SCCP.cpp revision 280a6e607d8eb7401749a92db624a82de47da777
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#define DEBUG_TYPE "sccp" 25#include "llvm/Transforms/Scalar.h" 26#include "llvm/Transforms/IPO.h" 27#include "llvm/Constants.h" 28#include "llvm/DerivedTypes.h" 29#include "llvm/Instructions.h" 30#include "llvm/Pass.h" 31#include "llvm/Analysis/ConstantFolding.h" 32#include "llvm/Transforms/Utils/Local.h" 33#include "llvm/Support/CallSite.h" 34#include "llvm/Support/Compiler.h" 35#include "llvm/Support/Debug.h" 36#include "llvm/Support/InstVisitor.h" 37#include "llvm/ADT/DenseMap.h" 38#include "llvm/ADT/SmallSet.h" 39#include "llvm/ADT/SmallVector.h" 40#include "llvm/ADT/Statistic.h" 41#include "llvm/ADT/STLExtras.h" 42#include <algorithm> 43#include <map> 44using namespace llvm; 45 46STATISTIC(NumInstRemoved, "Number of instructions removed"); 47STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 48 49STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 50STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP"); 51STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 52STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 53 54namespace { 55/// LatticeVal class - This class represents the different lattice values that 56/// an LLVM value may occupy. It is a simple class with value semantics. 57/// 58class VISIBILITY_HIDDEN LatticeVal { 59 enum { 60 /// undefined - This LLVM Value has no known value yet. 61 undefined, 62 63 /// constant - This LLVM Value has a specific constant value. 64 constant, 65 66 /// forcedconstant - This LLVM Value was thought to be undef until 67 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 68 /// with another (different) constant, it goes to overdefined, instead of 69 /// asserting. 70 forcedconstant, 71 72 /// overdefined - This instruction is not known to be constant, and we know 73 /// it has a value. 74 overdefined 75 } LatticeValue; // The current lattice position 76 77 Constant *ConstantVal; // If Constant value, the current value 78public: 79 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} 80 81 // markOverdefined - Return true if this is a new status to be in... 82 inline bool markOverdefined() { 83 if (LatticeValue != overdefined) { 84 LatticeValue = overdefined; 85 return true; 86 } 87 return false; 88 } 89 90 // markConstant - Return true if this is a new status for us. 91 inline bool markConstant(Constant *V) { 92 if (LatticeValue != constant) { 93 if (LatticeValue == undefined) { 94 LatticeValue = constant; 95 assert(V && "Marking constant with NULL"); 96 ConstantVal = V; 97 } else { 98 assert(LatticeValue == forcedconstant && 99 "Cannot move from overdefined to constant!"); 100 // Stay at forcedconstant if the constant is the same. 101 if (V == ConstantVal) return false; 102 103 // Otherwise, we go to overdefined. Assumptions made based on the 104 // forced value are possibly wrong. Assuming this is another constant 105 // could expose a contradiction. 106 LatticeValue = overdefined; 107 } 108 return true; 109 } else { 110 assert(ConstantVal == V && "Marking constant with different value"); 111 } 112 return false; 113 } 114 115 inline void markForcedConstant(Constant *V) { 116 assert(LatticeValue == undefined && "Can't force a defined value!"); 117 LatticeValue = forcedconstant; 118 ConstantVal = V; 119 } 120 121 inline bool isUndefined() const { return LatticeValue == undefined; } 122 inline bool isConstant() const { 123 return LatticeValue == constant || LatticeValue == forcedconstant; 124 } 125 inline bool isOverdefined() const { return LatticeValue == overdefined; } 126 127 inline Constant *getConstant() const { 128 assert(isConstant() && "Cannot get the constant of a non-constant!"); 129 return ConstantVal; 130 } 131}; 132 133//===----------------------------------------------------------------------===// 134// 135/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 136/// Constant Propagation. 137/// 138class SCCPSolver : public InstVisitor<SCCPSolver> { 139 SmallSet<BasicBlock*, 16> BBExecutable;// The basic blocks that are executable 140 std::map<Value*, LatticeVal> ValueState; // The state each value is in. 141 142 /// GlobalValue - If we are tracking any values for the contents of a global 143 /// variable, we keep a mapping from the constant accessor to the element of 144 /// the global, to the currently known value. If the value becomes 145 /// overdefined, it's entry is simply removed from this map. 146 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 147 148 /// TrackedRetVals - If we are tracking arguments into and the return 149 /// value out of a function, it will have an entry in this map, indicating 150 /// what the known return value for the function is. 151 DenseMap<Function*, LatticeVal> TrackedRetVals; 152 153 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 154 /// that return multiple values. 155 std::map<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 156 157 // The reason for two worklists is that overdefined is the lowest state 158 // on the lattice, and moving things to overdefined as fast as possible 159 // makes SCCP converge much faster. 160 // By having a separate worklist, we accomplish this because everything 161 // possibly overdefined will become overdefined at the soonest possible 162 // point. 163 std::vector<Value*> OverdefinedInstWorkList; 164 std::vector<Value*> InstWorkList; 165 166 167 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list 168 169 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 170 /// overdefined, despite the fact that the PHI node is overdefined. 171 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 172 173 /// KnownFeasibleEdges - Entries in this set are edges which have already had 174 /// PHI nodes retriggered. 175 typedef std::pair<BasicBlock*,BasicBlock*> Edge; 176 std::set<Edge> KnownFeasibleEdges; 177public: 178 179 /// MarkBlockExecutable - This method can be used by clients to mark all of 180 /// the blocks that are known to be intrinsically live in the processed unit. 181 void MarkBlockExecutable(BasicBlock *BB) { 182 DOUT << "Marking Block Executable: " << BB->getName() << "\n"; 183 BBExecutable.insert(BB); // Basic block is executable! 184 BBWorkList.push_back(BB); // Add the block to the work list! 185 } 186 187 /// TrackValueOfGlobalVariable - Clients can use this method to 188 /// inform the SCCPSolver that it should track loads and stores to the 189 /// specified global variable if it can. This is only legal to call if 190 /// performing Interprocedural SCCP. 191 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 192 const Type *ElTy = GV->getType()->getElementType(); 193 if (ElTy->isFirstClassType()) { 194 LatticeVal &IV = TrackedGlobals[GV]; 195 if (!isa<UndefValue>(GV->getInitializer())) 196 IV.markConstant(GV->getInitializer()); 197 } 198 } 199 200 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 201 /// and out of the specified function (which cannot have its address taken), 202 /// this method must be called. 203 void AddTrackedFunction(Function *F) { 204 assert(F->hasInternalLinkage() && "Can only track internal functions!"); 205 // Add an entry, F -> undef. 206 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 207 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 208 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 209 LatticeVal())); 210 } else 211 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 212 } 213 214 /// Solve - Solve for constants and executable blocks. 215 /// 216 void Solve(); 217 218 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 219 /// that branches on undef values cannot reach any of their successors. 220 /// However, this is not a safe assumption. After we solve dataflow, this 221 /// method should be use to handle this. If this returns true, the solver 222 /// should be rerun. 223 bool ResolvedUndefsIn(Function &F); 224 225 /// getExecutableBlocks - Once we have solved for constants, return the set of 226 /// blocks that is known to be executable. 227 SmallSet<BasicBlock*, 16> &getExecutableBlocks() { 228 return BBExecutable; 229 } 230 231 /// getValueMapping - Once we have solved for constants, return the mapping of 232 /// LLVM values to LatticeVals. 233 std::map<Value*, LatticeVal> &getValueMapping() { 234 return ValueState; 235 } 236 237 /// getTrackedRetVals - Get the inferred return value map. 238 /// 239 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 240 return TrackedRetVals; 241 } 242 243 /// getTrackedGlobals - Get and return the set of inferred initializers for 244 /// global variables. 245 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 246 return TrackedGlobals; 247 } 248 249 inline void markOverdefined(Value *V) { 250 markOverdefined(ValueState[V], V); 251 } 252 253private: 254 // markConstant - Make a value be marked as "constant". If the value 255 // is not already a constant, add it to the instruction work list so that 256 // the users of the instruction are updated later. 257 // 258 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { 259 if (IV.markConstant(C)) { 260 DOUT << "markConstant: " << *C << ": " << *V; 261 InstWorkList.push_back(V); 262 } 263 } 264 265 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) { 266 IV.markForcedConstant(C); 267 DOUT << "markForcedConstant: " << *C << ": " << *V; 268 InstWorkList.push_back(V); 269 } 270 271 inline void markConstant(Value *V, Constant *C) { 272 markConstant(ValueState[V], V, C); 273 } 274 275 // markOverdefined - Make a value be marked as "overdefined". If the 276 // value is not already overdefined, add it to the overdefined instruction 277 // work list so that the users of the instruction are updated later. 278 inline void markOverdefined(LatticeVal &IV, Value *V) { 279 if (IV.markOverdefined()) { 280 DEBUG(DOUT << "markOverdefined: "; 281 if (Function *F = dyn_cast<Function>(V)) 282 DOUT << "Function '" << F->getName() << "'\n"; 283 else 284 DOUT << *V); 285 // Only instructions go on the work list 286 OverdefinedInstWorkList.push_back(V); 287 } 288 } 289 290 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { 291 if (IV.isOverdefined() || MergeWithV.isUndefined()) 292 return; // Noop. 293 if (MergeWithV.isOverdefined()) 294 markOverdefined(IV, V); 295 else if (IV.isUndefined()) 296 markConstant(IV, V, MergeWithV.getConstant()); 297 else if (IV.getConstant() != MergeWithV.getConstant()) 298 markOverdefined(IV, V); 299 } 300 301 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) { 302 return mergeInValue(ValueState[V], V, MergeWithV); 303 } 304 305 306 // getValueState - Return the LatticeVal object that corresponds to the value. 307 // This function is necessary because not all values should start out in the 308 // underdefined state... Argument's should be overdefined, and 309 // constants should be marked as constants. If a value is not known to be an 310 // Instruction object, then use this accessor to get its value from the map. 311 // 312 inline LatticeVal &getValueState(Value *V) { 313 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V); 314 if (I != ValueState.end()) return I->second; // Common case, in the map 315 316 if (Constant *C = dyn_cast<Constant>(V)) { 317 if (isa<UndefValue>(V)) { 318 // Nothing to do, remain undefined. 319 } else { 320 LatticeVal &LV = ValueState[C]; 321 LV.markConstant(C); // Constants are constant 322 return LV; 323 } 324 } 325 // All others are underdefined by default... 326 return ValueState[V]; 327 } 328 329 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 330 // work list if it is not already executable... 331 // 332 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 333 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 334 return; // This edge is already known to be executable! 335 336 if (BBExecutable.count(Dest)) { 337 DOUT << "Marking Edge Executable: " << Source->getName() 338 << " -> " << Dest->getName() << "\n"; 339 340 // The destination is already executable, but we just made an edge 341 // feasible that wasn't before. Revisit the PHI nodes in the block 342 // because they have potentially new operands. 343 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 344 visitPHINode(*cast<PHINode>(I)); 345 346 } else { 347 MarkBlockExecutable(Dest); 348 } 349 } 350 351 // getFeasibleSuccessors - Return a vector of booleans to indicate which 352 // successors are reachable from a given terminator instruction. 353 // 354 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); 355 356 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 357 // block to the 'To' basic block is currently feasible... 358 // 359 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 360 361 // OperandChangedState - This method is invoked on all of the users of an 362 // instruction that was just changed state somehow.... Based on this 363 // information, we need to update the specified user of this instruction. 364 // 365 void OperandChangedState(User *U) { 366 // Only instructions use other variable values! 367 Instruction &I = cast<Instruction>(*U); 368 if (BBExecutable.count(I.getParent())) // Inst is executable? 369 visit(I); 370 } 371 372private: 373 friend class InstVisitor<SCCPSolver>; 374 375 // visit implementations - Something changed in this instruction... Either an 376 // operand made a transition, or the instruction is newly executable. Change 377 // the value type of I to reflect these changes if appropriate. 378 // 379 void visitPHINode(PHINode &I); 380 381 // Terminators 382 void visitReturnInst(ReturnInst &I); 383 void visitTerminatorInst(TerminatorInst &TI); 384 385 void visitCastInst(CastInst &I); 386 void visitGetResultInst(GetResultInst &GRI); 387 void visitSelectInst(SelectInst &I); 388 void visitBinaryOperator(Instruction &I); 389 void visitCmpInst(CmpInst &I); 390 void visitExtractElementInst(ExtractElementInst &I); 391 void visitInsertElementInst(InsertElementInst &I); 392 void visitShuffleVectorInst(ShuffleVectorInst &I); 393 394 // Instructions that cannot be folded away... 395 void visitStoreInst (Instruction &I); 396 void visitLoadInst (LoadInst &I); 397 void visitGetElementPtrInst(GetElementPtrInst &I); 398 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); } 399 void visitInvokeInst (InvokeInst &II) { 400 visitCallSite(CallSite::get(&II)); 401 visitTerminatorInst(II); 402 } 403 void visitCallSite (CallSite CS); 404 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 405 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 406 void visitAllocationInst(Instruction &I) { markOverdefined(&I); } 407 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 408 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 409 void visitFreeInst (Instruction &I) { /*returns void*/ } 410 411 void visitInstruction(Instruction &I) { 412 // If a new instruction is added to LLVM that we don't handle... 413 cerr << "SCCP: Don't know how to handle: " << I; 414 markOverdefined(&I); // Just in case 415 } 416}; 417 418} // end anonymous namespace 419 420 421// getFeasibleSuccessors - Return a vector of booleans to indicate which 422// successors are reachable from a given terminator instruction. 423// 424void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 425 SmallVector<bool, 16> &Succs) { 426 Succs.resize(TI.getNumSuccessors()); 427 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 428 if (BI->isUnconditional()) { 429 Succs[0] = true; 430 } else { 431 LatticeVal &BCValue = getValueState(BI->getCondition()); 432 if (BCValue.isOverdefined() || 433 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) { 434 // Overdefined condition variables, and branches on unfoldable constant 435 // conditions, mean the branch could go either way. 436 Succs[0] = Succs[1] = true; 437 } else if (BCValue.isConstant()) { 438 // Constant condition variables mean the branch can only go a single way 439 Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true; 440 } 441 } 442 } else if (isa<InvokeInst>(&TI)) { 443 // Invoke instructions successors are always executable. 444 Succs[0] = Succs[1] = true; 445 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 446 LatticeVal &SCValue = getValueState(SI->getCondition()); 447 if (SCValue.isOverdefined() || // Overdefined condition? 448 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 449 // All destinations are executable! 450 Succs.assign(TI.getNumSuccessors(), true); 451 } else if (SCValue.isConstant()) { 452 Constant *CPV = SCValue.getConstant(); 453 // Make sure to skip the "default value" which isn't a value 454 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { 455 if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... 456 Succs[i] = true; 457 return; 458 } 459 } 460 461 // Constant value not equal to any of the branches... must execute 462 // default branch then... 463 Succs[0] = true; 464 } 465 } else { 466 assert(0 && "SCCP: Don't know how to handle this terminator!"); 467 } 468} 469 470 471// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 472// block to the 'To' basic block is currently feasible... 473// 474bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 475 assert(BBExecutable.count(To) && "Dest should always be alive!"); 476 477 // Make sure the source basic block is executable!! 478 if (!BBExecutable.count(From)) return false; 479 480 // Check to make sure this edge itself is actually feasible now... 481 TerminatorInst *TI = From->getTerminator(); 482 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 483 if (BI->isUnconditional()) 484 return true; 485 else { 486 LatticeVal &BCValue = getValueState(BI->getCondition()); 487 if (BCValue.isOverdefined()) { 488 // Overdefined condition variables mean the branch could go either way. 489 return true; 490 } else if (BCValue.isConstant()) { 491 // Not branching on an evaluatable constant? 492 if (!isa<ConstantInt>(BCValue.getConstant())) return true; 493 494 // Constant condition variables mean the branch can only go a single way 495 return BI->getSuccessor(BCValue.getConstant() == 496 ConstantInt::getFalse()) == To; 497 } 498 return false; 499 } 500 } else if (isa<InvokeInst>(TI)) { 501 // Invoke instructions successors are always executable. 502 return true; 503 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 504 LatticeVal &SCValue = getValueState(SI->getCondition()); 505 if (SCValue.isOverdefined()) { // Overdefined condition? 506 // All destinations are executable! 507 return true; 508 } else if (SCValue.isConstant()) { 509 Constant *CPV = SCValue.getConstant(); 510 if (!isa<ConstantInt>(CPV)) 511 return true; // not a foldable constant? 512 513 // Make sure to skip the "default value" which isn't a value 514 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 515 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 516 return SI->getSuccessor(i) == To; 517 518 // Constant value not equal to any of the branches... must execute 519 // default branch then... 520 return SI->getDefaultDest() == To; 521 } 522 return false; 523 } else { 524 cerr << "Unknown terminator instruction: " << *TI; 525 abort(); 526 } 527} 528 529// visit Implementations - Something changed in this instruction... Either an 530// operand made a transition, or the instruction is newly executable. Change 531// the value type of I to reflect these changes if appropriate. This method 532// makes sure to do the following actions: 533// 534// 1. If a phi node merges two constants in, and has conflicting value coming 535// from different branches, or if the PHI node merges in an overdefined 536// value, then the PHI node becomes overdefined. 537// 2. If a phi node merges only constants in, and they all agree on value, the 538// PHI node becomes a constant value equal to that. 539// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 540// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 541// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 542// 6. If a conditional branch has a value that is constant, make the selected 543// destination executable 544// 7. If a conditional branch has a value that is overdefined, make all 545// successors executable. 546// 547void SCCPSolver::visitPHINode(PHINode &PN) { 548 LatticeVal &PNIV = getValueState(&PN); 549 if (PNIV.isOverdefined()) { 550 // There may be instructions using this PHI node that are not overdefined 551 // themselves. If so, make sure that they know that the PHI node operand 552 // changed. 553 std::multimap<PHINode*, Instruction*>::iterator I, E; 554 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 555 if (I != E) { 556 SmallVector<Instruction*, 16> Users; 557 for (; I != E; ++I) Users.push_back(I->second); 558 while (!Users.empty()) { 559 visit(Users.back()); 560 Users.pop_back(); 561 } 562 } 563 return; // Quick exit 564 } 565 566 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 567 // and slow us down a lot. Just mark them overdefined. 568 if (PN.getNumIncomingValues() > 64) { 569 markOverdefined(PNIV, &PN); 570 return; 571 } 572 573 // Look at all of the executable operands of the PHI node. If any of them 574 // are overdefined, the PHI becomes overdefined as well. If they are all 575 // constant, and they agree with each other, the PHI becomes the identical 576 // constant. If they are constant and don't agree, the PHI is overdefined. 577 // If there are no executable operands, the PHI remains undefined. 578 // 579 Constant *OperandVal = 0; 580 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 581 LatticeVal &IV = getValueState(PN.getIncomingValue(i)); 582 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 583 584 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 585 if (IV.isOverdefined()) { // PHI node becomes overdefined! 586 markOverdefined(PNIV, &PN); 587 return; 588 } 589 590 if (OperandVal == 0) { // Grab the first value... 591 OperandVal = IV.getConstant(); 592 } else { // Another value is being merged in! 593 // There is already a reachable operand. If we conflict with it, 594 // then the PHI node becomes overdefined. If we agree with it, we 595 // can continue on. 596 597 // Check to see if there are two different constants merging... 598 if (IV.getConstant() != OperandVal) { 599 // Yes there is. This means the PHI node is not constant. 600 // You must be overdefined poor PHI. 601 // 602 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined 603 return; // I'm done analyzing you 604 } 605 } 606 } 607 } 608 609 // If we exited the loop, this means that the PHI node only has constant 610 // arguments that agree with each other(and OperandVal is the constant) or 611 // OperandVal is null because there are no defined incoming arguments. If 612 // this is the case, the PHI remains undefined. 613 // 614 if (OperandVal) 615 markConstant(PNIV, &PN, OperandVal); // Acquire operand value 616} 617 618void SCCPSolver::visitReturnInst(ReturnInst &I) { 619 if (I.getNumOperands() == 0) return; // Ret void 620 621 Function *F = I.getParent()->getParent(); 622 // If we are tracking the return value of this function, merge it in. 623 if (!F->hasInternalLinkage()) 624 return; 625 626 if (!TrackedRetVals.empty() && I.getNumOperands() == 1) { 627 DenseMap<Function*, LatticeVal>::iterator TFRVI = 628 TrackedRetVals.find(F); 629 if (TFRVI != TrackedRetVals.end() && 630 !TFRVI->second.isOverdefined()) { 631 LatticeVal &IV = getValueState(I.getOperand(0)); 632 mergeInValue(TFRVI->second, F, IV); 633 return; 634 } 635 } 636 637 // Handle functions that return multiple values. 638 if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) { 639 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 640 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator 641 It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 642 if (It == TrackedMultipleRetVals.end()) break; 643 mergeInValue(It->second, F, getValueState(I.getOperand(i))); 644 } 645 } 646} 647 648void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 649 SmallVector<bool, 16> SuccFeasible; 650 getFeasibleSuccessors(TI, SuccFeasible); 651 652 BasicBlock *BB = TI.getParent(); 653 654 // Mark all feasible successors executable... 655 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 656 if (SuccFeasible[i]) 657 markEdgeExecutable(BB, TI.getSuccessor(i)); 658} 659 660void SCCPSolver::visitCastInst(CastInst &I) { 661 Value *V = I.getOperand(0); 662 LatticeVal &VState = getValueState(V); 663 if (VState.isOverdefined()) // Inherit overdefinedness of operand 664 markOverdefined(&I); 665 else if (VState.isConstant()) // Propagate constant value 666 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 667 VState.getConstant(), I.getType())); 668} 669 670void SCCPSolver::visitGetResultInst(GetResultInst &GRI) { 671 Value *Aggr = GRI.getOperand(0); 672 673 // If the operand to the getresult is an undef, the result is undef. 674 if (isa<UndefValue>(Aggr)) 675 return; 676 677 Function *F; 678 if (CallInst *CI = dyn_cast<CallInst>(Aggr)) 679 F = CI->getCalledFunction(); 680 else 681 F = cast<InvokeInst>(Aggr)->getCalledFunction(); 682 683 // TODO: If IPSCCP resolves the callee of this function, we could propagate a 684 // result back! 685 if (F == 0 || TrackedMultipleRetVals.empty()) { 686 markOverdefined(&GRI); 687 return; 688 } 689 690 // See if we are tracking the result of the callee. 691 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator 692 It = TrackedMultipleRetVals.find(std::make_pair(F, GRI.getIndex())); 693 694 // If not tracking this function (for example, it is a declaration) just move 695 // to overdefined. 696 if (It == TrackedMultipleRetVals.end()) { 697 markOverdefined(&GRI); 698 return; 699 } 700 701 // Otherwise, the value will be merged in here as a result of CallSite 702 // handling. 703} 704 705void SCCPSolver::visitSelectInst(SelectInst &I) { 706 LatticeVal &CondValue = getValueState(I.getCondition()); 707 if (CondValue.isUndefined()) 708 return; 709 if (CondValue.isConstant()) { 710 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){ 711 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue() 712 : I.getFalseValue())); 713 return; 714 } 715 } 716 717 // Otherwise, the condition is overdefined or a constant we can't evaluate. 718 // See if we can produce something better than overdefined based on the T/F 719 // value. 720 LatticeVal &TVal = getValueState(I.getTrueValue()); 721 LatticeVal &FVal = getValueState(I.getFalseValue()); 722 723 // select ?, C, C -> C. 724 if (TVal.isConstant() && FVal.isConstant() && 725 TVal.getConstant() == FVal.getConstant()) { 726 markConstant(&I, FVal.getConstant()); 727 return; 728 } 729 730 if (TVal.isUndefined()) { // select ?, undef, X -> X. 731 mergeInValue(&I, FVal); 732 } else if (FVal.isUndefined()) { // select ?, X, undef -> X. 733 mergeInValue(&I, TVal); 734 } else { 735 markOverdefined(&I); 736 } 737} 738 739// Handle BinaryOperators and Shift Instructions... 740void SCCPSolver::visitBinaryOperator(Instruction &I) { 741 LatticeVal &IV = ValueState[&I]; 742 if (IV.isOverdefined()) return; 743 744 LatticeVal &V1State = getValueState(I.getOperand(0)); 745 LatticeVal &V2State = getValueState(I.getOperand(1)); 746 747 if (V1State.isOverdefined() || V2State.isOverdefined()) { 748 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 749 // operand is overdefined. 750 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 751 LatticeVal *NonOverdefVal = 0; 752 if (!V1State.isOverdefined()) { 753 NonOverdefVal = &V1State; 754 } else if (!V2State.isOverdefined()) { 755 NonOverdefVal = &V2State; 756 } 757 758 if (NonOverdefVal) { 759 if (NonOverdefVal->isUndefined()) { 760 // Could annihilate value. 761 if (I.getOpcode() == Instruction::And) 762 markConstant(IV, &I, Constant::getNullValue(I.getType())); 763 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType())) 764 markConstant(IV, &I, ConstantVector::getAllOnesValue(PT)); 765 else 766 markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType())); 767 return; 768 } else { 769 if (I.getOpcode() == Instruction::And) { 770 if (NonOverdefVal->getConstant()->isNullValue()) { 771 markConstant(IV, &I, NonOverdefVal->getConstant()); 772 return; // X and 0 = 0 773 } 774 } else { 775 if (ConstantInt *CI = 776 dyn_cast<ConstantInt>(NonOverdefVal->getConstant())) 777 if (CI->isAllOnesValue()) { 778 markConstant(IV, &I, NonOverdefVal->getConstant()); 779 return; // X or -1 = -1 780 } 781 } 782 } 783 } 784 } 785 786 787 // If both operands are PHI nodes, it is possible that this instruction has 788 // a constant value, despite the fact that the PHI node doesn't. Check for 789 // this condition now. 790 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 791 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 792 if (PN1->getParent() == PN2->getParent()) { 793 // Since the two PHI nodes are in the same basic block, they must have 794 // entries for the same predecessors. Walk the predecessor list, and 795 // if all of the incoming values are constants, and the result of 796 // evaluating this expression with all incoming value pairs is the 797 // same, then this expression is a constant even though the PHI node 798 // is not a constant! 799 LatticeVal Result; 800 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 801 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 802 BasicBlock *InBlock = PN1->getIncomingBlock(i); 803 LatticeVal &In2 = 804 getValueState(PN2->getIncomingValueForBlock(InBlock)); 805 806 if (In1.isOverdefined() || In2.isOverdefined()) { 807 Result.markOverdefined(); 808 break; // Cannot fold this operation over the PHI nodes! 809 } else if (In1.isConstant() && In2.isConstant()) { 810 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), 811 In2.getConstant()); 812 if (Result.isUndefined()) 813 Result.markConstant(V); 814 else if (Result.isConstant() && Result.getConstant() != V) { 815 Result.markOverdefined(); 816 break; 817 } 818 } 819 } 820 821 // If we found a constant value here, then we know the instruction is 822 // constant despite the fact that the PHI nodes are overdefined. 823 if (Result.isConstant()) { 824 markConstant(IV, &I, Result.getConstant()); 825 // Remember that this instruction is virtually using the PHI node 826 // operands. 827 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 828 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 829 return; 830 } else if (Result.isUndefined()) { 831 return; 832 } 833 834 // Okay, this really is overdefined now. Since we might have 835 // speculatively thought that this was not overdefined before, and 836 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 837 // make sure to clean out any entries that we put there, for 838 // efficiency. 839 std::multimap<PHINode*, Instruction*>::iterator It, E; 840 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 841 while (It != E) { 842 if (It->second == &I) { 843 UsersOfOverdefinedPHIs.erase(It++); 844 } else 845 ++It; 846 } 847 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 848 while (It != E) { 849 if (It->second == &I) { 850 UsersOfOverdefinedPHIs.erase(It++); 851 } else 852 ++It; 853 } 854 } 855 856 markOverdefined(IV, &I); 857 } else if (V1State.isConstant() && V2State.isConstant()) { 858 markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 859 V2State.getConstant())); 860 } 861} 862 863// Handle ICmpInst instruction... 864void SCCPSolver::visitCmpInst(CmpInst &I) { 865 LatticeVal &IV = ValueState[&I]; 866 if (IV.isOverdefined()) return; 867 868 LatticeVal &V1State = getValueState(I.getOperand(0)); 869 LatticeVal &V2State = getValueState(I.getOperand(1)); 870 871 if (V1State.isOverdefined() || V2State.isOverdefined()) { 872 // If both operands are PHI nodes, it is possible that this instruction has 873 // a constant value, despite the fact that the PHI node doesn't. Check for 874 // this condition now. 875 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 876 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 877 if (PN1->getParent() == PN2->getParent()) { 878 // Since the two PHI nodes are in the same basic block, they must have 879 // entries for the same predecessors. Walk the predecessor list, and 880 // if all of the incoming values are constants, and the result of 881 // evaluating this expression with all incoming value pairs is the 882 // same, then this expression is a constant even though the PHI node 883 // is not a constant! 884 LatticeVal Result; 885 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 886 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 887 BasicBlock *InBlock = PN1->getIncomingBlock(i); 888 LatticeVal &In2 = 889 getValueState(PN2->getIncomingValueForBlock(InBlock)); 890 891 if (In1.isOverdefined() || In2.isOverdefined()) { 892 Result.markOverdefined(); 893 break; // Cannot fold this operation over the PHI nodes! 894 } else if (In1.isConstant() && In2.isConstant()) { 895 Constant *V = ConstantExpr::getCompare(I.getPredicate(), 896 In1.getConstant(), 897 In2.getConstant()); 898 if (Result.isUndefined()) 899 Result.markConstant(V); 900 else if (Result.isConstant() && Result.getConstant() != V) { 901 Result.markOverdefined(); 902 break; 903 } 904 } 905 } 906 907 // If we found a constant value here, then we know the instruction is 908 // constant despite the fact that the PHI nodes are overdefined. 909 if (Result.isConstant()) { 910 markConstant(IV, &I, Result.getConstant()); 911 // Remember that this instruction is virtually using the PHI node 912 // operands. 913 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 914 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 915 return; 916 } else if (Result.isUndefined()) { 917 return; 918 } 919 920 // Okay, this really is overdefined now. Since we might have 921 // speculatively thought that this was not overdefined before, and 922 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 923 // make sure to clean out any entries that we put there, for 924 // efficiency. 925 std::multimap<PHINode*, Instruction*>::iterator It, E; 926 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 927 while (It != E) { 928 if (It->second == &I) { 929 UsersOfOverdefinedPHIs.erase(It++); 930 } else 931 ++It; 932 } 933 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 934 while (It != E) { 935 if (It->second == &I) { 936 UsersOfOverdefinedPHIs.erase(It++); 937 } else 938 ++It; 939 } 940 } 941 942 markOverdefined(IV, &I); 943 } else if (V1State.isConstant() && V2State.isConstant()) { 944 markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 945 V1State.getConstant(), 946 V2State.getConstant())); 947 } 948} 949 950void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 951 // FIXME : SCCP does not handle vectors properly. 952 markOverdefined(&I); 953 return; 954 955#if 0 956 LatticeVal &ValState = getValueState(I.getOperand(0)); 957 LatticeVal &IdxState = getValueState(I.getOperand(1)); 958 959 if (ValState.isOverdefined() || IdxState.isOverdefined()) 960 markOverdefined(&I); 961 else if(ValState.isConstant() && IdxState.isConstant()) 962 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 963 IdxState.getConstant())); 964#endif 965} 966 967void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 968 // FIXME : SCCP does not handle vectors properly. 969 markOverdefined(&I); 970 return; 971#if 0 972 LatticeVal &ValState = getValueState(I.getOperand(0)); 973 LatticeVal &EltState = getValueState(I.getOperand(1)); 974 LatticeVal &IdxState = getValueState(I.getOperand(2)); 975 976 if (ValState.isOverdefined() || EltState.isOverdefined() || 977 IdxState.isOverdefined()) 978 markOverdefined(&I); 979 else if(ValState.isConstant() && EltState.isConstant() && 980 IdxState.isConstant()) 981 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 982 EltState.getConstant(), 983 IdxState.getConstant())); 984 else if (ValState.isUndefined() && EltState.isConstant() && 985 IdxState.isConstant()) 986 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 987 EltState.getConstant(), 988 IdxState.getConstant())); 989#endif 990} 991 992void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 993 // FIXME : SCCP does not handle vectors properly. 994 markOverdefined(&I); 995 return; 996#if 0 997 LatticeVal &V1State = getValueState(I.getOperand(0)); 998 LatticeVal &V2State = getValueState(I.getOperand(1)); 999 LatticeVal &MaskState = getValueState(I.getOperand(2)); 1000 1001 if (MaskState.isUndefined() || 1002 (V1State.isUndefined() && V2State.isUndefined())) 1003 return; // Undefined output if mask or both inputs undefined. 1004 1005 if (V1State.isOverdefined() || V2State.isOverdefined() || 1006 MaskState.isOverdefined()) { 1007 markOverdefined(&I); 1008 } else { 1009 // A mix of constant/undef inputs. 1010 Constant *V1 = V1State.isConstant() ? 1011 V1State.getConstant() : UndefValue::get(I.getType()); 1012 Constant *V2 = V2State.isConstant() ? 1013 V2State.getConstant() : UndefValue::get(I.getType()); 1014 Constant *Mask = MaskState.isConstant() ? 1015 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 1016 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 1017 } 1018#endif 1019} 1020 1021// Handle getelementptr instructions... if all operands are constants then we 1022// can turn this into a getelementptr ConstantExpr. 1023// 1024void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1025 LatticeVal &IV = ValueState[&I]; 1026 if (IV.isOverdefined()) return; 1027 1028 SmallVector<Constant*, 8> Operands; 1029 Operands.reserve(I.getNumOperands()); 1030 1031 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1032 LatticeVal &State = getValueState(I.getOperand(i)); 1033 if (State.isUndefined()) 1034 return; // Operands are not resolved yet... 1035 else if (State.isOverdefined()) { 1036 markOverdefined(IV, &I); 1037 return; 1038 } 1039 assert(State.isConstant() && "Unknown state!"); 1040 Operands.push_back(State.getConstant()); 1041 } 1042 1043 Constant *Ptr = Operands[0]; 1044 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 1045 1046 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0], 1047 Operands.size())); 1048} 1049 1050void SCCPSolver::visitStoreInst(Instruction &SI) { 1051 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1052 return; 1053 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1054 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1055 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1056 1057 // Get the value we are storing into the global. 1058 LatticeVal &PtrVal = getValueState(SI.getOperand(0)); 1059 1060 mergeInValue(I->second, GV, PtrVal); 1061 if (I->second.isOverdefined()) 1062 TrackedGlobals.erase(I); // No need to keep tracking this! 1063} 1064 1065 1066// Handle load instructions. If the operand is a constant pointer to a constant 1067// global, we can replace the load with the loaded constant value! 1068void SCCPSolver::visitLoadInst(LoadInst &I) { 1069 LatticeVal &IV = ValueState[&I]; 1070 if (IV.isOverdefined()) return; 1071 1072 LatticeVal &PtrVal = getValueState(I.getOperand(0)); 1073 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1074 if (PtrVal.isConstant() && !I.isVolatile()) { 1075 Value *Ptr = PtrVal.getConstant(); 1076 // TODO: Consider a target hook for valid address spaces for this xform. 1077 if (isa<ConstantPointerNull>(Ptr) && 1078 cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) { 1079 // load null -> null 1080 markConstant(IV, &I, Constant::getNullValue(I.getType())); 1081 return; 1082 } 1083 1084 // Transform load (constant global) into the value loaded. 1085 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1086 if (GV->isConstant()) { 1087 if (!GV->isDeclaration()) { 1088 markConstant(IV, &I, GV->getInitializer()); 1089 return; 1090 } 1091 } else if (!TrackedGlobals.empty()) { 1092 // If we are tracking this global, merge in the known value for it. 1093 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1094 TrackedGlobals.find(GV); 1095 if (It != TrackedGlobals.end()) { 1096 mergeInValue(IV, &I, It->second); 1097 return; 1098 } 1099 } 1100 } 1101 1102 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 1103 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 1104 if (CE->getOpcode() == Instruction::GetElementPtr) 1105 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 1106 if (GV->isConstant() && !GV->isDeclaration()) 1107 if (Constant *V = 1108 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) { 1109 markConstant(IV, &I, V); 1110 return; 1111 } 1112 } 1113 1114 // Otherwise we cannot say for certain what value this load will produce. 1115 // Bail out. 1116 markOverdefined(IV, &I); 1117} 1118 1119void SCCPSolver::visitCallSite(CallSite CS) { 1120 Function *F = CS.getCalledFunction(); 1121 Instruction *I = CS.getInstruction(); 1122 1123 // The common case is that we aren't tracking the callee, either because we 1124 // are not doing interprocedural analysis or the callee is indirect, or is 1125 // external. Handle these cases first. 1126 if (F == 0 || !F->hasInternalLinkage()) { 1127CallOverdefined: 1128 // Void return and not tracking callee, just bail. 1129 if (I->getType() == Type::VoidTy) return; 1130 1131 // Otherwise, if we have a single return value case, and if the function is 1132 // a declaration, maybe we can constant fold it. 1133 if (!isa<StructType>(I->getType()) && F && F->isDeclaration() && 1134 canConstantFoldCallTo(F)) { 1135 1136 SmallVector<Constant*, 8> Operands; 1137 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1138 AI != E; ++AI) { 1139 LatticeVal &State = getValueState(*AI); 1140 if (State.isUndefined()) 1141 return; // Operands are not resolved yet. 1142 else if (State.isOverdefined()) { 1143 markOverdefined(I); 1144 return; 1145 } 1146 assert(State.isConstant() && "Unknown state!"); 1147 Operands.push_back(State.getConstant()); 1148 } 1149 1150 // If we can constant fold this, mark the result of the call as a 1151 // constant. 1152 if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size())) { 1153 markConstant(I, C); 1154 return; 1155 } 1156 } 1157 1158 // Otherwise, we don't know anything about this call, mark it overdefined. 1159 markOverdefined(I); 1160 return; 1161 } 1162 1163 // If this is a single/zero retval case, see if we're tracking the function. 1164 const StructType *RetSTy = dyn_cast<StructType>(I->getType()); 1165 if (RetSTy == 0) { 1166 // Check to see if we're tracking this callee, if not, handle it in the 1167 // common path above. 1168 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1169 if (TFRVI == TrackedRetVals.end()) 1170 goto CallOverdefined; 1171 1172 // If so, propagate the return value of the callee into this call result. 1173 mergeInValue(I, TFRVI->second); 1174 } else { 1175 // Check to see if we're tracking this callee, if not, handle it in the 1176 // common path above. 1177 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator 1178 TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0)); 1179 if (TMRVI == TrackedMultipleRetVals.end()) 1180 goto CallOverdefined; 1181 1182 // If we are tracking this callee, propagate the return values of the call 1183 // into this call site. We do this by walking all the getresult uses. 1184 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1185 UI != E; ++UI) { 1186 GetResultInst *GRI = cast<GetResultInst>(*UI); 1187 mergeInValue(GRI, 1188 TrackedMultipleRetVals[std::make_pair(F, GRI->getIndex())]); 1189 } 1190 } 1191 1192 // Finally, if this is the first call to the function hit, mark its entry 1193 // block executable. 1194 if (!BBExecutable.count(F->begin())) 1195 MarkBlockExecutable(F->begin()); 1196 1197 // Propagate information from this call site into the callee. 1198 CallSite::arg_iterator CAI = CS.arg_begin(); 1199 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1200 AI != E; ++AI, ++CAI) { 1201 LatticeVal &IV = ValueState[AI]; 1202 if (!IV.isOverdefined()) 1203 mergeInValue(IV, AI, getValueState(*CAI)); 1204 } 1205} 1206 1207 1208void SCCPSolver::Solve() { 1209 // Process the work lists until they are empty! 1210 while (!BBWorkList.empty() || !InstWorkList.empty() || 1211 !OverdefinedInstWorkList.empty()) { 1212 // Process the instruction work list... 1213 while (!OverdefinedInstWorkList.empty()) { 1214 Value *I = OverdefinedInstWorkList.back(); 1215 OverdefinedInstWorkList.pop_back(); 1216 1217 DOUT << "\nPopped off OI-WL: " << *I; 1218 1219 // "I" got into the work list because it either made the transition from 1220 // bottom to constant 1221 // 1222 // Anything on this worklist that is overdefined need not be visited 1223 // since all of its users will have already been marked as overdefined 1224 // Update all of the users of this instruction's value... 1225 // 1226 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1227 UI != E; ++UI) 1228 OperandChangedState(*UI); 1229 } 1230 // Process the instruction work list... 1231 while (!InstWorkList.empty()) { 1232 Value *I = InstWorkList.back(); 1233 InstWorkList.pop_back(); 1234 1235 DOUT << "\nPopped off I-WL: " << *I; 1236 1237 // "I" got into the work list because it either made the transition from 1238 // bottom to constant 1239 // 1240 // Anything on this worklist that is overdefined need not be visited 1241 // since all of its users will have already been marked as overdefined. 1242 // Update all of the users of this instruction's value... 1243 // 1244 if (!getValueState(I).isOverdefined()) 1245 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1246 UI != E; ++UI) 1247 OperandChangedState(*UI); 1248 } 1249 1250 // Process the basic block work list... 1251 while (!BBWorkList.empty()) { 1252 BasicBlock *BB = BBWorkList.back(); 1253 BBWorkList.pop_back(); 1254 1255 DOUT << "\nPopped off BBWL: " << *BB; 1256 1257 // Notify all instructions in this basic block that they are newly 1258 // executable. 1259 visit(BB); 1260 } 1261 } 1262} 1263 1264/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1265/// that branches on undef values cannot reach any of their successors. 1266/// However, this is not a safe assumption. After we solve dataflow, this 1267/// method should be use to handle this. If this returns true, the solver 1268/// should be rerun. 1269/// 1270/// This method handles this by finding an unresolved branch and marking it one 1271/// of the edges from the block as being feasible, even though the condition 1272/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1273/// CFG and only slightly pessimizes the analysis results (by marking one, 1274/// potentially infeasible, edge feasible). This cannot usefully modify the 1275/// constraints on the condition of the branch, as that would impact other users 1276/// of the value. 1277/// 1278/// This scan also checks for values that use undefs, whose results are actually 1279/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1280/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1281/// even if X isn't defined. 1282bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1283 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1284 if (!BBExecutable.count(BB)) 1285 continue; 1286 1287 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1288 // Look for instructions which produce undef values. 1289 if (I->getType() == Type::VoidTy) continue; 1290 1291 LatticeVal &LV = getValueState(I); 1292 if (!LV.isUndefined()) continue; 1293 1294 // Get the lattice values of the first two operands for use below. 1295 LatticeVal &Op0LV = getValueState(I->getOperand(0)); 1296 LatticeVal Op1LV; 1297 if (I->getNumOperands() == 2) { 1298 // If this is a two-operand instruction, and if both operands are 1299 // undefs, the result stays undef. 1300 Op1LV = getValueState(I->getOperand(1)); 1301 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1302 continue; 1303 } 1304 1305 // If this is an instructions whose result is defined even if the input is 1306 // not fully defined, propagate the information. 1307 const Type *ITy = I->getType(); 1308 switch (I->getOpcode()) { 1309 default: break; // Leave the instruction as an undef. 1310 case Instruction::ZExt: 1311 // After a zero extend, we know the top part is zero. SExt doesn't have 1312 // to be handled here, because we don't know whether the top part is 1's 1313 // or 0's. 1314 assert(Op0LV.isUndefined()); 1315 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1316 return true; 1317 case Instruction::Mul: 1318 case Instruction::And: 1319 // undef * X -> 0. X could be zero. 1320 // undef & X -> 0. X could be zero. 1321 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1322 return true; 1323 1324 case Instruction::Or: 1325 // undef | X -> -1. X could be -1. 1326 if (const VectorType *PTy = dyn_cast<VectorType>(ITy)) 1327 markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy)); 1328 else 1329 markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy)); 1330 return true; 1331 1332 case Instruction::SDiv: 1333 case Instruction::UDiv: 1334 case Instruction::SRem: 1335 case Instruction::URem: 1336 // X / undef -> undef. No change. 1337 // X % undef -> undef. No change. 1338 if (Op1LV.isUndefined()) break; 1339 1340 // undef / X -> 0. X could be maxint. 1341 // undef % X -> 0. X could be 1. 1342 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1343 return true; 1344 1345 case Instruction::AShr: 1346 // undef >>s X -> undef. No change. 1347 if (Op0LV.isUndefined()) break; 1348 1349 // X >>s undef -> X. X could be 0, X could have the high-bit known set. 1350 if (Op0LV.isConstant()) 1351 markForcedConstant(LV, I, Op0LV.getConstant()); 1352 else 1353 markOverdefined(LV, I); 1354 return true; 1355 case Instruction::LShr: 1356 case Instruction::Shl: 1357 // undef >> X -> undef. No change. 1358 // undef << X -> undef. No change. 1359 if (Op0LV.isUndefined()) break; 1360 1361 // X >> undef -> 0. X could be 0. 1362 // X << undef -> 0. X could be 0. 1363 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1364 return true; 1365 case Instruction::Select: 1366 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1367 if (Op0LV.isUndefined()) { 1368 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1369 Op1LV = getValueState(I->getOperand(2)); 1370 } else if (Op1LV.isUndefined()) { 1371 // c ? undef : undef -> undef. No change. 1372 Op1LV = getValueState(I->getOperand(2)); 1373 if (Op1LV.isUndefined()) 1374 break; 1375 // Otherwise, c ? undef : x -> x. 1376 } else { 1377 // Leave Op1LV as Operand(1)'s LatticeValue. 1378 } 1379 1380 if (Op1LV.isConstant()) 1381 markForcedConstant(LV, I, Op1LV.getConstant()); 1382 else 1383 markOverdefined(LV, I); 1384 return true; 1385 } 1386 } 1387 1388 TerminatorInst *TI = BB->getTerminator(); 1389 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1390 if (!BI->isConditional()) continue; 1391 if (!getValueState(BI->getCondition()).isUndefined()) 1392 continue; 1393 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1394 if (!getValueState(SI->getCondition()).isUndefined()) 1395 continue; 1396 } else { 1397 continue; 1398 } 1399 1400 // If the edge to the second successor isn't thought to be feasible yet, 1401 // mark it so now. We pick the second one so that this goes to some 1402 // enumerated value in a switch instead of going to the default destination. 1403 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1)))) 1404 continue; 1405 1406 // Otherwise, it isn't already thought to be feasible. Mark it as such now 1407 // and return. This will make other blocks reachable, which will allow new 1408 // values to be discovered and existing ones to be moved in the lattice. 1409 markEdgeExecutable(BB, TI->getSuccessor(1)); 1410 1411 // This must be a conditional branch of switch on undef. At this point, 1412 // force the old terminator to branch to the first successor. This is 1413 // required because we are now influencing the dataflow of the function with 1414 // the assumption that this edge is taken. If we leave the branch condition 1415 // as undef, then further analysis could think the undef went another way 1416 // leading to an inconsistent set of conclusions. 1417 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1418 BI->setCondition(ConstantInt::getFalse()); 1419 } else { 1420 SwitchInst *SI = cast<SwitchInst>(TI); 1421 SI->setCondition(SI->getCaseValue(1)); 1422 } 1423 1424 return true; 1425 } 1426 1427 return false; 1428} 1429 1430 1431namespace { 1432 //===--------------------------------------------------------------------===// 1433 // 1434 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1435 /// Sparse Conditional Constant Propagator. 1436 /// 1437 struct VISIBILITY_HIDDEN SCCP : public FunctionPass { 1438 static char ID; // Pass identification, replacement for typeid 1439 SCCP() : FunctionPass((intptr_t)&ID) {} 1440 1441 // runOnFunction - Run the Sparse Conditional Constant Propagation 1442 // algorithm, and return true if the function was modified. 1443 // 1444 bool runOnFunction(Function &F); 1445 1446 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1447 AU.setPreservesCFG(); 1448 } 1449 }; 1450 1451 char SCCP::ID = 0; 1452 RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); 1453} // end anonymous namespace 1454 1455 1456// createSCCPPass - This is the public interface to this file... 1457FunctionPass *llvm::createSCCPPass() { 1458 return new SCCP(); 1459} 1460 1461 1462// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1463// and return true if the function was modified. 1464// 1465bool SCCP::runOnFunction(Function &F) { 1466 DOUT << "SCCP on function '" << F.getName() << "'\n"; 1467 SCCPSolver Solver; 1468 1469 // Mark the first block of the function as being executable. 1470 Solver.MarkBlockExecutable(F.begin()); 1471 1472 // Mark all arguments to the function as being overdefined. 1473 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1474 Solver.markOverdefined(AI); 1475 1476 // Solve for constants. 1477 bool ResolvedUndefs = true; 1478 while (ResolvedUndefs) { 1479 Solver.Solve(); 1480 DOUT << "RESOLVING UNDEFs\n"; 1481 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1482 } 1483 1484 bool MadeChanges = false; 1485 1486 // If we decided that there are basic blocks that are dead in this function, 1487 // delete their contents now. Note that we cannot actually delete the blocks, 1488 // as we cannot modify the CFG of the function. 1489 // 1490 SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks(); 1491 SmallVector<Instruction*, 32> Insts; 1492 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1493 1494 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1495 if (!ExecutableBBs.count(BB)) { 1496 DOUT << " BasicBlock Dead:" << *BB; 1497 ++NumDeadBlocks; 1498 1499 // Delete the instructions backwards, as it has a reduced likelihood of 1500 // having to update as many def-use and use-def chains. 1501 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); 1502 I != E; ++I) 1503 Insts.push_back(I); 1504 while (!Insts.empty()) { 1505 Instruction *I = Insts.back(); 1506 Insts.pop_back(); 1507 if (!I->use_empty()) 1508 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1509 BB->getInstList().erase(I); 1510 MadeChanges = true; 1511 ++NumInstRemoved; 1512 } 1513 } else { 1514 // Iterate over all of the instructions in a function, replacing them with 1515 // constants if we have found them to be of constant values. 1516 // 1517 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1518 Instruction *Inst = BI++; 1519 if (Inst->getType() == Type::VoidTy || 1520 isa<StructType>(Inst->getType()) || 1521 isa<TerminatorInst>(Inst)) 1522 continue; 1523 1524 LatticeVal &IV = Values[Inst]; 1525 if (!IV.isConstant() && !IV.isUndefined()) 1526 continue; 1527 1528 Constant *Const = IV.isConstant() 1529 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1530 DOUT << " Constant: " << *Const << " = " << *Inst; 1531 1532 // Replaces all of the uses of a variable with uses of the constant. 1533 Inst->replaceAllUsesWith(Const); 1534 1535 // Delete the instruction. 1536 Inst->eraseFromParent(); 1537 1538 // Hey, we just changed something! 1539 MadeChanges = true; 1540 ++NumInstRemoved; 1541 } 1542 } 1543 1544 return MadeChanges; 1545} 1546 1547namespace { 1548 //===--------------------------------------------------------------------===// 1549 // 1550 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1551 /// Constant Propagation. 1552 /// 1553 struct VISIBILITY_HIDDEN IPSCCP : public ModulePass { 1554 static char ID; 1555 IPSCCP() : ModulePass((intptr_t)&ID) {} 1556 bool runOnModule(Module &M); 1557 }; 1558 1559 char IPSCCP::ID = 0; 1560 RegisterPass<IPSCCP> 1561 Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); 1562} // end anonymous namespace 1563 1564// createIPSCCPPass - This is the public interface to this file... 1565ModulePass *llvm::createIPSCCPPass() { 1566 return new IPSCCP(); 1567} 1568 1569 1570static bool AddressIsTaken(GlobalValue *GV) { 1571 // Delete any dead constantexpr klingons. 1572 GV->removeDeadConstantUsers(); 1573 1574 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 1575 UI != E; ++UI) 1576 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 1577 if (SI->getOperand(0) == GV || SI->isVolatile()) 1578 return true; // Storing addr of GV. 1579 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { 1580 // Make sure we are calling the function, not passing the address. 1581 CallSite CS = CallSite::get(cast<Instruction>(*UI)); 1582 for (CallSite::arg_iterator AI = CS.arg_begin(), 1583 E = CS.arg_end(); AI != E; ++AI) 1584 if (*AI == GV) 1585 return true; 1586 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1587 if (LI->isVolatile()) 1588 return true; 1589 } else { 1590 return true; 1591 } 1592 return false; 1593} 1594 1595bool IPSCCP::runOnModule(Module &M) { 1596 SCCPSolver Solver; 1597 1598 // Loop over all functions, marking arguments to those with their addresses 1599 // taken or that are external as overdefined. 1600 // 1601 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1602 if (!F->hasInternalLinkage() || AddressIsTaken(F)) { 1603 if (!F->isDeclaration()) 1604 Solver.MarkBlockExecutable(F->begin()); 1605 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1606 AI != E; ++AI) 1607 Solver.markOverdefined(AI); 1608 } else { 1609 Solver.AddTrackedFunction(F); 1610 } 1611 1612 // Loop over global variables. We inform the solver about any internal global 1613 // variables that do not have their 'addresses taken'. If they don't have 1614 // their addresses taken, we can propagate constants through them. 1615 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1616 G != E; ++G) 1617 if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G)) 1618 Solver.TrackValueOfGlobalVariable(G); 1619 1620 // Solve for constants. 1621 bool ResolvedUndefs = true; 1622 while (ResolvedUndefs) { 1623 Solver.Solve(); 1624 1625 DOUT << "RESOLVING UNDEFS\n"; 1626 ResolvedUndefs = false; 1627 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1628 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1629 } 1630 1631 bool MadeChanges = false; 1632 1633 // Iterate over all of the instructions in the module, replacing them with 1634 // constants if we have found them to be of constant values. 1635 // 1636 SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks(); 1637 SmallVector<Instruction*, 32> Insts; 1638 SmallVector<BasicBlock*, 32> BlocksToErase; 1639 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1640 1641 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1642 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1643 AI != E; ++AI) 1644 if (!AI->use_empty()) { 1645 LatticeVal &IV = Values[AI]; 1646 if (IV.isConstant() || IV.isUndefined()) { 1647 Constant *CST = IV.isConstant() ? 1648 IV.getConstant() : UndefValue::get(AI->getType()); 1649 DOUT << "*** Arg " << *AI << " = " << *CST <<"\n"; 1650 1651 // Replaces all of the uses of a variable with uses of the 1652 // constant. 1653 AI->replaceAllUsesWith(CST); 1654 ++IPNumArgsElimed; 1655 } 1656 } 1657 1658 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1659 if (!ExecutableBBs.count(BB)) { 1660 DOUT << " BasicBlock Dead:" << *BB; 1661 ++IPNumDeadBlocks; 1662 1663 // Delete the instructions backwards, as it has a reduced likelihood of 1664 // having to update as many def-use and use-def chains. 1665 TerminatorInst *TI = BB->getTerminator(); 1666 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) 1667 Insts.push_back(I); 1668 1669 while (!Insts.empty()) { 1670 Instruction *I = Insts.back(); 1671 Insts.pop_back(); 1672 if (!I->use_empty()) 1673 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1674 BB->getInstList().erase(I); 1675 MadeChanges = true; 1676 ++IPNumInstRemoved; 1677 } 1678 1679 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1680 BasicBlock *Succ = TI->getSuccessor(i); 1681 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1682 TI->getSuccessor(i)->removePredecessor(BB); 1683 } 1684 if (!TI->use_empty()) 1685 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1686 BB->getInstList().erase(TI); 1687 1688 if (&*BB != &F->front()) 1689 BlocksToErase.push_back(BB); 1690 else 1691 new UnreachableInst(BB); 1692 1693 } else { 1694 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1695 Instruction *Inst = BI++; 1696 if (Inst->getType() == Type::VoidTy || 1697 isa<StructType>(Inst->getType()) || 1698 isa<TerminatorInst>(Inst)) 1699 continue; 1700 1701 LatticeVal &IV = Values[Inst]; 1702 if (!IV.isConstant() && !IV.isUndefined()) 1703 continue; 1704 1705 Constant *Const = IV.isConstant() 1706 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1707 DOUT << " Constant: " << *Const << " = " << *Inst; 1708 1709 // Replaces all of the uses of a variable with uses of the 1710 // constant. 1711 Inst->replaceAllUsesWith(Const); 1712 1713 // Delete the instruction. 1714 if (!isa<CallInst>(Inst)) 1715 Inst->eraseFromParent(); 1716 1717 // Hey, we just changed something! 1718 MadeChanges = true; 1719 ++IPNumInstRemoved; 1720 } 1721 } 1722 1723 // Now that all instructions in the function are constant folded, erase dead 1724 // blocks, because we can now use ConstantFoldTerminator to get rid of 1725 // in-edges. 1726 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1727 // If there are any PHI nodes in this successor, drop entries for BB now. 1728 BasicBlock *DeadBB = BlocksToErase[i]; 1729 while (!DeadBB->use_empty()) { 1730 Instruction *I = cast<Instruction>(DeadBB->use_back()); 1731 bool Folded = ConstantFoldTerminator(I->getParent()); 1732 if (!Folded) { 1733 // The constant folder may not have been able to fold the terminator 1734 // if this is a branch or switch on undef. Fold it manually as a 1735 // branch to the first successor. 1736 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1737 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1738 "Branch should be foldable!"); 1739 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1740 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1741 } else { 1742 assert(0 && "Didn't fold away reference to block!"); 1743 } 1744 1745 // Make this an uncond branch to the first successor. 1746 TerminatorInst *TI = I->getParent()->getTerminator(); 1747 BranchInst::Create(TI->getSuccessor(0), TI); 1748 1749 // Remove entries in successor phi nodes to remove edges. 1750 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1751 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1752 1753 // Remove the old terminator. 1754 TI->eraseFromParent(); 1755 } 1756 } 1757 1758 // Finally, delete the basic block. 1759 F->getBasicBlockList().erase(DeadBB); 1760 } 1761 BlocksToErase.clear(); 1762 } 1763 1764 // If we inferred constant or undef return values for a function, we replaced 1765 // all call uses with the inferred value. This means we don't need to bother 1766 // actually returning anything from the function. Replace all return 1767 // instructions with return undef. 1768 // TODO: Process multiple value ret instructions also. 1769 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1770 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1771 E = RV.end(); I != E; ++I) 1772 if (!I->second.isOverdefined() && 1773 I->first->getReturnType() != Type::VoidTy) { 1774 Function *F = I->first; 1775 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1776 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1777 if (!isa<UndefValue>(RI->getOperand(0))) 1778 RI->setOperand(0, UndefValue::get(F->getReturnType())); 1779 } 1780 1781 // If we infered constant or undef values for globals variables, we can delete 1782 // the global and any stores that remain to it. 1783 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1784 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1785 E = TG.end(); I != E; ++I) { 1786 GlobalVariable *GV = I->first; 1787 assert(!I->second.isOverdefined() && 1788 "Overdefined values should have been taken out of the map!"); 1789 DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n"; 1790 while (!GV->use_empty()) { 1791 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1792 SI->eraseFromParent(); 1793 } 1794 M.getGlobalList().erase(GV); 1795 ++IPNumGlobalConst; 1796 } 1797 1798 return MadeChanges; 1799} 1800