BBI++;
773    if (BI->getOpcode() == Instruction::Shl &&
774        isa<ConstantInt>(BI->getOperand(1)))
775      if (Instruction *NI = ConvertShiftToMul(BI)) {
776        MadeChange = true;
777        BI = NI;
778      }
779
780    // Reject cases where it is pointless to do this.
781    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
782        isa<VectorType>(BI->getType()))
783      continue;  // Floating point ops are not associative.
784
785    // If this is a subtract instruction which is not already in negate form,
786    // see if we can convert it to X+-Y.
787    if (BI->getOpcode() == Instruction::Sub) {
788      if (ShouldBreakUpSubtract(BI)) {
789        BI = BreakUpSubtract(BI);
790        MadeChange = true;
791      } else if (BinaryOperator::isNeg(BI)) {
792        // Otherwise, this is a negation.  See if the operand is a multiply tree
793        // and if this is not an inner node of a multiply tree.
794        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
795            (!BI->hasOneUse() ||
796             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
797          BI = LowerNegateToMultiply(BI);
798          MadeChange = true;
799        }
800      }
801    }
802
803    // If this instruction is a commutative binary operator, process it.
804    if (!BI->isAssociative()) continue;
805    BinaryOperator *I = cast<BinaryOperator>(BI);
806
807    // If this is an interior node of a reassociable tree, ignore it until we
808    // get to the root of the tree, to avoid N^2 analysis.
809    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
810      continue;
811
812    // If this is an add tree that is used by a sub instruction, ignore it
813    // until we process the subtract.
814    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
815        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
816      continue;
817
818    ReassociateExpression(I);
819  }
820}
821
822void Reassociate::ReassociateExpression(BinaryOperator *I) {
823
824  // First, walk the expression tree, linearizing the tree, collecting
825  std::vector<ValueEntry> Ops;
826  LinearizeExprTree(I, Ops);
827
828  DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
829
830  // Now that we have linearized the tree to a list and have gathered all of
831  // the operands and their ranks, sort the operands by their rank.  Use a
832  // stable_sort so that values with equal ranks will have their relative
833  // positions maintained (and so the compiler is deterministic).  Note that
834  // this sorts so that the highest ranking values end up at the beginning of
835  // the vector.
836  std::stable_sort(Ops.begin(), Ops.end());
837
838  // OptimizeExpression - Now that we have the expression tree in a convenient
839  // sorted form, optimize it globally if possible.
840  if (Value *V = OptimizeExpression(I, Ops)) {
841    // This expression tree simplified to something that isn't a tree,
842    // eliminate it.
843    DOUT << "Reassoc to scalar: " << *V << "\n";
844    I->replaceAllUsesWith(V);
845    RemoveDeadBinaryOp(I);
846    return;
847  }
848
849  // We want to sink immediates as deeply as possible except in the case where
850  // this is a multiply tree used only by an add, and the immediate is a -1.
851  // In this case we reassociate to put the negation on the outside so that we
852  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
853  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
854      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
855      isa<ConstantInt>(Ops.back().Op) &&
856      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
857    Ops.insert(Ops.begin(), Ops.back());
858    Ops.pop_back();
859  }
860
861  DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
862
863  if (Ops.size() == 1) {
864    // This expression tree simplified to something that isn't a tree,
865    // eliminate it.
866    I->replaceAllUsesWith(Ops[0].Op);
867    RemoveDeadBinaryOp(I);
868  } else {
869    // Now that we ordered and optimized the expressions, splat them back into
870    // the expression tree, removing any unneeded nodes.
871    RewriteExprTree(I, Ops);
872  }
873}
874
875
876bool Reassociate::runOnFunction(Function &F) {
877  // Recalculate the rank map for F
878  BuildRankMap(F);
879
880  MadeChange = false;
881  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
882    ReassociateBB(FI);
883
884  // We are done with the rank map...
885  RankMap.clear();
886  ValueRankMap.clear();
887  return MadeChange;
888}
889
890