Reassociate.cpp revision ac0b6ae358944ae8b2b5a11dc08f52c3ed89f2da
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/Statistic.h"
35#include <algorithm>
36#include <iostream>
37using namespace llvm;
38
39namespace {
40  Statistic NumLinear ("reassociate","Number of insts linearized");
41  Statistic NumChanged("reassociate","Number of insts reassociated");
42  Statistic NumSwapped("reassociate","Number of insts with operands swapped");
43  Statistic NumAnnihil("reassociate","Number of expr tree annihilated");
44  Statistic NumFactor ("reassociate","Number of multiplies factored");
45
46  struct ValueEntry {
47    unsigned Rank;
48    Value *Op;
49    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50  };
51  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
53  }
54}
55
56/// PrintOps - Print out the expression identified in the Ops list.
57///
58static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
59  Module *M = I->getParent()->getParent()->getParent();
60  std::cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
61  << *Ops[0].Op->getType();
62  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
63    WriteAsOperand(std::cerr << " ", Ops[i].Op, false, M)
64      << "," << Ops[i].Rank;
65}
66
67namespace {
68  class Reassociate : public FunctionPass {
69    std::map<BasicBlock*, unsigned> RankMap;
70    std::map<Value*, unsigned> ValueRankMap;
71    bool MadeChange;
72  public:
73    bool runOnFunction(Function &F);
74
75    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76      AU.setPreservesCFG();
77    }
78  private:
79    void BuildRankMap(Function &F);
80    unsigned getRank(Value *V);
81    void ReassociateExpression(BinaryOperator *I);
82    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
83                         unsigned Idx = 0);
84    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
85    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
86    void LinearizeExpr(BinaryOperator *I);
87    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
88    void ReassociateBB(BasicBlock *BB);
89
90    void RemoveDeadBinaryOp(Value *V);
91  };
92
93  RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
94}
95
96// Public interface to the Reassociate pass
97FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
98
99void Reassociate::RemoveDeadBinaryOp(Value *V) {
100  BinaryOperator *BOp = dyn_cast<BinaryOperator>(V);
101  if (!BOp || !BOp->use_empty()) return;
102
103  Value *LHS = BOp->getOperand(0), *RHS = BOp->getOperand(1);
104  RemoveDeadBinaryOp(LHS);
105  RemoveDeadBinaryOp(RHS);
106}
107
108
109static bool isUnmovableInstruction(Instruction *I) {
110  if (I->getOpcode() == Instruction::PHI ||
111      I->getOpcode() == Instruction::Alloca ||
112      I->getOpcode() == Instruction::Load ||
113      I->getOpcode() == Instruction::Malloc ||
114      I->getOpcode() == Instruction::Invoke ||
115      I->getOpcode() == Instruction::Call ||
116      I->getOpcode() == Instruction::UDiv ||
117      I->getOpcode() == Instruction::SDiv ||
118      I->getOpcode() == Instruction::FDiv ||
119      I->getOpcode() == Instruction::URem ||
120      I->getOpcode() == Instruction::SRem ||
121      I->getOpcode() == Instruction::FRem)
122    return true;
123  return false;
124}
125
126void Reassociate::BuildRankMap(Function &F) {
127  unsigned i = 2;
128
129  // Assign distinct ranks to function arguments
130  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
131    ValueRankMap[I] = ++i;
132
133  ReversePostOrderTraversal<Function*> RPOT(&F);
134  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
135         E = RPOT.end(); I != E; ++I) {
136    BasicBlock *BB = *I;
137    unsigned BBRank = RankMap[BB] = ++i << 16;
138
139    // Walk the basic block, adding precomputed ranks for any instructions that
140    // we cannot move.  This ensures that the ranks for these instructions are
141    // all different in the block.
142    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
143      if (isUnmovableInstruction(I))
144        ValueRankMap[I] = ++BBRank;
145  }
146}
147
148unsigned Reassociate::getRank(Value *V) {
149  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
150
151  Instruction *I = dyn_cast<Instruction>(V);
152  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
153
154  unsigned &CachedRank = ValueRankMap[I];
155  if (CachedRank) return CachedRank;    // Rank already known?
156
157  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
158  // we can reassociate expressions for code motion!  Since we do not recurse
159  // for PHI nodes, we cannot have infinite recursion here, because there
160  // cannot be loops in the value graph that do not go through PHI nodes.
161  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
162  for (unsigned i = 0, e = I->getNumOperands();
163       i != e && Rank != MaxRank; ++i)
164    Rank = std::max(Rank, getRank(I->getOperand(i)));
165
166  // If this is a not or neg instruction, do not count it for rank.  This
167  // assures us that X and ~X will have the same rank.
168  if (!I->getType()->isIntegral() ||
169      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
170    ++Rank;
171
172  //DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
173  //<< Rank << "\n");
174
175  return CachedRank = Rank;
176}
177
178/// isReassociableOp - Return true if V is an instruction of the specified
179/// opcode and if it only has one use.
180static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
181  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
182      cast<Instruction>(V)->getOpcode() == Opcode)
183    return cast<BinaryOperator>(V);
184  return 0;
185}
186
187/// LowerNegateToMultiply - Replace 0-X with X*-1.
188///
189static Instruction *LowerNegateToMultiply(Instruction *Neg) {
190  Constant *Cst;
191  if (Neg->getType()->isFloatingPoint())
192    Cst = ConstantFP::get(Neg->getType(), -1);
193  else
194    Cst = ConstantInt::getAllOnesValue(Neg->getType());
195
196  std::string NegName = Neg->getName(); Neg->setName("");
197  Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
198                                               Neg);
199  Neg->replaceAllUsesWith(Res);
200  Neg->eraseFromParent();
201  return Res;
202}
203
204// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
205// Note that if D is also part of the expression tree that we recurse to
206// linearize it as well.  Besides that case, this does not recurse into A,B, or
207// C.
208void Reassociate::LinearizeExpr(BinaryOperator *I) {
209  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
210  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
211  assert(isReassociableOp(LHS, I->getOpcode()) &&
212         isReassociableOp(RHS, I->getOpcode()) &&
213         "Not an expression that needs linearization?");
214
215  DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);
216
217  // Move the RHS instruction to live immediately before I, avoiding breaking
218  // dominator properties.
219  RHS->moveBefore(I);
220
221  // Move operands around to do the linearization.
222  I->setOperand(1, RHS->getOperand(0));
223  RHS->setOperand(0, LHS);
224  I->setOperand(0, RHS);
225
226  ++NumLinear;
227  MadeChange = true;
228  DEBUG(std::cerr << "Linearized: " << *I);
229
230  // If D is part of this expression tree, tail recurse.
231  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
232    LinearizeExpr(I);
233}
234
235
236/// LinearizeExprTree - Given an associative binary expression tree, traverse
237/// all of the uses putting it into canonical form.  This forces a left-linear
238/// form of the the expression (((a+b)+c)+d), and collects information about the
239/// rank of the non-tree operands.
240///
241/// NOTE: These intentionally destroys the expression tree operands (turning
242/// them into undef values) to reduce #uses of the values.  This means that the
243/// caller MUST use something like RewriteExprTree to put the values back in.
244///
245void Reassociate::LinearizeExprTree(BinaryOperator *I,
246                                    std::vector<ValueEntry> &Ops) {
247  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
248  unsigned Opcode = I->getOpcode();
249
250  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
251  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
252  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
253
254  // If this is a multiply expression tree and it contains internal negations,
255  // transform them into multiplies by -1 so they can be reassociated.
256  if (I->getOpcode() == Instruction::Mul) {
257    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
258      LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
259      LHSBO = isReassociableOp(LHS, Opcode);
260    }
261    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
262      RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
263      RHSBO = isReassociableOp(RHS, Opcode);
264    }
265  }
266
267  if (!LHSBO) {
268    if (!RHSBO) {
269      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
270      // such, just remember these operands and their rank.
271      Ops.push_back(ValueEntry(getRank(LHS), LHS));
272      Ops.push_back(ValueEntry(getRank(RHS), RHS));
273
274      // Clear the leaves out.
275      I->setOperand(0, UndefValue::get(I->getType()));
276      I->setOperand(1, UndefValue::get(I->getType()));
277      return;
278    } else {
279      // Turn X+(Y+Z) -> (Y+Z)+X
280      std::swap(LHSBO, RHSBO);
281      std::swap(LHS, RHS);
282      bool Success = !I->swapOperands();
283      assert(Success && "swapOperands failed");
284      MadeChange = true;
285    }
286  } else if (RHSBO) {
287    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
288    // part of the expression tree.
289    LinearizeExpr(I);
290    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
291    RHS = I->getOperand(1);
292    RHSBO = 0;
293  }
294
295  // Okay, now we know that the LHS is a nested expression and that the RHS is
296  // not.  Perform reassociation.
297  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
298
299  // Move LHS right before I to make sure that the tree expression dominates all
300  // values.
301  LHSBO->moveBefore(I);
302
303  // Linearize the expression tree on the LHS.
304  LinearizeExprTree(LHSBO, Ops);
305
306  // Remember the RHS operand and its rank.
307  Ops.push_back(ValueEntry(getRank(RHS), RHS));
308
309  // Clear the RHS leaf out.
310  I->setOperand(1, UndefValue::get(I->getType()));
311}
312
313// RewriteExprTree - Now that the operands for this expression tree are
314// linearized and optimized, emit them in-order.  This function is written to be
315// tail recursive.
316void Reassociate::RewriteExprTree(BinaryOperator *I,
317                                  std::vector<ValueEntry> &Ops,
318                                  unsigned i) {
319  if (i+2 == Ops.size()) {
320    if (I->getOperand(0) != Ops[i].Op ||
321        I->getOperand(1) != Ops[i+1].Op) {
322      Value *OldLHS = I->getOperand(0);
323      DEBUG(std::cerr << "RA: " << *I);
324      I->setOperand(0, Ops[i].Op);
325      I->setOperand(1, Ops[i+1].Op);
326      DEBUG(std::cerr << "TO: " << *I);
327      MadeChange = true;
328      ++NumChanged;
329
330      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
331      // delete the extra, now dead, nodes.
332      RemoveDeadBinaryOp(OldLHS);
333    }
334    return;
335  }
336  assert(i+2 < Ops.size() && "Ops index out of range!");
337
338  if (I->getOperand(1) != Ops[i].Op) {
339    DEBUG(std::cerr << "RA: " << *I);
340    I->setOperand(1, Ops[i].Op);
341    DEBUG(std::cerr << "TO: " << *I);
342    MadeChange = true;
343    ++NumChanged;
344  }
345
346  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
347  assert(LHS->getOpcode() == I->getOpcode() &&
348         "Improper expression tree!");
349
350  // Compactify the tree instructions together with each other to guarantee
351  // that the expression tree is dominated by all of Ops.
352  LHS->moveBefore(I);
353  RewriteExprTree(LHS, Ops, i+1);
354}
355
356
357
358// NegateValue - Insert instructions before the instruction pointed to by BI,
359// that computes the negative version of the value specified.  The negative
360// version of the value is returned, and BI is left pointing at the instruction
361// that should be processed next by the reassociation pass.
362//
363static Value *NegateValue(Value *V, Instruction *BI) {
364  // We are trying to expose opportunity for reassociation.  One of the things
365  // that we want to do to achieve this is to push a negation as deep into an
366  // expression chain as possible, to expose the add instructions.  In practice,
367  // this means that we turn this:
368  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
369  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
370  // the constants.  We assume that instcombine will clean up the mess later if
371  // we introduce tons of unnecessary negation instructions...
372  //
373  if (Instruction *I = dyn_cast<Instruction>(V))
374    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
375      // Push the negates through the add.
376      I->setOperand(0, NegateValue(I->getOperand(0), BI));
377      I->setOperand(1, NegateValue(I->getOperand(1), BI));
378
379      // We must move the add instruction here, because the neg instructions do
380      // not dominate the old add instruction in general.  By moving it, we are
381      // assured that the neg instructions we just inserted dominate the
382      // instruction we are about to insert after them.
383      //
384      I->moveBefore(BI);
385      I->setName(I->getName()+".neg");
386      return I;
387    }
388
389  // Insert a 'neg' instruction that subtracts the value from zero to get the
390  // negation.
391  //
392  return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
393}
394
395/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
396/// only used by an add, transform this into (X+(0-Y)) to promote better
397/// reassociation.
398static Instruction *BreakUpSubtract(Instruction *Sub) {
399  // Don't bother to break this up unless either the LHS is an associable add or
400  // if this is only used by one.
401  if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
402      !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
403      !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
404    return 0;
405
406  // Convert a subtract into an add and a neg instruction... so that sub
407  // instructions can be commuted with other add instructions...
408  //
409  // Calculate the negative value of Operand 1 of the sub instruction...
410  // and set it as the RHS of the add instruction we just made...
411  //
412  std::string Name = Sub->getName();
413  Sub->setName("");
414  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
415  Instruction *New =
416    BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
417
418  // Everyone now refers to the add instruction.
419  Sub->replaceAllUsesWith(New);
420  Sub->eraseFromParent();
421
422  DEBUG(std::cerr << "Negated: " << *New);
423  return New;
424}
425
426/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
427/// by one, change this into a multiply by a constant to assist with further
428/// reassociation.
429static Instruction *ConvertShiftToMul(Instruction *Shl) {
430  // If an operand of this shift is a reassociable multiply, or if the shift
431  // is used by a reassociable multiply or add, turn into a multiply.
432  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
433      (Shl->hasOneUse() &&
434       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
435        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
436    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
437    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
438
439    std::string Name = Shl->getName();  Shl->setName("");
440    Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
441                                                 Name, Shl);
442    Shl->replaceAllUsesWith(Mul);
443    Shl->eraseFromParent();
444    return Mul;
445  }
446  return 0;
447}
448
449// Scan backwards and forwards among values with the same rank as element i to
450// see if X exists.  If X does not exist, return i.
451static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
452                                  Value *X) {
453  unsigned XRank = Ops[i].Rank;
454  unsigned e = Ops.size();
455  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
456    if (Ops[j].Op == X)
457      return j;
458  // Scan backwards
459  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
460    if (Ops[j].Op == X)
461      return j;
462  return i;
463}
464
465/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
466/// and returning the result.  Insert the tree before I.
467static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
468  if (Ops.size() == 1) return Ops.back();
469
470  Value *V1 = Ops.back();
471  Ops.pop_back();
472  Value *V2 = EmitAddTreeOfValues(I, Ops);
473  return BinaryOperator::createAdd(V2, V1, "tmp", I);
474}
475
476/// RemoveFactorFromExpression - If V is an expression tree that is a
477/// multiplication sequence, and if this sequence contains a multiply by Factor,
478/// remove Factor from the tree and return the new tree.
479Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
480  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
481  if (!BO) return 0;
482
483  std::vector<ValueEntry> Factors;
484  LinearizeExprTree(BO, Factors);
485
486  bool FoundFactor = false;
487  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
488    if (Factors[i].Op == Factor) {
489      FoundFactor = true;
490      Factors.erase(Factors.begin()+i);
491      break;
492    }
493  if (!FoundFactor) {
494    // Make sure to restore the operands to the expression tree.
495    RewriteExprTree(BO, Factors);
496    return 0;
497  }
498
499  if (Factors.size() == 1) return Factors[0].Op;
500
501  RewriteExprTree(BO, Factors);
502  return BO;
503}
504
505/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
506/// add its operands as factors, otherwise add V to the list of factors.
507static void FindSingleUseMultiplyFactors(Value *V,
508                                         std::vector<Value*> &Factors) {
509  BinaryOperator *BO;
510  if ((!V->hasOneUse() && !V->use_empty()) ||
511      !(BO = dyn_cast<BinaryOperator>(V)) ||
512      BO->getOpcode() != Instruction::Mul) {
513    Factors.push_back(V);
514    return;
515  }
516
517  // Otherwise, add the LHS and RHS to the list of factors.
518  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
519  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
520}
521
522
523
524Value *Reassociate::OptimizeExpression(BinaryOperator *I,
525                                       std::vector<ValueEntry> &Ops) {
526  // Now that we have the linearized expression tree, try to optimize it.
527  // Start by folding any constants that we found.
528  bool IterateOptimization = false;
529  if (Ops.size() == 1) return Ops[0].Op;
530
531  unsigned Opcode = I->getOpcode();
532
533  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
534    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
535      Ops.pop_back();
536      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
537      return OptimizeExpression(I, Ops);
538    }
539
540  // Check for destructive annihilation due to a constant being used.
541  if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
542    switch (Opcode) {
543    default: break;
544    case Instruction::And:
545      if (CstVal->isNullValue()) {           // ... & 0 -> 0
546        ++NumAnnihil;
547        return CstVal;
548      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
549        Ops.pop_back();
550      }
551      break;
552    case Instruction::Mul:
553      if (CstVal->isNullValue()) {           // ... * 0 -> 0
554        ++NumAnnihil;
555        return CstVal;
556      } else if (cast<ConstantInt>(CstVal)->getZExtValue() == 1) {
557        Ops.pop_back();                      // ... * 1 -> ...
558      }
559      break;
560    case Instruction::Or:
561      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
562        ++NumAnnihil;
563        return CstVal;
564      }
565      // FALLTHROUGH!
566    case Instruction::Add:
567    case Instruction::Xor:
568      if (CstVal->isNullValue())             // ... [|^+] 0 -> ...
569        Ops.pop_back();
570      break;
571    }
572  if (Ops.size() == 1) return Ops[0].Op;
573
574  // Handle destructive annihilation do to identities between elements in the
575  // argument list here.
576  switch (Opcode) {
577  default: break;
578  case Instruction::And:
579  case Instruction::Or:
580  case Instruction::Xor:
581    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
582    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
583    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
584      // First, check for X and ~X in the operand list.
585      assert(i < Ops.size());
586      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
587        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
588        unsigned FoundX = FindInOperandList(Ops, i, X);
589        if (FoundX != i) {
590          if (Opcode == Instruction::And) {   // ...&X&~X = 0
591            ++NumAnnihil;
592            return Constant::getNullValue(X->getType());
593          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
594            ++NumAnnihil;
595            return ConstantIntegral::getAllOnesValue(X->getType());
596          }
597        }
598      }
599
600      // Next, check for duplicate pairs of values, which we assume are next to
601      // each other, due to our sorting criteria.
602      assert(i < Ops.size());
603      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
604        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
605          // Drop duplicate values.
606          Ops.erase(Ops.begin()+i);
607          --i; --e;
608          IterateOptimization = true;
609          ++NumAnnihil;
610        } else {
611          assert(Opcode == Instruction::Xor);
612          if (e == 2) {
613            ++NumAnnihil;
614            return Constant::getNullValue(Ops[0].Op->getType());
615          }
616          // ... X^X -> ...
617          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
618          i -= 1; e -= 2;
619          IterateOptimization = true;
620          ++NumAnnihil;
621        }
622      }
623    }
624    break;
625
626  case Instruction::Add:
627    // Scan the operand lists looking for X and -X pairs.  If we find any, we
628    // can simplify the expression. X+-X == 0.
629    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
630      assert(i < Ops.size());
631      // Check for X and -X in the operand list.
632      if (BinaryOperator::isNeg(Ops[i].Op)) {
633        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
634        unsigned FoundX = FindInOperandList(Ops, i, X);
635        if (FoundX != i) {
636          // Remove X and -X from the operand list.
637          if (Ops.size() == 2) {
638            ++NumAnnihil;
639            return Constant::getNullValue(X->getType());
640          } else {
641            Ops.erase(Ops.begin()+i);
642            if (i < FoundX)
643              --FoundX;
644            else
645              --i;   // Need to back up an extra one.
646            Ops.erase(Ops.begin()+FoundX);
647            IterateOptimization = true;
648            ++NumAnnihil;
649            --i;     // Revisit element.
650            e -= 2;  // Removed two elements.
651          }
652        }
653      }
654    }
655
656
657    // Scan the operand list, checking to see if there are any common factors
658    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
659    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
660    // To efficiently find this, we count the number of times a factor occurs
661    // for any ADD operands that are MULs.
662    std::map<Value*, unsigned> FactorOccurrences;
663    unsigned MaxOcc = 0;
664    Value *MaxOccVal = 0;
665    if (!I->getType()->isFloatingPoint()) {
666      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
667        if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
668          if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
669            // Compute all of the factors of this added value.
670            std::vector<Value*> Factors;
671            FindSingleUseMultiplyFactors(BOp, Factors);
672            assert(Factors.size() > 1 && "Bad linearize!");
673
674            // Add one to FactorOccurrences for each unique factor in this op.
675            if (Factors.size() == 2) {
676              unsigned Occ = ++FactorOccurrences[Factors[0]];
677              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
678              if (Factors[0] != Factors[1]) {   // Don't double count A*A.
679                Occ = ++FactorOccurrences[Factors[1]];
680                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
681              }
682            } else {
683              std::set<Value*> Duplicates;
684              for (unsigned i = 0, e = Factors.size(); i != e; ++i)
685                if (Duplicates.insert(Factors[i]).second) {
686                  unsigned Occ = ++FactorOccurrences[Factors[i]];
687                  if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
688                }
689            }
690          }
691      }
692    }
693
694    // If any factor occurred more than one time, we can pull it out.
695    if (MaxOcc > 1) {
696      DEBUG(std::cerr << "\nFACTORING [" << MaxOcc << "]: "
697                      << *MaxOccVal << "\n");
698
699      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
700      // this, we could otherwise run into situations where removing a factor
701      // from an expression will drop a use of maxocc, and this can cause
702      // RemoveFactorFromExpression on successive values to behave differently.
703      Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
704      std::vector<Value*> NewMulOps;
705      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
706        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
707          NewMulOps.push_back(V);
708          Ops.erase(Ops.begin()+i);
709          --i; --e;
710        }
711      }
712
713      // No need for extra uses anymore.
714      delete DummyInst;
715
716      unsigned NumAddedValues = NewMulOps.size();
717      Value *V = EmitAddTreeOfValues(I, NewMulOps);
718      Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
719
720      // Now that we have inserted V and its sole use, optimize it. This allows
721      // us to handle cases that require multiple factoring steps, such as this:
722      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
723      if (NumAddedValues > 1)
724        ReassociateExpression(cast<BinaryOperator>(V));
725
726      ++NumFactor;
727
728      if (Ops.size() == 0)
729        return V2;
730
731      // Add the new value to the list of things being added.
732      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
733
734      // Rewrite the tree so that there is now a use of V.
735      RewriteExprTree(I, Ops);
736      return OptimizeExpression(I, Ops);
737    }
738    break;
739  //case Instruction::Mul:
740  }
741
742  if (IterateOptimization)
743    return OptimizeExpression(I, Ops);
744  return 0;
745}
746
747
748/// ReassociateBB - Inspect all of the instructions in this basic block,
749/// reassociating them as we go.
750void Reassociate::ReassociateBB(BasicBlock *BB) {
751  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
752    Instruction *BI = BBI++;
753    if (BI->getOpcode() == Instruction::Shl &&
754        isa<ConstantInt>(BI->getOperand(1)))
755      if (Instruction *NI = ConvertShiftToMul(BI)) {
756        MadeChange = true;
757        BI = NI;
758      }
759
760    // Reject cases where it is pointless to do this.
761    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
762        isa<PackedType>(BI->getType()))
763      continue;  // Floating point ops are not associative.
764
765    // If this is a subtract instruction which is not already in negate form,
766    // see if we can convert it to X+-Y.
767    if (BI->getOpcode() == Instruction::Sub) {
768      if (!BinaryOperator::isNeg(BI)) {
769        if (Instruction *NI = BreakUpSubtract(BI)) {
770          MadeChange = true;
771          BI = NI;
772        }
773      } else {
774        // Otherwise, this is a negation.  See if the operand is a multiply tree
775        // and if this is not an inner node of a multiply tree.
776        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
777            (!BI->hasOneUse() ||
778             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
779          BI = LowerNegateToMultiply(BI);
780          MadeChange = true;
781        }
782      }
783    }
784
785    // If this instruction is a commutative binary operator, process it.
786    if (!BI->isAssociative()) continue;
787    BinaryOperator *I = cast<BinaryOperator>(BI);
788
789    // If this is an interior node of a reassociable tree, ignore it until we
790    // get to the root of the tree, to avoid N^2 analysis.
791    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
792      continue;
793
794    // If this is an add tree that is used by a sub instruction, ignore it
795    // until we process the subtract.
796    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
797        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
798      continue;
799
800    ReassociateExpression(I);
801  }
802}
803
804void Reassociate::ReassociateExpression(BinaryOperator *I) {
805
806  // First, walk the expression tree, linearizing the tree, collecting
807  std::vector<ValueEntry> Ops;
808  LinearizeExprTree(I, Ops);
809
810  DEBUG(std::cerr << "RAIn:\t"; PrintOps(I, Ops);
811        std::cerr << "\n");
812
813  // Now that we have linearized the tree to a list and have gathered all of
814  // the operands and their ranks, sort the operands by their rank.  Use a
815  // stable_sort so that values with equal ranks will have their relative
816  // positions maintained (and so the compiler is deterministic).  Note that
817  // this sorts so that the highest ranking values end up at the beginning of
818  // the vector.
819  std::stable_sort(Ops.begin(), Ops.end());
820
821  // OptimizeExpression - Now that we have the expression tree in a convenient
822  // sorted form, optimize it globally if possible.
823  if (Value *V = OptimizeExpression(I, Ops)) {
824    // This expression tree simplified to something that isn't a tree,
825    // eliminate it.
826    DEBUG(std::cerr << "Reassoc to scalar: " << *V << "\n");
827    I->replaceAllUsesWith(V);
828    RemoveDeadBinaryOp(I);
829    return;
830  }
831
832  // We want to sink immediates as deeply as possible except in the case where
833  // this is a multiply tree used only by an add, and the immediate is a -1.
834  // In this case we reassociate to put the negation on the outside so that we
835  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
836  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
837      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
838      isa<ConstantInt>(Ops.back().Op) &&
839      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
840    Ops.insert(Ops.begin(), Ops.back());
841    Ops.pop_back();
842  }
843
844  DEBUG(std::cerr << "RAOut:\t"; PrintOps(I, Ops);
845        std::cerr << "\n");
846
847  if (Ops.size() == 1) {
848    // This expression tree simplified to something that isn't a tree,
849    // eliminate it.
850    I->replaceAllUsesWith(Ops[0].Op);
851    RemoveDeadBinaryOp(I);
852  } else {
853    // Now that we ordered and optimized the expressions, splat them back into
854    // the expression tree, removing any unneeded nodes.
855    RewriteExprTree(I, Ops);
856  }
857}
858
859
860bool Reassociate::runOnFunction(Function &F) {
861  // Recalculate the rank map for F
862  BuildRankMap(F);
863
864  MadeChange = false;
865  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
866    ReassociateBB(FI);
867
868  // We are done with the rank map...
869  RankMap.clear();
870  ValueRankMap.clear();
871  return MadeChange;
872}
873
874