SCCP.cpp revision 96c466b06ab0c830b07329c1b16037f585ccbe40
1//===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===//
2//
3// This file implements sparse conditional constant propogation and merging:
4//
5// Specifically, this:
6//   * Assumes values are constant unless proven otherwise
7//   * Assumes BasicBlocks are dead unless proven otherwise
8//   * Proves values to be constant, and replaces them with constants
9//   . Proves conditional branches constant, and unconditionalizes them
10//   * Folds multiple identical constants in the constant pool together
11//
12// Notice that:
13//   * This pass has a habit of making definitions be dead.  It is a good idea
14//     to to run a DCE pass sometime after running this pass.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Transforms/Scalar/ConstantProp.h"
19#include "llvm/ConstantHandling.h"
20#include "llvm/Function.h"
21#include "llvm/BasicBlock.h"
22#include "llvm/Constants.h"
23#include "llvm/iPHINode.h"
24#include "llvm/iMemory.h"
25#include "llvm/iTerminators.h"
26#include "llvm/iOther.h"
27#include "llvm/Pass.h"
28#include "llvm/Support/InstVisitor.h"
29#include "Support/STLExtras.h"
30#include <algorithm>
31#include <map>
32#include <set>
33#include <iostream>
34using std::cerr;
35
36// InstVal class - This class represents the different lattice values that an
37// instruction may occupy.  It is a simple class with value semantics.
38//
39class InstVal {
40  enum {
41    undefined,           // This instruction has no known value
42    constant,            // This instruction has a constant value
43    // Range,            // This instruction is known to fall within a range
44    overdefined          // This instruction has an unknown value
45  } LatticeValue;        // The current lattice position
46  Constant *ConstantVal; // If Constant value, the current value
47public:
48  inline InstVal() : LatticeValue(undefined), ConstantVal(0) {}
49
50  // markOverdefined - Return true if this is a new status to be in...
51  inline bool markOverdefined() {
52    if (LatticeValue != overdefined) {
53      LatticeValue = overdefined;
54      return true;
55    }
56    return false;
57  }
58
59  // markConstant - Return true if this is a new status for us...
60  inline bool markConstant(Constant *V) {
61    if (LatticeValue != constant) {
62      LatticeValue = constant;
63      ConstantVal = V;
64      return true;
65    } else {
66      assert(ConstantVal == V && "Marking constant with different value");
67    }
68    return false;
69  }
70
71  inline bool isUndefined()   const { return LatticeValue == undefined; }
72  inline bool isConstant()    const { return LatticeValue == constant; }
73  inline bool isOverdefined() const { return LatticeValue == overdefined; }
74
75  inline Constant *getConstant() const { return ConstantVal; }
76};
77
78
79
80//===----------------------------------------------------------------------===//
81// SCCP Class
82//
83// This class does all of the work of Sparse Conditional Constant Propogation.
84// It's public interface consists of a constructor and a doSCCP() function.
85//
86class SCCP : public InstVisitor<SCCP> {
87  Function *M;                           // The function that we are working on
88
89  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
90  std::map<Value*, InstVal> ValueState;  // The state each value is in...
91
92  std::vector<Instruction*> InstWorkList;// The instruction work list
93  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
94
95  //===--------------------------------------------------------------------===//
96  // The public interface for this class
97  //
98public:
99
100  // SCCP Ctor - Save the function to operate on...
101  inline SCCP(Function *f) : M(f) {}
102
103  // doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and
104  // return true if the function was modified.
105  bool doSCCP();
106
107  //===--------------------------------------------------------------------===//
108  // The implementation of this class
109  //
110private:
111  friend class InstVisitor<SCCP>;        // Allow callbacks from visitor
112
113  // markValueOverdefined - Make a value be marked as "constant".  If the value
114  // is not already a constant, add it to the instruction work list so that
115  // the users of the instruction are updated later.
116  //
117  inline bool markConstant(Instruction *I, Constant *V) {
118    //cerr << "markConstant: " << V << " = " << I;
119    if (ValueState[I].markConstant(V)) {
120      InstWorkList.push_back(I);
121      return true;
122    }
123    return false;
124  }
125
126  // markValueOverdefined - Make a value be marked as "overdefined". If the
127  // value is not already overdefined, add it to the instruction work list so
128  // that the users of the instruction are updated later.
129  //
130  inline bool markOverdefined(Value *V) {
131    if (ValueState[V].markOverdefined()) {
132      if (Instruction *I = dyn_cast<Instruction>(V)) {
133	//cerr << "markOverdefined: " << V;
134	InstWorkList.push_back(I);  // Only instructions go on the work list
135      }
136      return true;
137    }
138    return false;
139  }
140
141  // getValueState - Return the InstVal object that corresponds to the value.
142  // This function is neccesary because not all values should start out in the
143  // underdefined state... Argument's should be overdefined, and
144  // constants should be marked as constants.  If a value is not known to be an
145  // Instruction object, then use this accessor to get its value from the map.
146  //
147  inline InstVal &getValueState(Value *V) {
148    std::map<Value*, InstVal>::iterator I = ValueState.find(V);
149    if (I != ValueState.end()) return I->second;  // Common case, in the map
150
151    if (Constant *CPV = dyn_cast<Constant>(V)) {  // Constants are constant
152      ValueState[CPV].markConstant(CPV);
153    } else if (isa<Argument>(V)) {                // Arguments are overdefined
154      ValueState[V].markOverdefined();
155    }
156    // All others are underdefined by default...
157    return ValueState[V];
158  }
159
160  // markExecutable - Mark a basic block as executable, adding it to the BB
161  // work list if it is not already executable...
162  //
163  void markExecutable(BasicBlock *BB) {
164    if (BBExecutable.count(BB)) return;
165    //cerr << "Marking BB Executable: " << BB;
166    BBExecutable.insert(BB);   // Basic block is executable!
167    BBWorkList.push_back(BB);  // Add the block to the work list!
168  }
169
170
171  // visit implementations - Something changed in this instruction... Either an
172  // operand made a transition, or the instruction is newly executable.  Change
173  // the value type of I to reflect these changes if appropriate.
174  //
175  void visitPHINode(PHINode *I);
176
177  // Terminators
178  void visitReturnInst(ReturnInst *I) { /*does not have an effect*/ }
179  void visitBranchInst(BranchInst *I);
180  void visitSwitchInst(SwitchInst *I);
181
182  void visitUnaryOperator(Instruction *I);
183  void visitCastInst(CastInst *I) { visitUnaryOperator(I); }
184  void visitBinaryOperator(Instruction *I);
185  void visitShiftInst(ShiftInst *I) { visitBinaryOperator(I); }
186
187  // Instructions that cannot be folded away...
188  void visitMemAccessInst (Instruction *I) { markOverdefined(I); }
189  void visitCallInst      (Instruction *I) { markOverdefined(I); }
190  void visitInvokeInst    (Instruction *I) { markOverdefined(I); }
191  void visitAllocationInst(Instruction *I) { markOverdefined(I); }
192  void visitFreeInst      (Instruction *I) { markOverdefined(I); }
193
194  void visitInstruction(Instruction *I) {
195    // If a new instruction is added to LLVM that we don't handle...
196    cerr << "SCCP: Don't know how to handle: " << I;
197    markOverdefined(I);   // Just in case
198  }
199
200  // OperandChangedState - This method is invoked on all of the users of an
201  // instruction that was just changed state somehow....  Based on this
202  // information, we need to update the specified user of this instruction.
203  //
204  void OperandChangedState(User *U);
205};
206
207
208//===----------------------------------------------------------------------===//
209// SCCP Class Implementation
210
211
212// doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and
213// return true if the function was modified.
214//
215bool SCCP::doSCCP() {
216  // Mark the first block of the function as being executable...
217  markExecutable(M->front());
218
219  // Process the work lists until their are empty!
220  while (!BBWorkList.empty() || !InstWorkList.empty()) {
221    // Process the instruction work list...
222    while (!InstWorkList.empty()) {
223      Instruction *I = InstWorkList.back();
224      InstWorkList.pop_back();
225
226      //cerr << "\nPopped off I-WL: " << I;
227
228
229      // "I" got into the work list because it either made the transition from
230      // bottom to constant, or to Overdefined.
231      //
232      // Update all of the users of this instruction's value...
233      //
234      for_each(I->use_begin(), I->use_end(),
235	       bind_obj(this, &SCCP::OperandChangedState));
236    }
237
238    // Process the basic block work list...
239    while (!BBWorkList.empty()) {
240      BasicBlock *BB = BBWorkList.back();
241      BBWorkList.pop_back();
242
243      //cerr << "\nPopped off BBWL: " << BB;
244
245      // If this block only has a single successor, mark it as executable as
246      // well... if not, terminate the do loop.
247      //
248      if (BB->getTerminator()->getNumSuccessors() == 1)
249        markExecutable(BB->getTerminator()->getSuccessor(0));
250
251      // Notify all instructions in this basic block that they are newly
252      // executable.
253      visit(BB);
254    }
255  }
256
257#if 0
258  for (Function::iterator BBI = M->begin(), BBEnd = M->end();
259       BBI != BBEnd; ++BBI)
260    if (!BBExecutable.count(*BBI))
261      cerr << "BasicBlock Dead:" << *BBI;
262#endif
263
264
265  // Iterate over all of the instructions in a function, replacing them with
266  // constants if we have found them to be of constant values.
267  //
268  bool MadeChanges = false;
269  for (Function::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) {
270    BasicBlock *BB = *MI;
271    for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
272      Instruction *Inst = *BI;
273      InstVal &IV = ValueState[Inst];
274      if (IV.isConstant()) {
275        Constant *Const = IV.getConstant();
276        // cerr << "Constant: " << Inst << "  is: " << Const;
277
278        // Replaces all of the uses of a variable with uses of the constant.
279        Inst->replaceAllUsesWith(Const);
280
281        // Remove the operator from the list of definitions...
282        BB->getInstList().remove(BI);
283
284        // The new constant inherits the old name of the operator...
285        if (Inst->hasName() && !Const->hasName())
286          Const->setName(Inst->getName(), M->getSymbolTableSure());
287
288        // Delete the operator now...
289        delete Inst;
290
291        // Hey, we just changed something!
292        MadeChanges = true;
293      } else if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Inst)) {
294        MadeChanges |= ConstantFoldTerminator(BB, BI, TI);
295      }
296
297      ++BI;
298    }
299  }
300
301  // Merge identical constants last: this is important because we may have just
302  // introduced constants that already exist, and we don't want to pollute later
303  // stages with extraneous constants.
304  //
305  return MadeChanges;
306}
307
308
309// visit Implementations - Something changed in this instruction... Either an
310// operand made a transition, or the instruction is newly executable.  Change
311// the value type of I to reflect these changes if appropriate.  This method
312// makes sure to do the following actions:
313//
314// 1. If a phi node merges two constants in, and has conflicting value coming
315//    from different branches, or if the PHI node merges in an overdefined
316//    value, then the PHI node becomes overdefined.
317// 2. If a phi node merges only constants in, and they all agree on value, the
318//    PHI node becomes a constant value equal to that.
319// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
320// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
321// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
322// 6. If a conditional branch has a value that is constant, make the selected
323//    destination executable
324// 7. If a conditional branch has a value that is overdefined, make all
325//    successors executable.
326//
327
328void SCCP::visitPHINode(PHINode *PN) {
329  unsigned NumValues = PN->getNumIncomingValues(), i;
330  InstVal *OperandIV = 0;
331
332  // Look at all of the executable operands of the PHI node.  If any of them
333  // are overdefined, the PHI becomes overdefined as well.  If they are all
334  // constant, and they agree with each other, the PHI becomes the identical
335  // constant.  If they are constant and don't agree, the PHI is overdefined.
336  // If there are no executable operands, the PHI remains undefined.
337  //
338  for (i = 0; i < NumValues; ++i) {
339    if (BBExecutable.count(PN->getIncomingBlock(i))) {
340      InstVal &IV = getValueState(PN->getIncomingValue(i));
341      if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
342      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
343        markOverdefined(PN);
344        return;
345      }
346
347      if (OperandIV == 0) {   // Grab the first value...
348        OperandIV = &IV;
349      } else {                // Another value is being merged in!
350        // There is already a reachable operand.  If we conflict with it,
351        // then the PHI node becomes overdefined.  If we agree with it, we
352        // can continue on.
353
354        // Check to see if there are two different constants merging...
355        if (IV.getConstant() != OperandIV->getConstant()) {
356          // Yes there is.  This means the PHI node is not constant.
357          // You must be overdefined poor PHI.
358          //
359          markOverdefined(PN);         // The PHI node now becomes overdefined
360          return;    // I'm done analyzing you
361        }
362      }
363    }
364  }
365
366  // If we exited the loop, this means that the PHI node only has constant
367  // arguments that agree with each other(and OperandIV is a pointer to one
368  // of their InstVal's) or OperandIV is null because there are no defined
369  // incoming arguments.  If this is the case, the PHI remains undefined.
370  //
371  if (OperandIV) {
372    assert(OperandIV->isConstant() && "Should only be here for constants!");
373    markConstant(PN, OperandIV->getConstant());  // Aquire operand value
374  }
375}
376
377void SCCP::visitBranchInst(BranchInst *BI) {
378  if (BI->isUnconditional())
379    return; // Unconditional branches are already handled!
380
381  InstVal &BCValue = getValueState(BI->getCondition());
382  if (BCValue.isOverdefined()) {
383    // Overdefined condition variables mean the branch could go either way.
384    markExecutable(BI->getSuccessor(0));
385    markExecutable(BI->getSuccessor(1));
386  } else if (BCValue.isConstant()) {
387    // Constant condition variables mean the branch can only go a single way.
388    if (BCValue.getConstant() == ConstantBool::True)
389      markExecutable(BI->getSuccessor(0));
390    else
391      markExecutable(BI->getSuccessor(1));
392  }
393}
394
395void SCCP::visitSwitchInst(SwitchInst *SI) {
396  InstVal &SCValue = getValueState(SI->getCondition());
397  if (SCValue.isOverdefined()) {  // Overdefined condition?  All dests are exe
398    for(unsigned i = 0, E = SI->getNumSuccessors(); i != E; ++i)
399      markExecutable(SI->getSuccessor(i));
400  } else if (SCValue.isConstant()) {
401    Constant *CPV = SCValue.getConstant();
402    // Make sure to skip the "default value" which isn't a value
403    for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
404      if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
405        markExecutable(SI->getSuccessor(i));
406        return;
407      }
408    }
409
410    // Constant value not equal to any of the branches... must execute
411    // default branch then...
412    markExecutable(SI->getDefaultDest());
413  }
414}
415
416void SCCP::visitUnaryOperator(Instruction *I) {
417  Value *V = I->getOperand(0);
418  InstVal &VState = getValueState(V);
419  if (VState.isOverdefined()) {        // Inherit overdefinedness of operand
420    markOverdefined(I);
421  } else if (VState.isConstant()) {    // Propogate constant value
422    Constant *Result = isa<CastInst>(I)
423      ? ConstantFoldCastInstruction(VState.getConstant(), I->getType())
424      : ConstantFoldUnaryInstruction(I->getOpcode(), VState.getConstant());
425
426    if (Result) {
427      // This instruction constant folds!
428      markConstant(I, Result);
429    } else {
430      markOverdefined(I);   // Don't know how to fold this instruction.  :(
431    }
432  }
433}
434
435// Handle BinaryOperators and Shift Instructions...
436void SCCP::visitBinaryOperator(Instruction *I) {
437  InstVal &V1State = getValueState(I->getOperand(0));
438  InstVal &V2State = getValueState(I->getOperand(1));
439  if (V1State.isOverdefined() || V2State.isOverdefined()) {
440    markOverdefined(I);
441  } else if (V1State.isConstant() && V2State.isConstant()) {
442    Constant *Result = ConstantFoldBinaryInstruction(I->getOpcode(),
443                                                     V1State.getConstant(),
444                                                     V2State.getConstant());
445    if (Result)
446      markConstant(I, Result);      // This instruction constant fold!s
447    else
448      markOverdefined(I);   // Don't know how to fold this instruction.  :(
449  }
450}
451
452// OperandChangedState - This method is invoked on all of the users of an
453// instruction that was just changed state somehow....  Based on this
454// information, we need to update the specified user of this instruction.
455//
456void SCCP::OperandChangedState(User *U) {
457  // Only instructions use other variable values!
458  Instruction *I = cast<Instruction>(U);
459  if (!BBExecutable.count(I->getParent())) return;  // Inst not executable yet!
460
461  visit(I);
462}
463
464namespace {
465  // SCCPPass - Use Sparse Conditional Constant Propogation
466  // to prove whether a value is constant and whether blocks are used.
467  //
468  struct SCCPPass : public FunctionPass {
469    const char *getPassName() const {
470      return "Sparse Conditional Constant Propogation";
471    }
472
473    inline bool runOnFunction(Function *F) {
474      SCCP S(F);
475      return S.doSCCP();
476    }
477    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
478      // FIXME: SCCP does not preserve the CFG because it folds terminators!
479      //AU.preservesCFG();
480    }
481  };
482}
483
484Pass *createSCCPPass() {
485  return new SCCPPass();
486}
487