SCCP.cpp revision ac0b6ae358944ae8b2b5a11dc08f52c3ed89f2da
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/Pass.h"
31#include "llvm/Support/InstVisitor.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include "llvm/Support/CallSite.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/ADT/hash_map"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/ADT/STLExtras.h"
38#include <algorithm>
39#include <set>
40using namespace llvm;
41
42// LatticeVal class - This class represents the different lattice values that an
43// instruction may occupy.  It is a simple class with value semantics.
44//
45namespace {
46
47class LatticeVal {
48  enum {
49    undefined,           // This instruction has no known value
50    constant,            // This instruction has a constant value
51    overdefined          // This instruction has an unknown value
52  } LatticeValue;        // The current lattice position
53  Constant *ConstantVal; // If Constant value, the current value
54public:
55  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
56
57  // markOverdefined - Return true if this is a new status to be in...
58  inline bool markOverdefined() {
59    if (LatticeValue != overdefined) {
60      LatticeValue = overdefined;
61      return true;
62    }
63    return false;
64  }
65
66  // markConstant - Return true if this is a new status for us...
67  inline bool markConstant(Constant *V) {
68    if (LatticeValue != constant) {
69      LatticeValue = constant;
70      ConstantVal = V;
71      return true;
72    } else {
73      assert(ConstantVal == V && "Marking constant with different value");
74    }
75    return false;
76  }
77
78  inline bool isUndefined()   const { return LatticeValue == undefined; }
79  inline bool isConstant()    const { return LatticeValue == constant; }
80  inline bool isOverdefined() const { return LatticeValue == overdefined; }
81
82  inline Constant *getConstant() const {
83    assert(isConstant() && "Cannot get the constant of a non-constant!");
84    return ConstantVal;
85  }
86};
87
88} // end anonymous namespace
89
90
91//===----------------------------------------------------------------------===//
92//
93/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
94/// Constant Propagation.
95///
96class SCCPSolver : public InstVisitor<SCCPSolver> {
97  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
98  hash_map<Value*, LatticeVal> ValueState;  // The state each value is in...
99
100  /// GlobalValue - If we are tracking any values for the contents of a global
101  /// variable, we keep a mapping from the constant accessor to the element of
102  /// the global, to the currently known value.  If the value becomes
103  /// overdefined, it's entry is simply removed from this map.
104  hash_map<GlobalVariable*, LatticeVal> TrackedGlobals;
105
106  /// TrackedFunctionRetVals - If we are tracking arguments into and the return
107  /// value out of a function, it will have an entry in this map, indicating
108  /// what the known return value for the function is.
109  hash_map<Function*, LatticeVal> TrackedFunctionRetVals;
110
111  // The reason for two worklists is that overdefined is the lowest state
112  // on the lattice, and moving things to overdefined as fast as possible
113  // makes SCCP converge much faster.
114  // By having a separate worklist, we accomplish this because everything
115  // possibly overdefined will become overdefined at the soonest possible
116  // point.
117  std::vector<Value*> OverdefinedInstWorkList;
118  std::vector<Value*> InstWorkList;
119
120
121  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
122
123  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
124  /// overdefined, despite the fact that the PHI node is overdefined.
125  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
126
127  /// KnownFeasibleEdges - Entries in this set are edges which have already had
128  /// PHI nodes retriggered.
129  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
130  std::set<Edge> KnownFeasibleEdges;
131public:
132
133  /// MarkBlockExecutable - This method can be used by clients to mark all of
134  /// the blocks that are known to be intrinsically live in the processed unit.
135  void MarkBlockExecutable(BasicBlock *BB) {
136    DOUT << "Marking Block Executable: " << BB->getName() << "\n";
137    BBExecutable.insert(BB);   // Basic block is executable!
138    BBWorkList.push_back(BB);  // Add the block to the work list!
139  }
140
141  /// TrackValueOfGlobalVariable - Clients can use this method to
142  /// inform the SCCPSolver that it should track loads and stores to the
143  /// specified global variable if it can.  This is only legal to call if
144  /// performing Interprocedural SCCP.
145  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
146    const Type *ElTy = GV->getType()->getElementType();
147    if (ElTy->isFirstClassType()) {
148      LatticeVal &IV = TrackedGlobals[GV];
149      if (!isa<UndefValue>(GV->getInitializer()))
150        IV.markConstant(GV->getInitializer());
151    }
152  }
153
154  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
155  /// and out of the specified function (which cannot have its address taken),
156  /// this method must be called.
157  void AddTrackedFunction(Function *F) {
158    assert(F->hasInternalLinkage() && "Can only track internal functions!");
159    // Add an entry, F -> undef.
160    TrackedFunctionRetVals[F];
161  }
162
163  /// Solve - Solve for constants and executable blocks.
164  ///
165  void Solve();
166
167  /// ResolveBranchesIn - While solving the dataflow for a function, we assume
168  /// that branches on undef values cannot reach any of their successors.
169  /// However, this is not a safe assumption.  After we solve dataflow, this
170  /// method should be use to handle this.  If this returns true, the solver
171  /// should be rerun.
172  bool ResolveBranchesIn(Function &F);
173
174  /// getExecutableBlocks - Once we have solved for constants, return the set of
175  /// blocks that is known to be executable.
176  std::set<BasicBlock*> &getExecutableBlocks() {
177    return BBExecutable;
178  }
179
180  /// getValueMapping - Once we have solved for constants, return the mapping of
181  /// LLVM values to LatticeVals.
182  hash_map<Value*, LatticeVal> &getValueMapping() {
183    return ValueState;
184  }
185
186  /// getTrackedFunctionRetVals - Get the inferred return value map.
187  ///
188  const hash_map<Function*, LatticeVal> &getTrackedFunctionRetVals() {
189    return TrackedFunctionRetVals;
190  }
191
192  /// getTrackedGlobals - Get and return the set of inferred initializers for
193  /// global variables.
194  const hash_map<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
195    return TrackedGlobals;
196  }
197
198
199private:
200  // markConstant - Make a value be marked as "constant".  If the value
201  // is not already a constant, add it to the instruction work list so that
202  // the users of the instruction are updated later.
203  //
204  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
205    if (IV.markConstant(C)) {
206      DOUT << "markConstant: " << *C << ": " << *V;
207      InstWorkList.push_back(V);
208    }
209  }
210  inline void markConstant(Value *V, Constant *C) {
211    markConstant(ValueState[V], V, C);
212  }
213
214  // markOverdefined - Make a value be marked as "overdefined". If the
215  // value is not already overdefined, add it to the overdefined instruction
216  // work list so that the users of the instruction are updated later.
217
218  inline void markOverdefined(LatticeVal &IV, Value *V) {
219    if (IV.markOverdefined()) {
220      DEBUG(DOUT << "markOverdefined: ";
221            if (Function *F = dyn_cast<Function>(V))
222              DOUT << "Function '" << F->getName() << "'\n";
223            else
224              DOUT << *V);
225      // Only instructions go on the work list
226      OverdefinedInstWorkList.push_back(V);
227    }
228  }
229  inline void markOverdefined(Value *V) {
230    markOverdefined(ValueState[V], V);
231  }
232
233  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
234    if (IV.isOverdefined() || MergeWithV.isUndefined())
235      return;  // Noop.
236    if (MergeWithV.isOverdefined())
237      markOverdefined(IV, V);
238    else if (IV.isUndefined())
239      markConstant(IV, V, MergeWithV.getConstant());
240    else if (IV.getConstant() != MergeWithV.getConstant())
241      markOverdefined(IV, V);
242  }
243
244  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
245    return mergeInValue(ValueState[V], V, MergeWithV);
246  }
247
248
249  // getValueState - Return the LatticeVal object that corresponds to the value.
250  // This function is necessary because not all values should start out in the
251  // underdefined state... Argument's should be overdefined, and
252  // constants should be marked as constants.  If a value is not known to be an
253  // Instruction object, then use this accessor to get its value from the map.
254  //
255  inline LatticeVal &getValueState(Value *V) {
256    hash_map<Value*, LatticeVal>::iterator I = ValueState.find(V);
257    if (I != ValueState.end()) return I->second;  // Common case, in the map
258
259    if (Constant *CPV = dyn_cast<Constant>(V)) {
260      if (isa<UndefValue>(V)) {
261        // Nothing to do, remain undefined.
262      } else {
263        ValueState[CPV].markConstant(CPV);          // Constants are constant
264      }
265    }
266    // All others are underdefined by default...
267    return ValueState[V];
268  }
269
270  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
271  // work list if it is not already executable...
272  //
273  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
274    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
275      return;  // This edge is already known to be executable!
276
277    if (BBExecutable.count(Dest)) {
278      DOUT << "Marking Edge Executable: " << Source->getName()
279           << " -> " << Dest->getName() << "\n";
280
281      // The destination is already executable, but we just made an edge
282      // feasible that wasn't before.  Revisit the PHI nodes in the block
283      // because they have potentially new operands.
284      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
285        visitPHINode(*cast<PHINode>(I));
286
287    } else {
288      MarkBlockExecutable(Dest);
289    }
290  }
291
292  // getFeasibleSuccessors - Return a vector of booleans to indicate which
293  // successors are reachable from a given terminator instruction.
294  //
295  void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);
296
297  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
298  // block to the 'To' basic block is currently feasible...
299  //
300  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
301
302  // OperandChangedState - This method is invoked on all of the users of an
303  // instruction that was just changed state somehow....  Based on this
304  // information, we need to update the specified user of this instruction.
305  //
306  void OperandChangedState(User *U) {
307    // Only instructions use other variable values!
308    Instruction &I = cast<Instruction>(*U);
309    if (BBExecutable.count(I.getParent()))   // Inst is executable?
310      visit(I);
311  }
312
313private:
314  friend class InstVisitor<SCCPSolver>;
315
316  // visit implementations - Something changed in this instruction... Either an
317  // operand made a transition, or the instruction is newly executable.  Change
318  // the value type of I to reflect these changes if appropriate.
319  //
320  void visitPHINode(PHINode &I);
321
322  // Terminators
323  void visitReturnInst(ReturnInst &I);
324  void visitTerminatorInst(TerminatorInst &TI);
325
326  void visitCastInst(CastInst &I);
327  void visitSelectInst(SelectInst &I);
328  void visitBinaryOperator(Instruction &I);
329  void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
330  void visitExtractElementInst(ExtractElementInst &I);
331  void visitInsertElementInst(InsertElementInst &I);
332  void visitShuffleVectorInst(ShuffleVectorInst &I);
333
334  // Instructions that cannot be folded away...
335  void visitStoreInst     (Instruction &I);
336  void visitLoadInst      (LoadInst &I);
337  void visitGetElementPtrInst(GetElementPtrInst &I);
338  void visitCallInst      (CallInst &I) { visitCallSite(CallSite::get(&I)); }
339  void visitInvokeInst    (InvokeInst &II) {
340    visitCallSite(CallSite::get(&II));
341    visitTerminatorInst(II);
342  }
343  void visitCallSite      (CallSite CS);
344  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
345  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
346  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
347  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
348  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
349  void visitFreeInst      (Instruction &I) { /*returns void*/ }
350
351  void visitInstruction(Instruction &I) {
352    // If a new instruction is added to LLVM that we don't handle...
353    llvm_cerr << "SCCP: Don't know how to handle: " << I;
354    markOverdefined(&I);   // Just in case
355  }
356};
357
358// getFeasibleSuccessors - Return a vector of booleans to indicate which
359// successors are reachable from a given terminator instruction.
360//
361void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
362                                       std::vector<bool> &Succs) {
363  Succs.resize(TI.getNumSuccessors());
364  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
365    if (BI->isUnconditional()) {
366      Succs[0] = true;
367    } else {
368      LatticeVal &BCValue = getValueState(BI->getCondition());
369      if (BCValue.isOverdefined() ||
370          (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) {
371        // Overdefined condition variables, and branches on unfoldable constant
372        // conditions, mean the branch could go either way.
373        Succs[0] = Succs[1] = true;
374      } else if (BCValue.isConstant()) {
375        // Constant condition variables mean the branch can only go a single way
376        Succs[BCValue.getConstant() == ConstantBool::getFalse()] = true;
377      }
378    }
379  } else if (isa<InvokeInst>(&TI)) {
380    // Invoke instructions successors are always executable.
381    Succs[0] = Succs[1] = true;
382  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
383    LatticeVal &SCValue = getValueState(SI->getCondition());
384    if (SCValue.isOverdefined() ||   // Overdefined condition?
385        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
386      // All destinations are executable!
387      Succs.assign(TI.getNumSuccessors(), true);
388    } else if (SCValue.isConstant()) {
389      Constant *CPV = SCValue.getConstant();
390      // Make sure to skip the "default value" which isn't a value
391      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
392        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
393          Succs[i] = true;
394          return;
395        }
396      }
397
398      // Constant value not equal to any of the branches... must execute
399      // default branch then...
400      Succs[0] = true;
401    }
402  } else {
403    llvm_cerr << "SCCP: Don't know how to handle: " << TI;
404    Succs.assign(TI.getNumSuccessors(), true);
405  }
406}
407
408
409// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
410// block to the 'To' basic block is currently feasible...
411//
412bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
413  assert(BBExecutable.count(To) && "Dest should always be alive!");
414
415  // Make sure the source basic block is executable!!
416  if (!BBExecutable.count(From)) return false;
417
418  // Check to make sure this edge itself is actually feasible now...
419  TerminatorInst *TI = From->getTerminator();
420  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
421    if (BI->isUnconditional())
422      return true;
423    else {
424      LatticeVal &BCValue = getValueState(BI->getCondition());
425      if (BCValue.isOverdefined()) {
426        // Overdefined condition variables mean the branch could go either way.
427        return true;
428      } else if (BCValue.isConstant()) {
429        // Not branching on an evaluatable constant?
430        if (!isa<ConstantBool>(BCValue.getConstant())) return true;
431
432        // Constant condition variables mean the branch can only go a single way
433        return BI->getSuccessor(BCValue.getConstant() ==
434                                       ConstantBool::getFalse()) == To;
435      }
436      return false;
437    }
438  } else if (isa<InvokeInst>(TI)) {
439    // Invoke instructions successors are always executable.
440    return true;
441  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
442    LatticeVal &SCValue = getValueState(SI->getCondition());
443    if (SCValue.isOverdefined()) {  // Overdefined condition?
444      // All destinations are executable!
445      return true;
446    } else if (SCValue.isConstant()) {
447      Constant *CPV = SCValue.getConstant();
448      if (!isa<ConstantInt>(CPV))
449        return true;  // not a foldable constant?
450
451      // Make sure to skip the "default value" which isn't a value
452      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
453        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
454          return SI->getSuccessor(i) == To;
455
456      // Constant value not equal to any of the branches... must execute
457      // default branch then...
458      return SI->getDefaultDest() == To;
459    }
460    return false;
461  } else {
462    llvm_cerr << "Unknown terminator instruction: " << *TI;
463    abort();
464  }
465}
466
467// visit Implementations - Something changed in this instruction... Either an
468// operand made a transition, or the instruction is newly executable.  Change
469// the value type of I to reflect these changes if appropriate.  This method
470// makes sure to do the following actions:
471//
472// 1. If a phi node merges two constants in, and has conflicting value coming
473//    from different branches, or if the PHI node merges in an overdefined
474//    value, then the PHI node becomes overdefined.
475// 2. If a phi node merges only constants in, and they all agree on value, the
476//    PHI node becomes a constant value equal to that.
477// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
478// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
479// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
480// 6. If a conditional branch has a value that is constant, make the selected
481//    destination executable
482// 7. If a conditional branch has a value that is overdefined, make all
483//    successors executable.
484//
485void SCCPSolver::visitPHINode(PHINode &PN) {
486  LatticeVal &PNIV = getValueState(&PN);
487  if (PNIV.isOverdefined()) {
488    // There may be instructions using this PHI node that are not overdefined
489    // themselves.  If so, make sure that they know that the PHI node operand
490    // changed.
491    std::multimap<PHINode*, Instruction*>::iterator I, E;
492    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
493    if (I != E) {
494      std::vector<Instruction*> Users;
495      Users.reserve(std::distance(I, E));
496      for (; I != E; ++I) Users.push_back(I->second);
497      while (!Users.empty()) {
498        visit(Users.back());
499        Users.pop_back();
500      }
501    }
502    return;  // Quick exit
503  }
504
505  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
506  // and slow us down a lot.  Just mark them overdefined.
507  if (PN.getNumIncomingValues() > 64) {
508    markOverdefined(PNIV, &PN);
509    return;
510  }
511
512  // Look at all of the executable operands of the PHI node.  If any of them
513  // are overdefined, the PHI becomes overdefined as well.  If they are all
514  // constant, and they agree with each other, the PHI becomes the identical
515  // constant.  If they are constant and don't agree, the PHI is overdefined.
516  // If there are no executable operands, the PHI remains undefined.
517  //
518  Constant *OperandVal = 0;
519  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
520    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
521    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
522
523    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
524      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
525        markOverdefined(PNIV, &PN);
526        return;
527      }
528
529      if (OperandVal == 0) {   // Grab the first value...
530        OperandVal = IV.getConstant();
531      } else {                // Another value is being merged in!
532        // There is already a reachable operand.  If we conflict with it,
533        // then the PHI node becomes overdefined.  If we agree with it, we
534        // can continue on.
535
536        // Check to see if there are two different constants merging...
537        if (IV.getConstant() != OperandVal) {
538          // Yes there is.  This means the PHI node is not constant.
539          // You must be overdefined poor PHI.
540          //
541          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
542          return;    // I'm done analyzing you
543        }
544      }
545    }
546  }
547
548  // If we exited the loop, this means that the PHI node only has constant
549  // arguments that agree with each other(and OperandVal is the constant) or
550  // OperandVal is null because there are no defined incoming arguments.  If
551  // this is the case, the PHI remains undefined.
552  //
553  if (OperandVal)
554    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
555}
556
557void SCCPSolver::visitReturnInst(ReturnInst &I) {
558  if (I.getNumOperands() == 0) return;  // Ret void
559
560  // If we are tracking the return value of this function, merge it in.
561  Function *F = I.getParent()->getParent();
562  if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) {
563    hash_map<Function*, LatticeVal>::iterator TFRVI =
564      TrackedFunctionRetVals.find(F);
565    if (TFRVI != TrackedFunctionRetVals.end() &&
566        !TFRVI->second.isOverdefined()) {
567      LatticeVal &IV = getValueState(I.getOperand(0));
568      mergeInValue(TFRVI->second, F, IV);
569    }
570  }
571}
572
573
574void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
575  std::vector<bool> SuccFeasible;
576  getFeasibleSuccessors(TI, SuccFeasible);
577
578  BasicBlock *BB = TI.getParent();
579
580  // Mark all feasible successors executable...
581  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
582    if (SuccFeasible[i])
583      markEdgeExecutable(BB, TI.getSuccessor(i));
584}
585
586void SCCPSolver::visitCastInst(CastInst &I) {
587  Value *V = I.getOperand(0);
588  LatticeVal &VState = getValueState(V);
589  if (VState.isOverdefined())          // Inherit overdefinedness of operand
590    markOverdefined(&I);
591  else if (VState.isConstant())        // Propagate constant value
592    markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType()));
593}
594
595void SCCPSolver::visitSelectInst(SelectInst &I) {
596  LatticeVal &CondValue = getValueState(I.getCondition());
597  if (CondValue.isUndefined())
598    return;
599  if (CondValue.isConstant()) {
600    if (ConstantBool *CondCB = dyn_cast<ConstantBool>(CondValue.getConstant())){
601      mergeInValue(&I, getValueState(CondCB->getValue() ? I.getTrueValue()
602                                                        : I.getFalseValue()));
603      return;
604    }
605  }
606
607  // Otherwise, the condition is overdefined or a constant we can't evaluate.
608  // See if we can produce something better than overdefined based on the T/F
609  // value.
610  LatticeVal &TVal = getValueState(I.getTrueValue());
611  LatticeVal &FVal = getValueState(I.getFalseValue());
612
613  // select ?, C, C -> C.
614  if (TVal.isConstant() && FVal.isConstant() &&
615      TVal.getConstant() == FVal.getConstant()) {
616    markConstant(&I, FVal.getConstant());
617    return;
618  }
619
620  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
621    mergeInValue(&I, FVal);
622  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
623    mergeInValue(&I, TVal);
624  } else {
625    markOverdefined(&I);
626  }
627}
628
629// Handle BinaryOperators and Shift Instructions...
630void SCCPSolver::visitBinaryOperator(Instruction &I) {
631  LatticeVal &IV = ValueState[&I];
632  if (IV.isOverdefined()) return;
633
634  LatticeVal &V1State = getValueState(I.getOperand(0));
635  LatticeVal &V2State = getValueState(I.getOperand(1));
636
637  if (V1State.isOverdefined() || V2State.isOverdefined()) {
638    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
639    // operand is overdefined.
640    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
641      LatticeVal *NonOverdefVal = 0;
642      if (!V1State.isOverdefined()) {
643        NonOverdefVal = &V1State;
644      } else if (!V2State.isOverdefined()) {
645        NonOverdefVal = &V2State;
646      }
647
648      if (NonOverdefVal) {
649        if (NonOverdefVal->isUndefined()) {
650          // Could annihilate value.
651          if (I.getOpcode() == Instruction::And)
652            markConstant(IV, &I, Constant::getNullValue(I.getType()));
653          else
654            markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
655          return;
656        } else {
657          if (I.getOpcode() == Instruction::And) {
658            if (NonOverdefVal->getConstant()->isNullValue()) {
659              markConstant(IV, &I, NonOverdefVal->getConstant());
660              return;      // X or 0 = -1
661            }
662          } else {
663            if (ConstantIntegral *CI =
664                     dyn_cast<ConstantIntegral>(NonOverdefVal->getConstant()))
665              if (CI->isAllOnesValue()) {
666                markConstant(IV, &I, NonOverdefVal->getConstant());
667                return;    // X or -1 = -1
668              }
669          }
670        }
671      }
672    }
673
674
675    // If both operands are PHI nodes, it is possible that this instruction has
676    // a constant value, despite the fact that the PHI node doesn't.  Check for
677    // this condition now.
678    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
679      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
680        if (PN1->getParent() == PN2->getParent()) {
681          // Since the two PHI nodes are in the same basic block, they must have
682          // entries for the same predecessors.  Walk the predecessor list, and
683          // if all of the incoming values are constants, and the result of
684          // evaluating this expression with all incoming value pairs is the
685          // same, then this expression is a constant even though the PHI node
686          // is not a constant!
687          LatticeVal Result;
688          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
689            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
690            BasicBlock *InBlock = PN1->getIncomingBlock(i);
691            LatticeVal &In2 =
692              getValueState(PN2->getIncomingValueForBlock(InBlock));
693
694            if (In1.isOverdefined() || In2.isOverdefined()) {
695              Result.markOverdefined();
696              break;  // Cannot fold this operation over the PHI nodes!
697            } else if (In1.isConstant() && In2.isConstant()) {
698              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
699                                              In2.getConstant());
700              if (Result.isUndefined())
701                Result.markConstant(V);
702              else if (Result.isConstant() && Result.getConstant() != V) {
703                Result.markOverdefined();
704                break;
705              }
706            }
707          }
708
709          // If we found a constant value here, then we know the instruction is
710          // constant despite the fact that the PHI nodes are overdefined.
711          if (Result.isConstant()) {
712            markConstant(IV, &I, Result.getConstant());
713            // Remember that this instruction is virtually using the PHI node
714            // operands.
715            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
716            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
717            return;
718          } else if (Result.isUndefined()) {
719            return;
720          }
721
722          // Okay, this really is overdefined now.  Since we might have
723          // speculatively thought that this was not overdefined before, and
724          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
725          // make sure to clean out any entries that we put there, for
726          // efficiency.
727          std::multimap<PHINode*, Instruction*>::iterator It, E;
728          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
729          while (It != E) {
730            if (It->second == &I) {
731              UsersOfOverdefinedPHIs.erase(It++);
732            } else
733              ++It;
734          }
735          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
736          while (It != E) {
737            if (It->second == &I) {
738              UsersOfOverdefinedPHIs.erase(It++);
739            } else
740              ++It;
741          }
742        }
743
744    markOverdefined(IV, &I);
745  } else if (V1State.isConstant() && V2State.isConstant()) {
746    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
747                                           V2State.getConstant()));
748  }
749}
750
751void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
752  // FIXME : SCCP does not handle vectors properly.
753  markOverdefined(&I);
754  return;
755
756#if 0
757  LatticeVal &ValState = getValueState(I.getOperand(0));
758  LatticeVal &IdxState = getValueState(I.getOperand(1));
759
760  if (ValState.isOverdefined() || IdxState.isOverdefined())
761    markOverdefined(&I);
762  else if(ValState.isConstant() && IdxState.isConstant())
763    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
764                                                     IdxState.getConstant()));
765#endif
766}
767
768void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
769  // FIXME : SCCP does not handle vectors properly.
770  markOverdefined(&I);
771  return;
772#if 0
773  LatticeVal &ValState = getValueState(I.getOperand(0));
774  LatticeVal &EltState = getValueState(I.getOperand(1));
775  LatticeVal &IdxState = getValueState(I.getOperand(2));
776
777  if (ValState.isOverdefined() || EltState.isOverdefined() ||
778      IdxState.isOverdefined())
779    markOverdefined(&I);
780  else if(ValState.isConstant() && EltState.isConstant() &&
781          IdxState.isConstant())
782    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
783                                                    EltState.getConstant(),
784                                                    IdxState.getConstant()));
785  else if (ValState.isUndefined() && EltState.isConstant() &&
786           IdxState.isConstant())
787    markConstant(&I, ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
788                                                    EltState.getConstant(),
789                                                    IdxState.getConstant()));
790#endif
791}
792
793void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
794  // FIXME : SCCP does not handle vectors properly.
795  markOverdefined(&I);
796  return;
797#if 0
798  LatticeVal &V1State   = getValueState(I.getOperand(0));
799  LatticeVal &V2State   = getValueState(I.getOperand(1));
800  LatticeVal &MaskState = getValueState(I.getOperand(2));
801
802  if (MaskState.isUndefined() ||
803      (V1State.isUndefined() && V2State.isUndefined()))
804    return;  // Undefined output if mask or both inputs undefined.
805
806  if (V1State.isOverdefined() || V2State.isOverdefined() ||
807      MaskState.isOverdefined()) {
808    markOverdefined(&I);
809  } else {
810    // A mix of constant/undef inputs.
811    Constant *V1 = V1State.isConstant() ?
812        V1State.getConstant() : UndefValue::get(I.getType());
813    Constant *V2 = V2State.isConstant() ?
814        V2State.getConstant() : UndefValue::get(I.getType());
815    Constant *Mask = MaskState.isConstant() ?
816      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
817    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
818  }
819#endif
820}
821
822// Handle getelementptr instructions... if all operands are constants then we
823// can turn this into a getelementptr ConstantExpr.
824//
825void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
826  LatticeVal &IV = ValueState[&I];
827  if (IV.isOverdefined()) return;
828
829  std::vector<Constant*> Operands;
830  Operands.reserve(I.getNumOperands());
831
832  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
833    LatticeVal &State = getValueState(I.getOperand(i));
834    if (State.isUndefined())
835      return;  // Operands are not resolved yet...
836    else if (State.isOverdefined()) {
837      markOverdefined(IV, &I);
838      return;
839    }
840    assert(State.isConstant() && "Unknown state!");
841    Operands.push_back(State.getConstant());
842  }
843
844  Constant *Ptr = Operands[0];
845  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
846
847  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands));
848}
849
850void SCCPSolver::visitStoreInst(Instruction &SI) {
851  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
852    return;
853  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
854  hash_map<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
855  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
856
857  // Get the value we are storing into the global.
858  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
859
860  mergeInValue(I->second, GV, PtrVal);
861  if (I->second.isOverdefined())
862    TrackedGlobals.erase(I);      // No need to keep tracking this!
863}
864
865
866// Handle load instructions.  If the operand is a constant pointer to a constant
867// global, we can replace the load with the loaded constant value!
868void SCCPSolver::visitLoadInst(LoadInst &I) {
869  LatticeVal &IV = ValueState[&I];
870  if (IV.isOverdefined()) return;
871
872  LatticeVal &PtrVal = getValueState(I.getOperand(0));
873  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
874  if (PtrVal.isConstant() && !I.isVolatile()) {
875    Value *Ptr = PtrVal.getConstant();
876    if (isa<ConstantPointerNull>(Ptr)) {
877      // load null -> null
878      markConstant(IV, &I, Constant::getNullValue(I.getType()));
879      return;
880    }
881
882    // Transform load (constant global) into the value loaded.
883    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
884      if (GV->isConstant()) {
885        if (!GV->isExternal()) {
886          markConstant(IV, &I, GV->getInitializer());
887          return;
888        }
889      } else if (!TrackedGlobals.empty()) {
890        // If we are tracking this global, merge in the known value for it.
891        hash_map<GlobalVariable*, LatticeVal>::iterator It =
892          TrackedGlobals.find(GV);
893        if (It != TrackedGlobals.end()) {
894          mergeInValue(IV, &I, It->second);
895          return;
896        }
897      }
898    }
899
900    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
901    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
902      if (CE->getOpcode() == Instruction::GetElementPtr)
903    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
904      if (GV->isConstant() && !GV->isExternal())
905        if (Constant *V =
906             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
907          markConstant(IV, &I, V);
908          return;
909        }
910  }
911
912  // Otherwise we cannot say for certain what value this load will produce.
913  // Bail out.
914  markOverdefined(IV, &I);
915}
916
917void SCCPSolver::visitCallSite(CallSite CS) {
918  Function *F = CS.getCalledFunction();
919
920  // If we are tracking this function, we must make sure to bind arguments as
921  // appropriate.
922  hash_map<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end();
923  if (F && F->hasInternalLinkage())
924    TFRVI = TrackedFunctionRetVals.find(F);
925
926  if (TFRVI != TrackedFunctionRetVals.end()) {
927    // If this is the first call to the function hit, mark its entry block
928    // executable.
929    if (!BBExecutable.count(F->begin()))
930      MarkBlockExecutable(F->begin());
931
932    CallSite::arg_iterator CAI = CS.arg_begin();
933    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
934         AI != E; ++AI, ++CAI) {
935      LatticeVal &IV = ValueState[AI];
936      if (!IV.isOverdefined())
937        mergeInValue(IV, AI, getValueState(*CAI));
938    }
939  }
940  Instruction *I = CS.getInstruction();
941  if (I->getType() == Type::VoidTy) return;
942
943  LatticeVal &IV = ValueState[I];
944  if (IV.isOverdefined()) return;
945
946  // Propagate the return value of the function to the value of the instruction.
947  if (TFRVI != TrackedFunctionRetVals.end()) {
948    mergeInValue(IV, I, TFRVI->second);
949    return;
950  }
951
952  if (F == 0 || !F->isExternal() || !canConstantFoldCallTo(F)) {
953    markOverdefined(IV, I);
954    return;
955  }
956
957  std::vector<Constant*> Operands;
958  Operands.reserve(I->getNumOperands()-1);
959
960  for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
961       AI != E; ++AI) {
962    LatticeVal &State = getValueState(*AI);
963    if (State.isUndefined())
964      return;  // Operands are not resolved yet...
965    else if (State.isOverdefined()) {
966      markOverdefined(IV, I);
967      return;
968    }
969    assert(State.isConstant() && "Unknown state!");
970    Operands.push_back(State.getConstant());
971  }
972
973  if (Constant *C = ConstantFoldCall(F, Operands))
974    markConstant(IV, I, C);
975  else
976    markOverdefined(IV, I);
977}
978
979
980void SCCPSolver::Solve() {
981  // Process the work lists until they are empty!
982  while (!BBWorkList.empty() || !InstWorkList.empty() ||
983         !OverdefinedInstWorkList.empty()) {
984    // Process the instruction work list...
985    while (!OverdefinedInstWorkList.empty()) {
986      Value *I = OverdefinedInstWorkList.back();
987      OverdefinedInstWorkList.pop_back();
988
989      DOUT << "\nPopped off OI-WL: " << *I;
990
991      // "I" got into the work list because it either made the transition from
992      // bottom to constant
993      //
994      // Anything on this worklist that is overdefined need not be visited
995      // since all of its users will have already been marked as overdefined
996      // Update all of the users of this instruction's value...
997      //
998      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
999           UI != E; ++UI)
1000        OperandChangedState(*UI);
1001    }
1002    // Process the instruction work list...
1003    while (!InstWorkList.empty()) {
1004      Value *I = InstWorkList.back();
1005      InstWorkList.pop_back();
1006
1007      DOUT << "\nPopped off I-WL: " << *I;
1008
1009      // "I" got into the work list because it either made the transition from
1010      // bottom to constant
1011      //
1012      // Anything on this worklist that is overdefined need not be visited
1013      // since all of its users will have already been marked as overdefined.
1014      // Update all of the users of this instruction's value...
1015      //
1016      if (!getValueState(I).isOverdefined())
1017        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1018             UI != E; ++UI)
1019          OperandChangedState(*UI);
1020    }
1021
1022    // Process the basic block work list...
1023    while (!BBWorkList.empty()) {
1024      BasicBlock *BB = BBWorkList.back();
1025      BBWorkList.pop_back();
1026
1027      DOUT << "\nPopped off BBWL: " << *BB;
1028
1029      // Notify all instructions in this basic block that they are newly
1030      // executable.
1031      visit(BB);
1032    }
1033  }
1034}
1035
1036/// ResolveBranchesIn - While solving the dataflow for a function, we assume
1037/// that branches on undef values cannot reach any of their successors.
1038/// However, this is not a safe assumption.  After we solve dataflow, this
1039/// method should be use to handle this.  If this returns true, the solver
1040/// should be rerun.
1041///
1042/// This method handles this by finding an unresolved branch and marking it one
1043/// of the edges from the block as being feasible, even though the condition
1044/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1045/// CFG and only slightly pessimizes the analysis results (by marking one,
1046/// potentially unfeasible, edge feasible).  This cannot usefully modify the
1047/// constraints on the condition of the branch, as that would impact other users
1048/// of the value.
1049bool SCCPSolver::ResolveBranchesIn(Function &F) {
1050  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1051    if (!BBExecutable.count(BB))
1052      continue;
1053
1054    TerminatorInst *TI = BB->getTerminator();
1055    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1056      if (!BI->isConditional()) continue;
1057      if (!getValueState(BI->getCondition()).isUndefined())
1058        continue;
1059    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1060      if (!getValueState(SI->getCondition()).isUndefined())
1061        continue;
1062    } else {
1063      continue;
1064    }
1065
1066    // If the edge to the first successor isn't thought to be feasible yet, mark
1067    // it so now.
1068    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(0))))
1069      continue;
1070
1071    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1072    // and return.  This will make other blocks reachable, which will allow new
1073    // values to be discovered and existing ones to be moved in the lattice.
1074    markEdgeExecutable(BB, TI->getSuccessor(0));
1075    return true;
1076  }
1077
1078  return false;
1079}
1080
1081
1082namespace {
1083  Statistic NumInstRemoved("sccp", "Number of instructions removed");
1084  Statistic NumDeadBlocks ("sccp", "Number of basic blocks unreachable");
1085
1086  //===--------------------------------------------------------------------===//
1087  //
1088  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1089  /// Sparse Conditional COnstant Propagator.
1090  ///
1091  struct SCCP : public FunctionPass {
1092    // runOnFunction - Run the Sparse Conditional Constant Propagation
1093    // algorithm, and return true if the function was modified.
1094    //
1095    bool runOnFunction(Function &F);
1096
1097    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1098      AU.setPreservesCFG();
1099    }
1100  };
1101
1102  RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
1103} // end anonymous namespace
1104
1105
1106// createSCCPPass - This is the public interface to this file...
1107FunctionPass *llvm::createSCCPPass() {
1108  return new SCCP();
1109}
1110
1111
1112// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1113// and return true if the function was modified.
1114//
1115bool SCCP::runOnFunction(Function &F) {
1116  DOUT << "SCCP on function '" << F.getName() << "'\n";
1117  SCCPSolver Solver;
1118
1119  // Mark the first block of the function as being executable.
1120  Solver.MarkBlockExecutable(F.begin());
1121
1122  // Mark all arguments to the function as being overdefined.
1123  hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1124  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI)
1125    Values[AI].markOverdefined();
1126
1127  // Solve for constants.
1128  bool ResolvedBranches = true;
1129  while (ResolvedBranches) {
1130    Solver.Solve();
1131    DOUT << "RESOLVING UNDEF BRANCHES\n";
1132    ResolvedBranches = Solver.ResolveBranchesIn(F);
1133  }
1134
1135  bool MadeChanges = false;
1136
1137  // If we decided that there are basic blocks that are dead in this function,
1138  // delete their contents now.  Note that we cannot actually delete the blocks,
1139  // as we cannot modify the CFG of the function.
1140  //
1141  std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks();
1142  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1143    if (!ExecutableBBs.count(BB)) {
1144      DOUT << "  BasicBlock Dead:" << *BB;
1145      ++NumDeadBlocks;
1146
1147      // Delete the instructions backwards, as it has a reduced likelihood of
1148      // having to update as many def-use and use-def chains.
1149      std::vector<Instruction*> Insts;
1150      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1151           I != E; ++I)
1152        Insts.push_back(I);
1153      while (!Insts.empty()) {
1154        Instruction *I = Insts.back();
1155        Insts.pop_back();
1156        if (!I->use_empty())
1157          I->replaceAllUsesWith(UndefValue::get(I->getType()));
1158        BB->getInstList().erase(I);
1159        MadeChanges = true;
1160        ++NumInstRemoved;
1161      }
1162    } else {
1163      // Iterate over all of the instructions in a function, replacing them with
1164      // constants if we have found them to be of constant values.
1165      //
1166      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1167        Instruction *Inst = BI++;
1168        if (Inst->getType() != Type::VoidTy) {
1169          LatticeVal &IV = Values[Inst];
1170          if (IV.isConstant() || IV.isUndefined() &&
1171              !isa<TerminatorInst>(Inst)) {
1172            Constant *Const = IV.isConstant()
1173              ? IV.getConstant() : UndefValue::get(Inst->getType());
1174            DOUT << "  Constant: " << *Const << " = " << *Inst;
1175
1176            // Replaces all of the uses of a variable with uses of the constant.
1177            Inst->replaceAllUsesWith(Const);
1178
1179            // Delete the instruction.
1180            BB->getInstList().erase(Inst);
1181
1182            // Hey, we just changed something!
1183            MadeChanges = true;
1184            ++NumInstRemoved;
1185          }
1186        }
1187      }
1188    }
1189
1190  return MadeChanges;
1191}
1192
1193namespace {
1194  Statistic IPNumInstRemoved("ipsccp", "Number of instructions removed");
1195  Statistic IPNumDeadBlocks ("ipsccp", "Number of basic blocks unreachable");
1196  Statistic IPNumArgsElimed ("ipsccp",
1197                               "Number of arguments constant propagated");
1198  Statistic IPNumGlobalConst("ipsccp",
1199                               "Number of globals found to be constant");
1200
1201  //===--------------------------------------------------------------------===//
1202  //
1203  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1204  /// Constant Propagation.
1205  ///
1206  struct IPSCCP : public ModulePass {
1207    bool runOnModule(Module &M);
1208  };
1209
1210  RegisterPass<IPSCCP>
1211  Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1212} // end anonymous namespace
1213
1214// createIPSCCPPass - This is the public interface to this file...
1215ModulePass *llvm::createIPSCCPPass() {
1216  return new IPSCCP();
1217}
1218
1219
1220static bool AddressIsTaken(GlobalValue *GV) {
1221  // Delete any dead constantexpr klingons.
1222  GV->removeDeadConstantUsers();
1223
1224  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1225       UI != E; ++UI)
1226    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1227      if (SI->getOperand(0) == GV || SI->isVolatile())
1228        return true;  // Storing addr of GV.
1229    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1230      // Make sure we are calling the function, not passing the address.
1231      CallSite CS = CallSite::get(cast<Instruction>(*UI));
1232      for (CallSite::arg_iterator AI = CS.arg_begin(),
1233             E = CS.arg_end(); AI != E; ++AI)
1234        if (*AI == GV)
1235          return true;
1236    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1237      if (LI->isVolatile())
1238        return true;
1239    } else {
1240      return true;
1241    }
1242  return false;
1243}
1244
1245bool IPSCCP::runOnModule(Module &M) {
1246  SCCPSolver Solver;
1247
1248  // Loop over all functions, marking arguments to those with their addresses
1249  // taken or that are external as overdefined.
1250  //
1251  hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1252  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1253    if (!F->hasInternalLinkage() || AddressIsTaken(F)) {
1254      if (!F->isExternal())
1255        Solver.MarkBlockExecutable(F->begin());
1256      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1257           AI != E; ++AI)
1258        Values[AI].markOverdefined();
1259    } else {
1260      Solver.AddTrackedFunction(F);
1261    }
1262
1263  // Loop over global variables.  We inform the solver about any internal global
1264  // variables that do not have their 'addresses taken'.  If they don't have
1265  // their addresses taken, we can propagate constants through them.
1266  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1267       G != E; ++G)
1268    if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G))
1269      Solver.TrackValueOfGlobalVariable(G);
1270
1271  // Solve for constants.
1272  bool ResolvedBranches = true;
1273  while (ResolvedBranches) {
1274    Solver.Solve();
1275
1276    DOUT << "RESOLVING UNDEF BRANCHES\n";
1277    ResolvedBranches = false;
1278    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1279      ResolvedBranches |= Solver.ResolveBranchesIn(*F);
1280  }
1281
1282  bool MadeChanges = false;
1283
1284  // Iterate over all of the instructions in the module, replacing them with
1285  // constants if we have found them to be of constant values.
1286  //
1287  std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks();
1288  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1289    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1290         AI != E; ++AI)
1291      if (!AI->use_empty()) {
1292        LatticeVal &IV = Values[AI];
1293        if (IV.isConstant() || IV.isUndefined()) {
1294          Constant *CST = IV.isConstant() ?
1295            IV.getConstant() : UndefValue::get(AI->getType());
1296          DOUT << "***  Arg " << *AI << " = " << *CST <<"\n";
1297
1298          // Replaces all of the uses of a variable with uses of the
1299          // constant.
1300          AI->replaceAllUsesWith(CST);
1301          ++IPNumArgsElimed;
1302        }
1303      }
1304
1305    std::vector<BasicBlock*> BlocksToErase;
1306    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1307      if (!ExecutableBBs.count(BB)) {
1308        DOUT << "  BasicBlock Dead:" << *BB;
1309        ++IPNumDeadBlocks;
1310
1311        // Delete the instructions backwards, as it has a reduced likelihood of
1312        // having to update as many def-use and use-def chains.
1313        std::vector<Instruction*> Insts;
1314        TerminatorInst *TI = BB->getTerminator();
1315        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1316          Insts.push_back(I);
1317
1318        while (!Insts.empty()) {
1319          Instruction *I = Insts.back();
1320          Insts.pop_back();
1321          if (!I->use_empty())
1322            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1323          BB->getInstList().erase(I);
1324          MadeChanges = true;
1325          ++IPNumInstRemoved;
1326        }
1327
1328        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1329          BasicBlock *Succ = TI->getSuccessor(i);
1330          if (Succ->begin() != Succ->end() && isa<PHINode>(Succ->begin()))
1331            TI->getSuccessor(i)->removePredecessor(BB);
1332        }
1333        if (!TI->use_empty())
1334          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1335        BB->getInstList().erase(TI);
1336
1337        if (&*BB != &F->front())
1338          BlocksToErase.push_back(BB);
1339        else
1340          new UnreachableInst(BB);
1341
1342      } else {
1343        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1344          Instruction *Inst = BI++;
1345          if (Inst->getType() != Type::VoidTy) {
1346            LatticeVal &IV = Values[Inst];
1347            if (IV.isConstant() || IV.isUndefined() &&
1348                !isa<TerminatorInst>(Inst)) {
1349              Constant *Const = IV.isConstant()
1350                ? IV.getConstant() : UndefValue::get(Inst->getType());
1351              DOUT << "  Constant: " << *Const << " = " << *Inst;
1352
1353              // Replaces all of the uses of a variable with uses of the
1354              // constant.
1355              Inst->replaceAllUsesWith(Const);
1356
1357              // Delete the instruction.
1358              if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst))
1359                BB->getInstList().erase(Inst);
1360
1361              // Hey, we just changed something!
1362              MadeChanges = true;
1363              ++IPNumInstRemoved;
1364            }
1365          }
1366        }
1367      }
1368
1369    // Now that all instructions in the function are constant folded, erase dead
1370    // blocks, because we can now use ConstantFoldTerminator to get rid of
1371    // in-edges.
1372    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1373      // If there are any PHI nodes in this successor, drop entries for BB now.
1374      BasicBlock *DeadBB = BlocksToErase[i];
1375      while (!DeadBB->use_empty()) {
1376        Instruction *I = cast<Instruction>(DeadBB->use_back());
1377        bool Folded = ConstantFoldTerminator(I->getParent());
1378        if (!Folded) {
1379          // The constant folder may not have been able to fold the termiantor
1380          // if this is a branch or switch on undef.  Fold it manually as a
1381          // branch to the first successor.
1382          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1383            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1384                   "Branch should be foldable!");
1385          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1386            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1387          } else {
1388            assert(0 && "Didn't fold away reference to block!");
1389          }
1390
1391          // Make this an uncond branch to the first successor.
1392          TerminatorInst *TI = I->getParent()->getTerminator();
1393          new BranchInst(TI->getSuccessor(0), TI);
1394
1395          // Remove entries in successor phi nodes to remove edges.
1396          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1397            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1398
1399          // Remove the old terminator.
1400          TI->eraseFromParent();
1401        }
1402      }
1403
1404      // Finally, delete the basic block.
1405      F->getBasicBlockList().erase(DeadBB);
1406    }
1407  }
1408
1409  // If we inferred constant or undef return values for a function, we replaced
1410  // all call uses with the inferred value.  This means we don't need to bother
1411  // actually returning anything from the function.  Replace all return
1412  // instructions with return undef.
1413  const hash_map<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals();
1414  for (hash_map<Function*, LatticeVal>::const_iterator I = RV.begin(),
1415         E = RV.end(); I != E; ++I)
1416    if (!I->second.isOverdefined() &&
1417        I->first->getReturnType() != Type::VoidTy) {
1418      Function *F = I->first;
1419      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1420        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1421          if (!isa<UndefValue>(RI->getOperand(0)))
1422            RI->setOperand(0, UndefValue::get(F->getReturnType()));
1423    }
1424
1425  // If we infered constant or undef values for globals variables, we can delete
1426  // the global and any stores that remain to it.
1427  const hash_map<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1428  for (hash_map<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1429         E = TG.end(); I != E; ++I) {
1430    GlobalVariable *GV = I->first;
1431    assert(!I->second.isOverdefined() &&
1432           "Overdefined values should have been taken out of the map!");
1433    DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n";
1434    while (!GV->use_empty()) {
1435      StoreInst *SI = cast<StoreInst>(GV->use_back());
1436      SI->eraseFromParent();
1437    }
1438    M.getGlobalList().erase(GV);
1439    ++IPNumGlobalConst;
1440  }
1441
1442  return MadeChanges;
1443}
1444