Reassociate.cpp revision a33701098936ffba12326d96e98d388357f3e098
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Transforms/Utils/Local.h"
26#include "llvm/Constants.h"
27#include "llvm/DerivedTypes.h"
28#include "llvm/Function.h"
29#include "llvm/Instructions.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/Pass.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/IRBuilder.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ValueHandle.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/ADT/PostOrderIterator.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/ADT/DenseMap.h"
42#include <algorithm>
43using namespace llvm;
44
45STATISTIC(NumLinear , "Number of insts linearized");
46STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
49
50namespace {
51  struct ValueEntry {
52    unsigned Rank;
53    Value *Op;
54    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55  };
56  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
58  }
59}
60
61#ifndef NDEBUG
62/// PrintOps - Print out the expression identified in the Ops list.
63///
64static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65  Module *M = I->getParent()->getParent()->getParent();
66  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67       << *Ops[0].Op->getType() << '\t';
68  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69    dbgs() << "[ ";
70    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71    dbgs() << ", #" << Ops[i].Rank << "] ";
72  }
73}
74#endif
75
76namespace {
77  /// \brief Utility class representing a base and exponent pair which form one
78  /// factor of some product.
79  struct Factor {
80    Value *Base;
81    unsigned Power;
82
83    Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85    /// \brief Sort factors by their Base.
86    struct BaseSorter {
87      bool operator()(const Factor &LHS, const Factor &RHS) {
88        return LHS.Base < RHS.Base;
89      }
90    };
91
92    /// \brief Compare factors for equal bases.
93    struct BaseEqual {
94      bool operator()(const Factor &LHS, const Factor &RHS) {
95        return LHS.Base == RHS.Base;
96      }
97    };
98
99    /// \brief Sort factors in descending order by their power.
100    struct PowerDescendingSorter {
101      bool operator()(const Factor &LHS, const Factor &RHS) {
102        return LHS.Power > RHS.Power;
103      }
104    };
105
106    /// \brief Compare factors for equal powers.
107    struct PowerEqual {
108      bool operator()(const Factor &LHS, const Factor &RHS) {
109        return LHS.Power == RHS.Power;
110      }
111    };
112  };
113}
114
115namespace {
116  class Reassociate : public FunctionPass {
117    DenseMap<BasicBlock*, unsigned> RankMap;
118    DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
119    SmallVector<WeakVH, 8> RedoInsts;
120    SmallVector<WeakVH, 8> DeadInsts;
121    bool MadeChange;
122  public:
123    static char ID; // Pass identification, replacement for typeid
124    Reassociate() : FunctionPass(ID) {
125      initializeReassociatePass(*PassRegistry::getPassRegistry());
126    }
127
128    bool runOnFunction(Function &F);
129
130    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
131      AU.setPreservesCFG();
132    }
133  private:
134    void BuildRankMap(Function &F);
135    unsigned getRank(Value *V);
136    Value *ReassociateExpression(BinaryOperator *I);
137    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
138                         unsigned Idx = 0);
139    Value *OptimizeExpression(BinaryOperator *I,
140                              SmallVectorImpl<ValueEntry> &Ops);
141    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
142    bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
143                                SmallVectorImpl<Factor> &Factors);
144    Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
145                                   SmallVectorImpl<Factor> &Factors);
146    Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
147    void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
148    void LinearizeExpr(BinaryOperator *I);
149    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
150    void ReassociateInst(BasicBlock::iterator &BBI);
151
152    void RemoveDeadBinaryOp(Value *V);
153  };
154}
155
156char Reassociate::ID = 0;
157INITIALIZE_PASS(Reassociate, "reassociate",
158                "Reassociate expressions", false, false)
159
160// Public interface to the Reassociate pass
161FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
162
163void Reassociate::RemoveDeadBinaryOp(Value *V) {
164  Instruction *Op = dyn_cast<Instruction>(V);
165  if (!Op || !isa<BinaryOperator>(Op))
166    return;
167
168  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
169
170  ValueRankMap.erase(Op);
171  DeadInsts.push_back(Op);
172  RemoveDeadBinaryOp(LHS);
173  RemoveDeadBinaryOp(RHS);
174}
175
176static bool isUnmovableInstruction(Instruction *I) {
177  if (I->getOpcode() == Instruction::PHI ||
178      I->getOpcode() == Instruction::LandingPad ||
179      I->getOpcode() == Instruction::Alloca ||
180      I->getOpcode() == Instruction::Load ||
181      I->getOpcode() == Instruction::Invoke ||
182      (I->getOpcode() == Instruction::Call &&
183       !isa<DbgInfoIntrinsic>(I)) ||
184      I->getOpcode() == Instruction::UDiv ||
185      I->getOpcode() == Instruction::SDiv ||
186      I->getOpcode() == Instruction::FDiv ||
187      I->getOpcode() == Instruction::URem ||
188      I->getOpcode() == Instruction::SRem ||
189      I->getOpcode() == Instruction::FRem)
190    return true;
191  return false;
192}
193
194void Reassociate::BuildRankMap(Function &F) {
195  unsigned i = 2;
196
197  // Assign distinct ranks to function arguments
198  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
199    ValueRankMap[&*I] = ++i;
200
201  ReversePostOrderTraversal<Function*> RPOT(&F);
202  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
203         E = RPOT.end(); I != E; ++I) {
204    BasicBlock *BB = *I;
205    unsigned BBRank = RankMap[BB] = ++i << 16;
206
207    // Walk the basic block, adding precomputed ranks for any instructions that
208    // we cannot move.  This ensures that the ranks for these instructions are
209    // all different in the block.
210    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
211      if (isUnmovableInstruction(I))
212        ValueRankMap[&*I] = ++BBRank;
213  }
214}
215
216unsigned Reassociate::getRank(Value *V) {
217  Instruction *I = dyn_cast<Instruction>(V);
218  if (I == 0) {
219    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
220    return 0;  // Otherwise it's a global or constant, rank 0.
221  }
222
223  if (unsigned Rank = ValueRankMap[I])
224    return Rank;    // Rank already known?
225
226  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
227  // we can reassociate expressions for code motion!  Since we do not recurse
228  // for PHI nodes, we cannot have infinite recursion here, because there
229  // cannot be loops in the value graph that do not go through PHI nodes.
230  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
231  for (unsigned i = 0, e = I->getNumOperands();
232       i != e && Rank != MaxRank; ++i)
233    Rank = std::max(Rank, getRank(I->getOperand(i)));
234
235  // If this is a not or neg instruction, do not count it for rank.  This
236  // assures us that X and ~X will have the same rank.
237  if (!I->getType()->isIntegerTy() ||
238      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
239    ++Rank;
240
241  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
242  //     << Rank << "\n");
243
244  return ValueRankMap[I] = Rank;
245}
246
247/// isReassociableOp - Return true if V is an instruction of the specified
248/// opcode and if it only has one use.
249static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
250  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
251      cast<Instruction>(V)->getOpcode() == Opcode)
252    return cast<BinaryOperator>(V);
253  return 0;
254}
255
256/// LowerNegateToMultiply - Replace 0-X with X*-1.
257///
258static Instruction *LowerNegateToMultiply(Instruction *Neg,
259                         DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
260  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
261
262  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
263  ValueRankMap.erase(Neg);
264  Res->takeName(Neg);
265  Neg->replaceAllUsesWith(Res);
266  Res->setDebugLoc(Neg->getDebugLoc());
267  Neg->eraseFromParent();
268  return Res;
269}
270
271// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
272// Note that if D is also part of the expression tree that we recurse to
273// linearize it as well.  Besides that case, this does not recurse into A,B, or
274// C.
275void Reassociate::LinearizeExpr(BinaryOperator *I) {
276  BinaryOperator *LHS = isReassociableOp(I->getOperand(0), I->getOpcode());
277  BinaryOperator *RHS = isReassociableOp(I->getOperand(1), I->getOpcode());
278  assert(LHS && RHS && "Not an expression that needs linearization?");
279
280  DEBUG({
281      dbgs() << "Linear:\n";
282      dbgs() << '\t' << *LHS << "\t\n" << *RHS << "\t\n" << *I << '\n';
283    });
284
285  // Move the RHS instruction to live immediately before I, avoiding breaking
286  // dominator properties.
287  RHS->moveBefore(I);
288
289  // Move operands around to do the linearization.
290  I->setOperand(1, RHS->getOperand(0));
291  RHS->setOperand(0, LHS);
292  I->setOperand(0, RHS);
293
294  // Conservatively clear all the optional flags, which may not hold
295  // after the reassociation.
296  I->clearSubclassOptionalData();
297  LHS->clearSubclassOptionalData();
298  RHS->clearSubclassOptionalData();
299
300  ++NumLinear;
301  MadeChange = true;
302  DEBUG(dbgs() << "Linearized: " << *I << '\n');
303
304  // If D is part of this expression tree, tail recurse.
305  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
306    LinearizeExpr(I);
307}
308
309/// LinearizeExprTree - Given an associative binary expression tree, traverse
310/// all of the uses putting it into canonical form.  This forces a left-linear
311/// form of the expression (((a+b)+c)+d), and collects information about the
312/// rank of the non-tree operands.
313///
314/// NOTE: These intentionally destroys the expression tree operands (turning
315/// them into undef values) to reduce #uses of the values.  This means that the
316/// caller MUST use something like RewriteExprTree to put the values back in.
317///
318void Reassociate::LinearizeExprTree(BinaryOperator *I,
319                                    SmallVectorImpl<ValueEntry> &Ops) {
320  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
321  unsigned Opcode = I->getOpcode();
322
323  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
324  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
325  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
326
327  // If this is a multiply expression tree and it contains internal negations,
328  // transform them into multiplies by -1 so they can be reassociated.
329  if (I->getOpcode() == Instruction::Mul) {
330    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
331      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
332      LHSBO = isReassociableOp(LHS, Opcode);
333    }
334    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
335      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
336      RHSBO = isReassociableOp(RHS, Opcode);
337    }
338  }
339
340  if (!LHSBO) {
341    if (!RHSBO) {
342      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
343      // such, just remember these operands and their rank.
344      Ops.push_back(ValueEntry(getRank(LHS), LHS));
345      Ops.push_back(ValueEntry(getRank(RHS), RHS));
346
347      // Clear the leaves out.
348      I->setOperand(0, UndefValue::get(I->getType()));
349      I->setOperand(1, UndefValue::get(I->getType()));
350      return;
351    }
352
353    // Turn X+(Y+Z) -> (Y+Z)+X
354    std::swap(LHSBO, RHSBO);
355    std::swap(LHS, RHS);
356    bool Success = !I->swapOperands();
357    assert(Success && "swapOperands failed");
358    (void)Success;
359    MadeChange = true;
360  } else if (RHSBO) {
361    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the RHS is not
362    // part of the expression tree.
363    LinearizeExpr(I);
364    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
365    RHS = I->getOperand(1);
366    RHSBO = 0;
367  }
368
369  // Okay, now we know that the LHS is a nested expression and that the RHS is
370  // not.  Perform reassociation.
371  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
372
373  // Move LHS right before I to make sure that the tree expression dominates all
374  // values.
375  LHSBO->moveBefore(I);
376
377  // Linearize the expression tree on the LHS.
378  LinearizeExprTree(LHSBO, Ops);
379
380  // Remember the RHS operand and its rank.
381  Ops.push_back(ValueEntry(getRank(RHS), RHS));
382
383  // Clear the RHS leaf out.
384  I->setOperand(1, UndefValue::get(I->getType()));
385}
386
387// RewriteExprTree - Now that the operands for this expression tree are
388// linearized and optimized, emit them in-order.  This function is written to be
389// tail recursive.
390void Reassociate::RewriteExprTree(BinaryOperator *I,
391                                  SmallVectorImpl<ValueEntry> &Ops,
392                                  unsigned i) {
393  if (i+2 == Ops.size()) {
394    if (I->getOperand(0) != Ops[i].Op ||
395        I->getOperand(1) != Ops[i+1].Op) {
396      Value *OldLHS = I->getOperand(0);
397      DEBUG(dbgs() << "RA: " << *I << '\n');
398      I->setOperand(0, Ops[i].Op);
399      I->setOperand(1, Ops[i+1].Op);
400
401      // Clear all the optional flags, which may not hold after the
402      // reassociation if the expression involved more than just this operation.
403      if (Ops.size() != 2)
404        I->clearSubclassOptionalData();
405
406      DEBUG(dbgs() << "TO: " << *I << '\n');
407      MadeChange = true;
408      ++NumChanged;
409
410      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
411      // delete the extra, now dead, nodes.
412      RemoveDeadBinaryOp(OldLHS);
413    }
414    return;
415  }
416  assert(i+2 < Ops.size() && "Ops index out of range!");
417
418  if (I->getOperand(1) != Ops[i].Op) {
419    DEBUG(dbgs() << "RA: " << *I << '\n');
420    I->setOperand(1, Ops[i].Op);
421
422    // Conservatively clear all the optional flags, which may not hold
423    // after the reassociation.
424    I->clearSubclassOptionalData();
425
426    DEBUG(dbgs() << "TO: " << *I << '\n');
427    MadeChange = true;
428    ++NumChanged;
429  }
430
431  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
432  assert(LHS->getOpcode() == I->getOpcode() &&
433         "Improper expression tree!");
434
435  // Compactify the tree instructions together with each other to guarantee
436  // that the expression tree is dominated by all of Ops.
437  LHS->moveBefore(I);
438  RewriteExprTree(LHS, Ops, i+1);
439}
440
441/// NegateValue - Insert instructions before the instruction pointed to by BI,
442/// that computes the negative version of the value specified.  The negative
443/// version of the value is returned, and BI is left pointing at the instruction
444/// that should be processed next by the reassociation pass.
445static Value *NegateValue(Value *V, Instruction *BI) {
446  if (Constant *C = dyn_cast<Constant>(V))
447    return ConstantExpr::getNeg(C);
448
449  // We are trying to expose opportunity for reassociation.  One of the things
450  // that we want to do to achieve this is to push a negation as deep into an
451  // expression chain as possible, to expose the add instructions.  In practice,
452  // this means that we turn this:
453  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
454  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
455  // the constants.  We assume that instcombine will clean up the mess later if
456  // we introduce tons of unnecessary negation instructions.
457  //
458  if (Instruction *I = dyn_cast<Instruction>(V))
459    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
460      // Push the negates through the add.
461      I->setOperand(0, NegateValue(I->getOperand(0), BI));
462      I->setOperand(1, NegateValue(I->getOperand(1), BI));
463
464      // We must move the add instruction here, because the neg instructions do
465      // not dominate the old add instruction in general.  By moving it, we are
466      // assured that the neg instructions we just inserted dominate the
467      // instruction we are about to insert after them.
468      //
469      I->moveBefore(BI);
470      I->setName(I->getName()+".neg");
471      return I;
472    }
473
474  // Okay, we need to materialize a negated version of V with an instruction.
475  // Scan the use lists of V to see if we have one already.
476  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
477    User *U = *UI;
478    if (!BinaryOperator::isNeg(U)) continue;
479
480    // We found one!  Now we have to make sure that the definition dominates
481    // this use.  We do this by moving it to the entry block (if it is a
482    // non-instruction value) or right after the definition.  These negates will
483    // be zapped by reassociate later, so we don't need much finesse here.
484    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
485
486    // Verify that the negate is in this function, V might be a constant expr.
487    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
488      continue;
489
490    BasicBlock::iterator InsertPt;
491    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
492      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
493        InsertPt = II->getNormalDest()->begin();
494      } else {
495        InsertPt = InstInput;
496        ++InsertPt;
497      }
498      while (isa<PHINode>(InsertPt)) ++InsertPt;
499    } else {
500      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
501    }
502    TheNeg->moveBefore(InsertPt);
503    return TheNeg;
504  }
505
506  // Insert a 'neg' instruction that subtracts the value from zero to get the
507  // negation.
508  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
509}
510
511/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
512/// X-Y into (X + -Y).
513static bool ShouldBreakUpSubtract(Instruction *Sub) {
514  // If this is a negation, we can't split it up!
515  if (BinaryOperator::isNeg(Sub))
516    return false;
517
518  // Don't bother to break this up unless either the LHS is an associable add or
519  // subtract or if this is only used by one.
520  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
521      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
522    return true;
523  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
524      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
525    return true;
526  if (Sub->hasOneUse() &&
527      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
528       isReassociableOp(Sub->use_back(), Instruction::Sub)))
529    return true;
530
531  return false;
532}
533
534/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
535/// only used by an add, transform this into (X+(0-Y)) to promote better
536/// reassociation.
537static Instruction *BreakUpSubtract(Instruction *Sub,
538                         DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
539  // Convert a subtract into an add and a neg instruction. This allows sub
540  // instructions to be commuted with other add instructions.
541  //
542  // Calculate the negative value of Operand 1 of the sub instruction,
543  // and set it as the RHS of the add instruction we just made.
544  //
545  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
546  Instruction *New =
547    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
548  New->takeName(Sub);
549
550  // Everyone now refers to the add instruction.
551  ValueRankMap.erase(Sub);
552  Sub->replaceAllUsesWith(New);
553  New->setDebugLoc(Sub->getDebugLoc());
554  Sub->eraseFromParent();
555
556  DEBUG(dbgs() << "Negated: " << *New << '\n');
557  return New;
558}
559
560/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
561/// by one, change this into a multiply by a constant to assist with further
562/// reassociation.
563static Instruction *ConvertShiftToMul(Instruction *Shl,
564                         DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
565  // If an operand of this shift is a reassociable multiply, or if the shift
566  // is used by a reassociable multiply or add, turn into a multiply.
567  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
568      (Shl->hasOneUse() &&
569       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
570        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
571    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
572    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
573
574    Instruction *Mul =
575      BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
576    ValueRankMap.erase(Shl);
577    Mul->takeName(Shl);
578    Shl->replaceAllUsesWith(Mul);
579    Mul->setDebugLoc(Shl->getDebugLoc());
580    Shl->eraseFromParent();
581    return Mul;
582  }
583  return 0;
584}
585
586/// FindInOperandList - Scan backwards and forwards among values with the same
587/// rank as element i to see if X exists.  If X does not exist, return i.  This
588/// is useful when scanning for 'x' when we see '-x' because they both get the
589/// same rank.
590static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
591                                  Value *X) {
592  unsigned XRank = Ops[i].Rank;
593  unsigned e = Ops.size();
594  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
595    if (Ops[j].Op == X)
596      return j;
597  // Scan backwards.
598  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
599    if (Ops[j].Op == X)
600      return j;
601  return i;
602}
603
604/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
605/// and returning the result.  Insert the tree before I.
606static Value *EmitAddTreeOfValues(Instruction *I,
607                                  SmallVectorImpl<WeakVH> &Ops){
608  if (Ops.size() == 1) return Ops.back();
609
610  Value *V1 = Ops.back();
611  Ops.pop_back();
612  Value *V2 = EmitAddTreeOfValues(I, Ops);
613  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
614}
615
616/// RemoveFactorFromExpression - If V is an expression tree that is a
617/// multiplication sequence, and if this sequence contains a multiply by Factor,
618/// remove Factor from the tree and return the new tree.
619Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
620  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
621  if (!BO) return 0;
622
623  SmallVector<ValueEntry, 8> Factors;
624  LinearizeExprTree(BO, Factors);
625
626  bool FoundFactor = false;
627  bool NeedsNegate = false;
628  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
629    if (Factors[i].Op == Factor) {
630      FoundFactor = true;
631      Factors.erase(Factors.begin()+i);
632      break;
633    }
634
635    // If this is a negative version of this factor, remove it.
636    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
637      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
638        if (FC1->getValue() == -FC2->getValue()) {
639          FoundFactor = NeedsNegate = true;
640          Factors.erase(Factors.begin()+i);
641          break;
642        }
643  }
644
645  if (!FoundFactor) {
646    // Make sure to restore the operands to the expression tree.
647    RewriteExprTree(BO, Factors);
648    return 0;
649  }
650
651  BasicBlock::iterator InsertPt = BO; ++InsertPt;
652
653  // If this was just a single multiply, remove the multiply and return the only
654  // remaining operand.
655  if (Factors.size() == 1) {
656    ValueRankMap.erase(BO);
657    DeadInsts.push_back(BO);
658    V = Factors[0].Op;
659  } else {
660    RewriteExprTree(BO, Factors);
661    V = BO;
662  }
663
664  if (NeedsNegate)
665    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
666
667  return V;
668}
669
670/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
671/// add its operands as factors, otherwise add V to the list of factors.
672///
673/// Ops is the top-level list of add operands we're trying to factor.
674static void FindSingleUseMultiplyFactors(Value *V,
675                                         SmallVectorImpl<Value*> &Factors,
676                                       const SmallVectorImpl<ValueEntry> &Ops,
677                                         bool IsRoot) {
678  BinaryOperator *BO;
679  if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
680      !(BO = dyn_cast<BinaryOperator>(V)) ||
681      BO->getOpcode() != Instruction::Mul) {
682    Factors.push_back(V);
683    return;
684  }
685
686  // If this value has a single use because it is another input to the add
687  // tree we're reassociating and we dropped its use, it actually has two
688  // uses and we can't factor it.
689  if (!IsRoot) {
690    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
691      if (Ops[i].Op == V) {
692        Factors.push_back(V);
693        return;
694      }
695  }
696
697
698  // Otherwise, add the LHS and RHS to the list of factors.
699  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
700  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
701}
702
703/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
704/// instruction.  This optimizes based on identities.  If it can be reduced to
705/// a single Value, it is returned, otherwise the Ops list is mutated as
706/// necessary.
707static Value *OptimizeAndOrXor(unsigned Opcode,
708                               SmallVectorImpl<ValueEntry> &Ops) {
709  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
710  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
711  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
712    // First, check for X and ~X in the operand list.
713    assert(i < Ops.size());
714    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
715      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
716      unsigned FoundX = FindInOperandList(Ops, i, X);
717      if (FoundX != i) {
718        if (Opcode == Instruction::And)   // ...&X&~X = 0
719          return Constant::getNullValue(X->getType());
720
721        if (Opcode == Instruction::Or)    // ...|X|~X = -1
722          return Constant::getAllOnesValue(X->getType());
723      }
724    }
725
726    // Next, check for duplicate pairs of values, which we assume are next to
727    // each other, due to our sorting criteria.
728    assert(i < Ops.size());
729    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
730      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
731        // Drop duplicate values for And and Or.
732        Ops.erase(Ops.begin()+i);
733        --i; --e;
734        ++NumAnnihil;
735        continue;
736      }
737
738      // Drop pairs of values for Xor.
739      assert(Opcode == Instruction::Xor);
740      if (e == 2)
741        return Constant::getNullValue(Ops[0].Op->getType());
742
743      // Y ^ X^X -> Y
744      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
745      i -= 1; e -= 2;
746      ++NumAnnihil;
747    }
748  }
749  return 0;
750}
751
752/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
753/// optimizes based on identities.  If it can be reduced to a single Value, it
754/// is returned, otherwise the Ops list is mutated as necessary.
755Value *Reassociate::OptimizeAdd(Instruction *I,
756                                SmallVectorImpl<ValueEntry> &Ops) {
757  // Scan the operand lists looking for X and -X pairs.  If we find any, we
758  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
759  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
760  //
761  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
762  //
763  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
764    Value *TheOp = Ops[i].Op;
765    // Check to see if we've seen this operand before.  If so, we factor all
766    // instances of the operand together.  Due to our sorting criteria, we know
767    // that these need to be next to each other in the vector.
768    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
769      // Rescan the list, remove all instances of this operand from the expr.
770      unsigned NumFound = 0;
771      do {
772        Ops.erase(Ops.begin()+i);
773        ++NumFound;
774      } while (i != Ops.size() && Ops[i].Op == TheOp);
775
776      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
777      ++NumFactor;
778
779      // Insert a new multiply.
780      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
781      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
782
783      // Now that we have inserted a multiply, optimize it. This allows us to
784      // handle cases that require multiple factoring steps, such as this:
785      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
786      RedoInsts.push_back(Mul);
787
788      // If every add operand was a duplicate, return the multiply.
789      if (Ops.empty())
790        return Mul;
791
792      // Otherwise, we had some input that didn't have the dupe, such as
793      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
794      // things being added by this operation.
795      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
796
797      --i;
798      e = Ops.size();
799      continue;
800    }
801
802    // Check for X and -X in the operand list.
803    if (!BinaryOperator::isNeg(TheOp))
804      continue;
805
806    Value *X = BinaryOperator::getNegArgument(TheOp);
807    unsigned FoundX = FindInOperandList(Ops, i, X);
808    if (FoundX == i)
809      continue;
810
811    // Remove X and -X from the operand list.
812    if (Ops.size() == 2)
813      return Constant::getNullValue(X->getType());
814
815    Ops.erase(Ops.begin()+i);
816    if (i < FoundX)
817      --FoundX;
818    else
819      --i;   // Need to back up an extra one.
820    Ops.erase(Ops.begin()+FoundX);
821    ++NumAnnihil;
822    --i;     // Revisit element.
823    e -= 2;  // Removed two elements.
824  }
825
826  // Scan the operand list, checking to see if there are any common factors
827  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
828  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
829  // To efficiently find this, we count the number of times a factor occurs
830  // for any ADD operands that are MULs.
831  DenseMap<Value*, unsigned> FactorOccurrences;
832
833  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
834  // where they are actually the same multiply.
835  unsigned MaxOcc = 0;
836  Value *MaxOccVal = 0;
837  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
838    BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
839    if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
840      continue;
841
842    // Compute all of the factors of this added value.
843    SmallVector<Value*, 8> Factors;
844    FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
845    assert(Factors.size() > 1 && "Bad linearize!");
846
847    // Add one to FactorOccurrences for each unique factor in this op.
848    SmallPtrSet<Value*, 8> Duplicates;
849    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
850      Value *Factor = Factors[i];
851      if (!Duplicates.insert(Factor)) continue;
852
853      unsigned Occ = ++FactorOccurrences[Factor];
854      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
855
856      // If Factor is a negative constant, add the negated value as a factor
857      // because we can percolate the negate out.  Watch for minint, which
858      // cannot be positivified.
859      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
860        if (CI->isNegative() && !CI->isMinValue(true)) {
861          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
862          assert(!Duplicates.count(Factor) &&
863                 "Shouldn't have two constant factors, missed a canonicalize");
864
865          unsigned Occ = ++FactorOccurrences[Factor];
866          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
867        }
868    }
869  }
870
871  // If any factor occurred more than one time, we can pull it out.
872  if (MaxOcc > 1) {
873    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
874    ++NumFactor;
875
876    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
877    // this, we could otherwise run into situations where removing a factor
878    // from an expression will drop a use of maxocc, and this can cause
879    // RemoveFactorFromExpression on successive values to behave differently.
880    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
881    SmallVector<WeakVH, 4> NewMulOps;
882    for (unsigned i = 0; i != Ops.size(); ++i) {
883      // Only try to remove factors from expressions we're allowed to.
884      BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
885      if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
886        continue;
887
888      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
889        // The factorized operand may occur several times.  Convert them all in
890        // one fell swoop.
891        for (unsigned j = Ops.size(); j != i;) {
892          --j;
893          if (Ops[j].Op == Ops[i].Op) {
894            NewMulOps.push_back(V);
895            Ops.erase(Ops.begin()+j);
896          }
897        }
898        --i;
899      }
900    }
901
902    // No need for extra uses anymore.
903    delete DummyInst;
904
905    unsigned NumAddedValues = NewMulOps.size();
906    Value *V = EmitAddTreeOfValues(I, NewMulOps);
907
908    // Now that we have inserted the add tree, optimize it. This allows us to
909    // handle cases that require multiple factoring steps, such as this:
910    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
911    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
912    (void)NumAddedValues;
913    RedoInsts.push_back(V);
914
915    // Create the multiply.
916    Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
917
918    // Rerun associate on the multiply in case the inner expression turned into
919    // a multiply.  We want to make sure that we keep things in canonical form.
920    RedoInsts.push_back(V2);
921
922    // If every add operand included the factor (e.g. "A*B + A*C"), then the
923    // entire result expression is just the multiply "A*(B+C)".
924    if (Ops.empty())
925      return V2;
926
927    // Otherwise, we had some input that didn't have the factor, such as
928    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
929    // things being added by this operation.
930    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
931  }
932
933  return 0;
934}
935
936namespace {
937  /// \brief Predicate tests whether a ValueEntry's op is in a map.
938  struct IsValueInMap {
939    const DenseMap<Value *, unsigned> &Map;
940
941    IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
942
943    bool operator()(const ValueEntry &Entry) {
944      return Map.find(Entry.Op) != Map.end();
945    }
946  };
947}
948
949/// \brief Build up a vector of value/power pairs factoring a product.
950///
951/// Given a series of multiplication operands, build a vector of factors and
952/// the powers each is raised to when forming the final product. Sort them in
953/// the order of descending power.
954///
955///      (x*x)          -> [(x, 2)]
956///     ((x*x)*x)       -> [(x, 3)]
957///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
958///
959/// \returns Whether any factors have a power greater than one.
960bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
961                                         SmallVectorImpl<Factor> &Factors) {
962  unsigned FactorPowerSum = 0;
963  DenseMap<Value *, unsigned> FactorCounts;
964  for (unsigned LastIdx = 0, Idx = 0, Size = Ops.size(); Idx < Size; ++Idx) {
965    // Note that 'use_empty' uses means the only use is in the linearized tree
966    // represented by Ops -- we remove the values from the actual operations to
967    // reduce their use count.
968    if (!Ops[Idx].Op->use_empty()) {
969      if (LastIdx == Idx)
970        ++LastIdx;
971      continue;
972    }
973    if (LastIdx == Idx || Ops[LastIdx].Op != Ops[Idx].Op) {
974      LastIdx = Idx;
975      continue;
976    }
977    // Track for simplification all factors which occur 2 or more times.
978    DenseMap<Value *, unsigned>::iterator CountIt;
979    bool Inserted;
980    llvm::tie(CountIt, Inserted)
981      = FactorCounts.insert(std::make_pair(Ops[Idx].Op, 2));
982    if (Inserted) {
983      FactorPowerSum += 2;
984      Factors.push_back(Factor(Ops[Idx].Op, 2));
985    } else {
986      ++CountIt->second;
987      ++FactorPowerSum;
988    }
989  }
990  // We can only simplify factors if the sum of the powers of our simplifiable
991  // factors is 4 or higher. When that is the case, we will *always* have
992  // a simplification. This is an important invariant to prevent cyclicly
993  // trying to simplify already minimal formations.
994  if (FactorPowerSum < 4)
995    return false;
996
997  // Remove all the operands which are in the map.
998  Ops.erase(std::remove_if(Ops.begin(), Ops.end(), IsValueInMap(FactorCounts)),
999            Ops.end());
1000
1001  // Record the adjusted power for the simplification factors. We add back into
1002  // the Ops list any values with an odd power, and make the power even. This
1003  // allows the outer-most multiplication tree to remain in tact during
1004  // simplification.
1005  unsigned OldOpsSize = Ops.size();
1006  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1007    Factors[Idx].Power = FactorCounts[Factors[Idx].Base];
1008    if (Factors[Idx].Power & 1) {
1009      Ops.push_back(ValueEntry(getRank(Factors[Idx].Base), Factors[Idx].Base));
1010      --Factors[Idx].Power;
1011      --FactorPowerSum;
1012    }
1013  }
1014  // None of the adjustments above should have reduced the sum of factor powers
1015  // below our mininum of '4'.
1016  assert(FactorPowerSum >= 4);
1017
1018  // Patch up the sort of the ops vector by sorting the factors we added back
1019  // onto the back, and merging the two sequences.
1020  if (OldOpsSize != Ops.size()) {
1021    SmallVectorImpl<ValueEntry>::iterator MiddleIt = Ops.begin() + OldOpsSize;
1022    std::sort(MiddleIt, Ops.end());
1023    std::inplace_merge(Ops.begin(), MiddleIt, Ops.end());
1024  }
1025
1026  std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1027  return true;
1028}
1029
1030/// \brief Build a tree of multiplies, computing the product of Ops.
1031static Value *buildMultiplyTree(IRBuilder<> &Builder,
1032                                SmallVectorImpl<Value*> &Ops) {
1033  if (Ops.size() == 1)
1034    return Ops.back();
1035
1036  Value *LHS = Ops.pop_back_val();
1037  do {
1038    LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1039  } while (!Ops.empty());
1040
1041  return LHS;
1042}
1043
1044/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1045///
1046/// Given a vector of values raised to various powers, where no two values are
1047/// equal and the powers are sorted in decreasing order, compute the minimal
1048/// DAG of multiplies to compute the final product, and return that product
1049/// value.
1050Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1051                                            SmallVectorImpl<Factor> &Factors) {
1052  assert(Factors[0].Power);
1053  SmallVector<Value *, 4> OuterProduct;
1054  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1055       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1056    if (Factors[Idx].Power != Factors[LastIdx].Power) {
1057      LastIdx = Idx;
1058      continue;
1059    }
1060
1061    // We want to multiply across all the factors with the same power so that
1062    // we can raise them to that power as a single entity. Build a mini tree
1063    // for that.
1064    SmallVector<Value *, 4> InnerProduct;
1065    InnerProduct.push_back(Factors[LastIdx].Base);
1066    do {
1067      InnerProduct.push_back(Factors[Idx].Base);
1068      ++Idx;
1069    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1070
1071    // Reset the base value of the first factor to the new expression tree.
1072    // We'll remove all the factors with the same power in a second pass.
1073    Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1074    RedoInsts.push_back(Factors[LastIdx].Base);
1075
1076    LastIdx = Idx;
1077  }
1078  // Unique factors with equal powers -- we've folded them into the first one's
1079  // base.
1080  Factors.erase(std::unique(Factors.begin(), Factors.end(),
1081                            Factor::PowerEqual()),
1082                Factors.end());
1083
1084  // Iteratively collect the base of each factor with an add power into the
1085  // outer product, and halve each power in preparation for squaring the
1086  // expression.
1087  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1088    if (Factors[Idx].Power & 1)
1089      OuterProduct.push_back(Factors[Idx].Base);
1090    Factors[Idx].Power >>= 1;
1091  }
1092  if (Factors[0].Power) {
1093    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1094    OuterProduct.push_back(SquareRoot);
1095    OuterProduct.push_back(SquareRoot);
1096  }
1097  if (OuterProduct.size() == 1)
1098    return OuterProduct.front();
1099
1100  Value *V = buildMultiplyTree(Builder, OuterProduct);
1101  RedoInsts.push_back(V);
1102  return V;
1103}
1104
1105Value *Reassociate::OptimizeMul(BinaryOperator *I,
1106                                SmallVectorImpl<ValueEntry> &Ops) {
1107  // We can only optimize the multiplies when there is a chain of more than
1108  // three, such that a balanced tree might require fewer total multiplies.
1109  if (Ops.size() < 4)
1110    return 0;
1111
1112  // Try to turn linear trees of multiplies without other uses of the
1113  // intermediate stages into minimal multiply DAGs with perfect sub-expression
1114  // re-use.
1115  SmallVector<Factor, 4> Factors;
1116  if (!collectMultiplyFactors(Ops, Factors))
1117    return 0; // All distinct factors, so nothing left for us to do.
1118
1119  IRBuilder<> Builder(I);
1120  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1121  if (Ops.empty())
1122    return V;
1123
1124  ValueEntry NewEntry = ValueEntry(getRank(V), V);
1125  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1126  return 0;
1127}
1128
1129Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1130                                       SmallVectorImpl<ValueEntry> &Ops) {
1131  // Now that we have the linearized expression tree, try to optimize it.
1132  // Start by folding any constants that we found.
1133  bool IterateOptimization = false;
1134  if (Ops.size() == 1) return Ops[0].Op;
1135
1136  unsigned Opcode = I->getOpcode();
1137
1138  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
1139    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
1140      Ops.pop_back();
1141      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
1142      return OptimizeExpression(I, Ops);
1143    }
1144
1145  // Check for destructive annihilation due to a constant being used.
1146  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
1147    switch (Opcode) {
1148    default: break;
1149    case Instruction::And:
1150      if (CstVal->isZero())                  // X & 0 -> 0
1151        return CstVal;
1152      if (CstVal->isAllOnesValue())          // X & -1 -> X
1153        Ops.pop_back();
1154      break;
1155    case Instruction::Mul:
1156      if (CstVal->isZero()) {                // X * 0 -> 0
1157        ++NumAnnihil;
1158        return CstVal;
1159      }
1160
1161      if (cast<ConstantInt>(CstVal)->isOne())
1162        Ops.pop_back();                      // X * 1 -> X
1163      break;
1164    case Instruction::Or:
1165      if (CstVal->isAllOnesValue())          // X | -1 -> -1
1166        return CstVal;
1167      // FALLTHROUGH!
1168    case Instruction::Add:
1169    case Instruction::Xor:
1170      if (CstVal->isZero())                  // X [|^+] 0 -> X
1171        Ops.pop_back();
1172      break;
1173    }
1174  if (Ops.size() == 1) return Ops[0].Op;
1175
1176  // Handle destructive annihilation due to identities between elements in the
1177  // argument list here.
1178  unsigned NumOps = Ops.size();
1179  switch (Opcode) {
1180  default: break;
1181  case Instruction::And:
1182  case Instruction::Or:
1183  case Instruction::Xor:
1184    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1185      return Result;
1186    break;
1187
1188  case Instruction::Add:
1189    if (Value *Result = OptimizeAdd(I, Ops))
1190      return Result;
1191    break;
1192
1193  case Instruction::Mul:
1194    if (Value *Result = OptimizeMul(I, Ops))
1195      return Result;
1196    break;
1197  }
1198
1199  if (IterateOptimization || Ops.size() != NumOps)
1200    return OptimizeExpression(I, Ops);
1201  return 0;
1202}
1203
1204/// ReassociateInst - Inspect and reassociate the instruction at the
1205/// given position, post-incrementing the position.
1206void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) {
1207  Instruction *BI = BBI++;
1208  if (BI->getOpcode() == Instruction::Shl &&
1209      isa<ConstantInt>(BI->getOperand(1)))
1210    if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
1211      MadeChange = true;
1212      BI = NI;
1213    }
1214
1215  // Floating point binary operators are not associative, but we can still
1216  // commute (some) of them, to canonicalize the order of their operands.
1217  // This can potentially expose more CSE opportunities, and makes writing
1218  // other transformations simpler.
1219  if (isa<BinaryOperator>(BI) &&
1220      (BI->getType()->isFloatingPointTy() || BI->getType()->isVectorTy())) {
1221    // FAdd and FMul can be commuted.
1222    if (BI->getOpcode() != Instruction::FMul &&
1223        BI->getOpcode() != Instruction::FAdd)
1224      return;
1225
1226    Value *LHS = BI->getOperand(0);
1227    Value *RHS = BI->getOperand(1);
1228    unsigned LHSRank = getRank(LHS);
1229    unsigned RHSRank = getRank(RHS);
1230
1231    // Sort the operands by rank.
1232    if (RHSRank < LHSRank) {
1233      BI->setOperand(0, RHS);
1234      BI->setOperand(1, LHS);
1235    }
1236
1237    return;
1238  }
1239
1240  // Do not reassociate operations that we do not understand.
1241  if (!isa<BinaryOperator>(BI))
1242    return;
1243
1244  // Do not reassociate boolean (i1) expressions.  We want to preserve the
1245  // original order of evaluation for short-circuited comparisons that
1246  // SimplifyCFG has folded to AND/OR expressions.  If the expression
1247  // is not further optimized, it is likely to be transformed back to a
1248  // short-circuited form for code gen, and the source order may have been
1249  // optimized for the most likely conditions.
1250  if (BI->getType()->isIntegerTy(1))
1251    return;
1252
1253  // If this is a subtract instruction which is not already in negate form,
1254  // see if we can convert it to X+-Y.
1255  if (BI->getOpcode() == Instruction::Sub) {
1256    if (ShouldBreakUpSubtract(BI)) {
1257      BI = BreakUpSubtract(BI, ValueRankMap);
1258      // Reset the BBI iterator in case BreakUpSubtract changed the
1259      // instruction it points to.
1260      BBI = BI;
1261      ++BBI;
1262      MadeChange = true;
1263    } else if (BinaryOperator::isNeg(BI)) {
1264      // Otherwise, this is a negation.  See if the operand is a multiply tree
1265      // and if this is not an inner node of a multiply tree.
1266      if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
1267          (!BI->hasOneUse() ||
1268           !isReassociableOp(BI->use_back(), Instruction::Mul))) {
1269        BI = LowerNegateToMultiply(BI, ValueRankMap);
1270        MadeChange = true;
1271      }
1272    }
1273  }
1274
1275  // If this instruction is a commutative binary operator, process it.
1276  if (!BI->isAssociative()) return;
1277  BinaryOperator *I = cast<BinaryOperator>(BI);
1278
1279  // If this is an interior node of a reassociable tree, ignore it until we
1280  // get to the root of the tree, to avoid N^2 analysis.
1281  if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
1282    return;
1283
1284  // If this is an add tree that is used by a sub instruction, ignore it
1285  // until we process the subtract.
1286  if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
1287      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1288    return;
1289
1290  ReassociateExpression(I);
1291}
1292
1293Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
1294
1295  // First, walk the expression tree, linearizing the tree, collecting the
1296  // operand information.
1297  SmallVector<ValueEntry, 8> Ops;
1298  LinearizeExprTree(I, Ops);
1299
1300  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1301
1302  // Now that we have linearized the tree to a list and have gathered all of
1303  // the operands and their ranks, sort the operands by their rank.  Use a
1304  // stable_sort so that values with equal ranks will have their relative
1305  // positions maintained (and so the compiler is deterministic).  Note that
1306  // this sorts so that the highest ranking values end up at the beginning of
1307  // the vector.
1308  std::stable_sort(Ops.begin(), Ops.end());
1309
1310  // OptimizeExpression - Now that we have the expression tree in a convenient
1311  // sorted form, optimize it globally if possible.
1312  if (Value *V = OptimizeExpression(I, Ops)) {
1313    // This expression tree simplified to something that isn't a tree,
1314    // eliminate it.
1315    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1316    I->replaceAllUsesWith(V);
1317    if (Instruction *VI = dyn_cast<Instruction>(V))
1318      VI->setDebugLoc(I->getDebugLoc());
1319    RemoveDeadBinaryOp(I);
1320    ++NumAnnihil;
1321    return V;
1322  }
1323
1324  // We want to sink immediates as deeply as possible except in the case where
1325  // this is a multiply tree used only by an add, and the immediate is a -1.
1326  // In this case we reassociate to put the negation on the outside so that we
1327  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1328  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1329      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1330      isa<ConstantInt>(Ops.back().Op) &&
1331      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1332    ValueEntry Tmp = Ops.pop_back_val();
1333    Ops.insert(Ops.begin(), Tmp);
1334  }
1335
1336  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1337
1338  if (Ops.size() == 1) {
1339    // This expression tree simplified to something that isn't a tree,
1340    // eliminate it.
1341    I->replaceAllUsesWith(Ops[0].Op);
1342    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1343      OI->setDebugLoc(I->getDebugLoc());
1344    RemoveDeadBinaryOp(I);
1345    return Ops[0].Op;
1346  }
1347
1348  // Now that we ordered and optimized the expressions, splat them back into
1349  // the expression tree, removing any unneeded nodes.
1350  RewriteExprTree(I, Ops);
1351  return I;
1352}
1353
1354bool Reassociate::runOnFunction(Function &F) {
1355  // Recalculate the rank map for F
1356  BuildRankMap(F);
1357
1358  MadeChange = false;
1359  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1360    for (BasicBlock::iterator BBI = FI->begin(); BBI != FI->end(); )
1361      ReassociateInst(BBI);
1362
1363  // Now that we're done, revisit any instructions which are likely to
1364  // have secondary reassociation opportunities.
1365  while (!RedoInsts.empty())
1366    if (Value *V = RedoInsts.pop_back_val()) {
1367      BasicBlock::iterator BBI = cast<Instruction>(V);
1368      ReassociateInst(BBI);
1369    }
1370
1371  // Now that we're done, delete any instructions which are no longer used.
1372  while (!DeadInsts.empty())
1373    if (Value *V = DeadInsts.pop_back_val())
1374      RecursivelyDeleteTriviallyDeadInstructions(V);
1375
1376  // We are done with the rank map.
1377  RankMap.clear();
1378  ValueRankMap.clear();
1379  return MadeChange;
1380}
1381