SCCP.cpp revision ac0b6ae358944ae8b2b5a11dc08f52c3ed89f2da
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#define DEBUG_TYPE "sccp" 25#include "llvm/Transforms/Scalar.h" 26#include "llvm/Transforms/IPO.h" 27#include "llvm/Constants.h" 28#include "llvm/DerivedTypes.h" 29#include "llvm/Instructions.h" 30#include "llvm/Pass.h" 31#include "llvm/Support/InstVisitor.h" 32#include "llvm/Transforms/Utils/Local.h" 33#include "llvm/Support/CallSite.h" 34#include "llvm/Support/Debug.h" 35#include "llvm/ADT/hash_map" 36#include "llvm/ADT/Statistic.h" 37#include "llvm/ADT/STLExtras.h" 38#include <algorithm> 39#include <set> 40using namespace llvm; 41 42// LatticeVal class - This class represents the different lattice values that an 43// instruction may occupy. It is a simple class with value semantics. 44// 45namespace { 46 47class LatticeVal { 48 enum { 49 undefined, // This instruction has no known value 50 constant, // This instruction has a constant value 51 overdefined // This instruction has an unknown value 52 } LatticeValue; // The current lattice position 53 Constant *ConstantVal; // If Constant value, the current value 54public: 55 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} 56 57 // markOverdefined - Return true if this is a new status to be in... 58 inline bool markOverdefined() { 59 if (LatticeValue != overdefined) { 60 LatticeValue = overdefined; 61 return true; 62 } 63 return false; 64 } 65 66 // markConstant - Return true if this is a new status for us... 67 inline bool markConstant(Constant *V) { 68 if (LatticeValue != constant) { 69 LatticeValue = constant; 70 ConstantVal = V; 71 return true; 72 } else { 73 assert(ConstantVal == V && "Marking constant with different value"); 74 } 75 return false; 76 } 77 78 inline bool isUndefined() const { return LatticeValue == undefined; } 79 inline bool isConstant() const { return LatticeValue == constant; } 80 inline bool isOverdefined() const { return LatticeValue == overdefined; } 81 82 inline Constant *getConstant() const { 83 assert(isConstant() && "Cannot get the constant of a non-constant!"); 84 return ConstantVal; 85 } 86}; 87 88} // end anonymous namespace 89 90 91//===----------------------------------------------------------------------===// 92// 93/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 94/// Constant Propagation. 95/// 96class SCCPSolver : public InstVisitor<SCCPSolver> { 97 std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable 98 hash_map<Value*, LatticeVal> ValueState; // The state each value is in... 99 100 /// GlobalValue - If we are tracking any values for the contents of a global 101 /// variable, we keep a mapping from the constant accessor to the element of 102 /// the global, to the currently known value. If the value becomes 103 /// overdefined, it's entry is simply removed from this map. 104 hash_map<GlobalVariable*, LatticeVal> TrackedGlobals; 105 106 /// TrackedFunctionRetVals - If we are tracking arguments into and the return 107 /// value out of a function, it will have an entry in this map, indicating 108 /// what the known return value for the function is. 109 hash_map<Function*, LatticeVal> TrackedFunctionRetVals; 110 111 // The reason for two worklists is that overdefined is the lowest state 112 // on the lattice, and moving things to overdefined as fast as possible 113 // makes SCCP converge much faster. 114 // By having a separate worklist, we accomplish this because everything 115 // possibly overdefined will become overdefined at the soonest possible 116 // point. 117 std::vector<Value*> OverdefinedInstWorkList; 118 std::vector<Value*> InstWorkList; 119 120 121 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list 122 123 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 124 /// overdefined, despite the fact that the PHI node is overdefined. 125 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 126 127 /// KnownFeasibleEdges - Entries in this set are edges which have already had 128 /// PHI nodes retriggered. 129 typedef std::pair<BasicBlock*,BasicBlock*> Edge; 130 std::set<Edge> KnownFeasibleEdges; 131public: 132 133 /// MarkBlockExecutable - This method can be used by clients to mark all of 134 /// the blocks that are known to be intrinsically live in the processed unit. 135 void MarkBlockExecutable(BasicBlock *BB) { 136 DOUT << "Marking Block Executable: " << BB->getName() << "\n"; 137 BBExecutable.insert(BB); // Basic block is executable! 138 BBWorkList.push_back(BB); // Add the block to the work list! 139 } 140 141 /// TrackValueOfGlobalVariable - Clients can use this method to 142 /// inform the SCCPSolver that it should track loads and stores to the 143 /// specified global variable if it can. This is only legal to call if 144 /// performing Interprocedural SCCP. 145 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 146 const Type *ElTy = GV->getType()->getElementType(); 147 if (ElTy->isFirstClassType()) { 148 LatticeVal &IV = TrackedGlobals[GV]; 149 if (!isa<UndefValue>(GV->getInitializer())) 150 IV.markConstant(GV->getInitializer()); 151 } 152 } 153 154 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 155 /// and out of the specified function (which cannot have its address taken), 156 /// this method must be called. 157 void AddTrackedFunction(Function *F) { 158 assert(F->hasInternalLinkage() && "Can only track internal functions!"); 159 // Add an entry, F -> undef. 160 TrackedFunctionRetVals[F]; 161 } 162 163 /// Solve - Solve for constants and executable blocks. 164 /// 165 void Solve(); 166 167 /// ResolveBranchesIn - While solving the dataflow for a function, we assume 168 /// that branches on undef values cannot reach any of their successors. 169 /// However, this is not a safe assumption. After we solve dataflow, this 170 /// method should be use to handle this. If this returns true, the solver 171 /// should be rerun. 172 bool ResolveBranchesIn(Function &F); 173 174 /// getExecutableBlocks - Once we have solved for constants, return the set of 175 /// blocks that is known to be executable. 176 std::set<BasicBlock*> &getExecutableBlocks() { 177 return BBExecutable; 178 } 179 180 /// getValueMapping - Once we have solved for constants, return the mapping of 181 /// LLVM values to LatticeVals. 182 hash_map<Value*, LatticeVal> &getValueMapping() { 183 return ValueState; 184 } 185 186 /// getTrackedFunctionRetVals - Get the inferred return value map. 187 /// 188 const hash_map<Function*, LatticeVal> &getTrackedFunctionRetVals() { 189 return TrackedFunctionRetVals; 190 } 191 192 /// getTrackedGlobals - Get and return the set of inferred initializers for 193 /// global variables. 194 const hash_map<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 195 return TrackedGlobals; 196 } 197 198 199private: 200 // markConstant - Make a value be marked as "constant". If the value 201 // is not already a constant, add it to the instruction work list so that 202 // the users of the instruction are updated later. 203 // 204 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { 205 if (IV.markConstant(C)) { 206 DOUT << "markConstant: " << *C << ": " << *V; 207 InstWorkList.push_back(V); 208 } 209 } 210 inline void markConstant(Value *V, Constant *C) { 211 markConstant(ValueState[V], V, C); 212 } 213 214 // markOverdefined - Make a value be marked as "overdefined". If the 215 // value is not already overdefined, add it to the overdefined instruction 216 // work list so that the users of the instruction are updated later. 217 218 inline void markOverdefined(LatticeVal &IV, Value *V) { 219 if (IV.markOverdefined()) { 220 DEBUG(DOUT << "markOverdefined: "; 221 if (Function *F = dyn_cast<Function>(V)) 222 DOUT << "Function '" << F->getName() << "'\n"; 223 else 224 DOUT << *V); 225 // Only instructions go on the work list 226 OverdefinedInstWorkList.push_back(V); 227 } 228 } 229 inline void markOverdefined(Value *V) { 230 markOverdefined(ValueState[V], V); 231 } 232 233 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { 234 if (IV.isOverdefined() || MergeWithV.isUndefined()) 235 return; // Noop. 236 if (MergeWithV.isOverdefined()) 237 markOverdefined(IV, V); 238 else if (IV.isUndefined()) 239 markConstant(IV, V, MergeWithV.getConstant()); 240 else if (IV.getConstant() != MergeWithV.getConstant()) 241 markOverdefined(IV, V); 242 } 243 244 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) { 245 return mergeInValue(ValueState[V], V, MergeWithV); 246 } 247 248 249 // getValueState - Return the LatticeVal object that corresponds to the value. 250 // This function is necessary because not all values should start out in the 251 // underdefined state... Argument's should be overdefined, and 252 // constants should be marked as constants. If a value is not known to be an 253 // Instruction object, then use this accessor to get its value from the map. 254 // 255 inline LatticeVal &getValueState(Value *V) { 256 hash_map<Value*, LatticeVal>::iterator I = ValueState.find(V); 257 if (I != ValueState.end()) return I->second; // Common case, in the map 258 259 if (Constant *CPV = dyn_cast<Constant>(V)) { 260 if (isa<UndefValue>(V)) { 261 // Nothing to do, remain undefined. 262 } else { 263 ValueState[CPV].markConstant(CPV); // Constants are constant 264 } 265 } 266 // All others are underdefined by default... 267 return ValueState[V]; 268 } 269 270 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 271 // work list if it is not already executable... 272 // 273 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 274 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 275 return; // This edge is already known to be executable! 276 277 if (BBExecutable.count(Dest)) { 278 DOUT << "Marking Edge Executable: " << Source->getName() 279 << " -> " << Dest->getName() << "\n"; 280 281 // The destination is already executable, but we just made an edge 282 // feasible that wasn't before. Revisit the PHI nodes in the block 283 // because they have potentially new operands. 284 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 285 visitPHINode(*cast<PHINode>(I)); 286 287 } else { 288 MarkBlockExecutable(Dest); 289 } 290 } 291 292 // getFeasibleSuccessors - Return a vector of booleans to indicate which 293 // successors are reachable from a given terminator instruction. 294 // 295 void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs); 296 297 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 298 // block to the 'To' basic block is currently feasible... 299 // 300 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 301 302 // OperandChangedState - This method is invoked on all of the users of an 303 // instruction that was just changed state somehow.... Based on this 304 // information, we need to update the specified user of this instruction. 305 // 306 void OperandChangedState(User *U) { 307 // Only instructions use other variable values! 308 Instruction &I = cast<Instruction>(*U); 309 if (BBExecutable.count(I.getParent())) // Inst is executable? 310 visit(I); 311 } 312 313private: 314 friend class InstVisitor<SCCPSolver>; 315 316 // visit implementations - Something changed in this instruction... Either an 317 // operand made a transition, or the instruction is newly executable. Change 318 // the value type of I to reflect these changes if appropriate. 319 // 320 void visitPHINode(PHINode &I); 321 322 // Terminators 323 void visitReturnInst(ReturnInst &I); 324 void visitTerminatorInst(TerminatorInst &TI); 325 326 void visitCastInst(CastInst &I); 327 void visitSelectInst(SelectInst &I); 328 void visitBinaryOperator(Instruction &I); 329 void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } 330 void visitExtractElementInst(ExtractElementInst &I); 331 void visitInsertElementInst(InsertElementInst &I); 332 void visitShuffleVectorInst(ShuffleVectorInst &I); 333 334 // Instructions that cannot be folded away... 335 void visitStoreInst (Instruction &I); 336 void visitLoadInst (LoadInst &I); 337 void visitGetElementPtrInst(GetElementPtrInst &I); 338 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); } 339 void visitInvokeInst (InvokeInst &II) { 340 visitCallSite(CallSite::get(&II)); 341 visitTerminatorInst(II); 342 } 343 void visitCallSite (CallSite CS); 344 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 345 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 346 void visitAllocationInst(Instruction &I) { markOverdefined(&I); } 347 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 348 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 349 void visitFreeInst (Instruction &I) { /*returns void*/ } 350 351 void visitInstruction(Instruction &I) { 352 // If a new instruction is added to LLVM that we don't handle... 353 llvm_cerr << "SCCP: Don't know how to handle: " << I; 354 markOverdefined(&I); // Just in case 355 } 356}; 357 358// getFeasibleSuccessors - Return a vector of booleans to indicate which 359// successors are reachable from a given terminator instruction. 360// 361void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 362 std::vector<bool> &Succs) { 363 Succs.resize(TI.getNumSuccessors()); 364 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 365 if (BI->isUnconditional()) { 366 Succs[0] = true; 367 } else { 368 LatticeVal &BCValue = getValueState(BI->getCondition()); 369 if (BCValue.isOverdefined() || 370 (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) { 371 // Overdefined condition variables, and branches on unfoldable constant 372 // conditions, mean the branch could go either way. 373 Succs[0] = Succs[1] = true; 374 } else if (BCValue.isConstant()) { 375 // Constant condition variables mean the branch can only go a single way 376 Succs[BCValue.getConstant() == ConstantBool::getFalse()] = true; 377 } 378 } 379 } else if (isa<InvokeInst>(&TI)) { 380 // Invoke instructions successors are always executable. 381 Succs[0] = Succs[1] = true; 382 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 383 LatticeVal &SCValue = getValueState(SI->getCondition()); 384 if (SCValue.isOverdefined() || // Overdefined condition? 385 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 386 // All destinations are executable! 387 Succs.assign(TI.getNumSuccessors(), true); 388 } else if (SCValue.isConstant()) { 389 Constant *CPV = SCValue.getConstant(); 390 // Make sure to skip the "default value" which isn't a value 391 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { 392 if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... 393 Succs[i] = true; 394 return; 395 } 396 } 397 398 // Constant value not equal to any of the branches... must execute 399 // default branch then... 400 Succs[0] = true; 401 } 402 } else { 403 llvm_cerr << "SCCP: Don't know how to handle: " << TI; 404 Succs.assign(TI.getNumSuccessors(), true); 405 } 406} 407 408 409// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 410// block to the 'To' basic block is currently feasible... 411// 412bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 413 assert(BBExecutable.count(To) && "Dest should always be alive!"); 414 415 // Make sure the source basic block is executable!! 416 if (!BBExecutable.count(From)) return false; 417 418 // Check to make sure this edge itself is actually feasible now... 419 TerminatorInst *TI = From->getTerminator(); 420 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 421 if (BI->isUnconditional()) 422 return true; 423 else { 424 LatticeVal &BCValue = getValueState(BI->getCondition()); 425 if (BCValue.isOverdefined()) { 426 // Overdefined condition variables mean the branch could go either way. 427 return true; 428 } else if (BCValue.isConstant()) { 429 // Not branching on an evaluatable constant? 430 if (!isa<ConstantBool>(BCValue.getConstant())) return true; 431 432 // Constant condition variables mean the branch can only go a single way 433 return BI->getSuccessor(BCValue.getConstant() == 434 ConstantBool::getFalse()) == To; 435 } 436 return false; 437 } 438 } else if (isa<InvokeInst>(TI)) { 439 // Invoke instructions successors are always executable. 440 return true; 441 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 442 LatticeVal &SCValue = getValueState(SI->getCondition()); 443 if (SCValue.isOverdefined()) { // Overdefined condition? 444 // All destinations are executable! 445 return true; 446 } else if (SCValue.isConstant()) { 447 Constant *CPV = SCValue.getConstant(); 448 if (!isa<ConstantInt>(CPV)) 449 return true; // not a foldable constant? 450 451 // Make sure to skip the "default value" which isn't a value 452 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 453 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 454 return SI->getSuccessor(i) == To; 455 456 // Constant value not equal to any of the branches... must execute 457 // default branch then... 458 return SI->getDefaultDest() == To; 459 } 460 return false; 461 } else { 462 llvm_cerr << "Unknown terminator instruction: " << *TI; 463 abort(); 464 } 465} 466 467// visit Implementations - Something changed in this instruction... Either an 468// operand made a transition, or the instruction is newly executable. Change 469// the value type of I to reflect these changes if appropriate. This method 470// makes sure to do the following actions: 471// 472// 1. If a phi node merges two constants in, and has conflicting value coming 473// from different branches, or if the PHI node merges in an overdefined 474// value, then the PHI node becomes overdefined. 475// 2. If a phi node merges only constants in, and they all agree on value, the 476// PHI node becomes a constant value equal to that. 477// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 478// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 479// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 480// 6. If a conditional branch has a value that is constant, make the selected 481// destination executable 482// 7. If a conditional branch has a value that is overdefined, make all 483// successors executable. 484// 485void SCCPSolver::visitPHINode(PHINode &PN) { 486 LatticeVal &PNIV = getValueState(&PN); 487 if (PNIV.isOverdefined()) { 488 // There may be instructions using this PHI node that are not overdefined 489 // themselves. If so, make sure that they know that the PHI node operand 490 // changed. 491 std::multimap<PHINode*, Instruction*>::iterator I, E; 492 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 493 if (I != E) { 494 std::vector<Instruction*> Users; 495 Users.reserve(std::distance(I, E)); 496 for (; I != E; ++I) Users.push_back(I->second); 497 while (!Users.empty()) { 498 visit(Users.back()); 499 Users.pop_back(); 500 } 501 } 502 return; // Quick exit 503 } 504 505 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 506 // and slow us down a lot. Just mark them overdefined. 507 if (PN.getNumIncomingValues() > 64) { 508 markOverdefined(PNIV, &PN); 509 return; 510 } 511 512 // Look at all of the executable operands of the PHI node. If any of them 513 // are overdefined, the PHI becomes overdefined as well. If they are all 514 // constant, and they agree with each other, the PHI becomes the identical 515 // constant. If they are constant and don't agree, the PHI is overdefined. 516 // If there are no executable operands, the PHI remains undefined. 517 // 518 Constant *OperandVal = 0; 519 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 520 LatticeVal &IV = getValueState(PN.getIncomingValue(i)); 521 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 522 523 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 524 if (IV.isOverdefined()) { // PHI node becomes overdefined! 525 markOverdefined(PNIV, &PN); 526 return; 527 } 528 529 if (OperandVal == 0) { // Grab the first value... 530 OperandVal = IV.getConstant(); 531 } else { // Another value is being merged in! 532 // There is already a reachable operand. If we conflict with it, 533 // then the PHI node becomes overdefined. If we agree with it, we 534 // can continue on. 535 536 // Check to see if there are two different constants merging... 537 if (IV.getConstant() != OperandVal) { 538 // Yes there is. This means the PHI node is not constant. 539 // You must be overdefined poor PHI. 540 // 541 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined 542 return; // I'm done analyzing you 543 } 544 } 545 } 546 } 547 548 // If we exited the loop, this means that the PHI node only has constant 549 // arguments that agree with each other(and OperandVal is the constant) or 550 // OperandVal is null because there are no defined incoming arguments. If 551 // this is the case, the PHI remains undefined. 552 // 553 if (OperandVal) 554 markConstant(PNIV, &PN, OperandVal); // Acquire operand value 555} 556 557void SCCPSolver::visitReturnInst(ReturnInst &I) { 558 if (I.getNumOperands() == 0) return; // Ret void 559 560 // If we are tracking the return value of this function, merge it in. 561 Function *F = I.getParent()->getParent(); 562 if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) { 563 hash_map<Function*, LatticeVal>::iterator TFRVI = 564 TrackedFunctionRetVals.find(F); 565 if (TFRVI != TrackedFunctionRetVals.end() && 566 !TFRVI->second.isOverdefined()) { 567 LatticeVal &IV = getValueState(I.getOperand(0)); 568 mergeInValue(TFRVI->second, F, IV); 569 } 570 } 571} 572 573 574void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 575 std::vector<bool> SuccFeasible; 576 getFeasibleSuccessors(TI, SuccFeasible); 577 578 BasicBlock *BB = TI.getParent(); 579 580 // Mark all feasible successors executable... 581 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 582 if (SuccFeasible[i]) 583 markEdgeExecutable(BB, TI.getSuccessor(i)); 584} 585 586void SCCPSolver::visitCastInst(CastInst &I) { 587 Value *V = I.getOperand(0); 588 LatticeVal &VState = getValueState(V); 589 if (VState.isOverdefined()) // Inherit overdefinedness of operand 590 markOverdefined(&I); 591 else if (VState.isConstant()) // Propagate constant value 592 markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType())); 593} 594 595void SCCPSolver::visitSelectInst(SelectInst &I) { 596 LatticeVal &CondValue = getValueState(I.getCondition()); 597 if (CondValue.isUndefined()) 598 return; 599 if (CondValue.isConstant()) { 600 if (ConstantBool *CondCB = dyn_cast<ConstantBool>(CondValue.getConstant())){ 601 mergeInValue(&I, getValueState(CondCB->getValue() ? I.getTrueValue() 602 : I.getFalseValue())); 603 return; 604 } 605 } 606 607 // Otherwise, the condition is overdefined or a constant we can't evaluate. 608 // See if we can produce something better than overdefined based on the T/F 609 // value. 610 LatticeVal &TVal = getValueState(I.getTrueValue()); 611 LatticeVal &FVal = getValueState(I.getFalseValue()); 612 613 // select ?, C, C -> C. 614 if (TVal.isConstant() && FVal.isConstant() && 615 TVal.getConstant() == FVal.getConstant()) { 616 markConstant(&I, FVal.getConstant()); 617 return; 618 } 619 620 if (TVal.isUndefined()) { // select ?, undef, X -> X. 621 mergeInValue(&I, FVal); 622 } else if (FVal.isUndefined()) { // select ?, X, undef -> X. 623 mergeInValue(&I, TVal); 624 } else { 625 markOverdefined(&I); 626 } 627} 628 629// Handle BinaryOperators and Shift Instructions... 630void SCCPSolver::visitBinaryOperator(Instruction &I) { 631 LatticeVal &IV = ValueState[&I]; 632 if (IV.isOverdefined()) return; 633 634 LatticeVal &V1State = getValueState(I.getOperand(0)); 635 LatticeVal &V2State = getValueState(I.getOperand(1)); 636 637 if (V1State.isOverdefined() || V2State.isOverdefined()) { 638 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 639 // operand is overdefined. 640 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 641 LatticeVal *NonOverdefVal = 0; 642 if (!V1State.isOverdefined()) { 643 NonOverdefVal = &V1State; 644 } else if (!V2State.isOverdefined()) { 645 NonOverdefVal = &V2State; 646 } 647 648 if (NonOverdefVal) { 649 if (NonOverdefVal->isUndefined()) { 650 // Could annihilate value. 651 if (I.getOpcode() == Instruction::And) 652 markConstant(IV, &I, Constant::getNullValue(I.getType())); 653 else 654 markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType())); 655 return; 656 } else { 657 if (I.getOpcode() == Instruction::And) { 658 if (NonOverdefVal->getConstant()->isNullValue()) { 659 markConstant(IV, &I, NonOverdefVal->getConstant()); 660 return; // X or 0 = -1 661 } 662 } else { 663 if (ConstantIntegral *CI = 664 dyn_cast<ConstantIntegral>(NonOverdefVal->getConstant())) 665 if (CI->isAllOnesValue()) { 666 markConstant(IV, &I, NonOverdefVal->getConstant()); 667 return; // X or -1 = -1 668 } 669 } 670 } 671 } 672 } 673 674 675 // If both operands are PHI nodes, it is possible that this instruction has 676 // a constant value, despite the fact that the PHI node doesn't. Check for 677 // this condition now. 678 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 679 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 680 if (PN1->getParent() == PN2->getParent()) { 681 // Since the two PHI nodes are in the same basic block, they must have 682 // entries for the same predecessors. Walk the predecessor list, and 683 // if all of the incoming values are constants, and the result of 684 // evaluating this expression with all incoming value pairs is the 685 // same, then this expression is a constant even though the PHI node 686 // is not a constant! 687 LatticeVal Result; 688 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 689 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 690 BasicBlock *InBlock = PN1->getIncomingBlock(i); 691 LatticeVal &In2 = 692 getValueState(PN2->getIncomingValueForBlock(InBlock)); 693 694 if (In1.isOverdefined() || In2.isOverdefined()) { 695 Result.markOverdefined(); 696 break; // Cannot fold this operation over the PHI nodes! 697 } else if (In1.isConstant() && In2.isConstant()) { 698 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), 699 In2.getConstant()); 700 if (Result.isUndefined()) 701 Result.markConstant(V); 702 else if (Result.isConstant() && Result.getConstant() != V) { 703 Result.markOverdefined(); 704 break; 705 } 706 } 707 } 708 709 // If we found a constant value here, then we know the instruction is 710 // constant despite the fact that the PHI nodes are overdefined. 711 if (Result.isConstant()) { 712 markConstant(IV, &I, Result.getConstant()); 713 // Remember that this instruction is virtually using the PHI node 714 // operands. 715 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 716 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 717 return; 718 } else if (Result.isUndefined()) { 719 return; 720 } 721 722 // Okay, this really is overdefined now. Since we might have 723 // speculatively thought that this was not overdefined before, and 724 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 725 // make sure to clean out any entries that we put there, for 726 // efficiency. 727 std::multimap<PHINode*, Instruction*>::iterator It, E; 728 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 729 while (It != E) { 730 if (It->second == &I) { 731 UsersOfOverdefinedPHIs.erase(It++); 732 } else 733 ++It; 734 } 735 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 736 while (It != E) { 737 if (It->second == &I) { 738 UsersOfOverdefinedPHIs.erase(It++); 739 } else 740 ++It; 741 } 742 } 743 744 markOverdefined(IV, &I); 745 } else if (V1State.isConstant() && V2State.isConstant()) { 746 markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 747 V2State.getConstant())); 748 } 749} 750 751void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 752 // FIXME : SCCP does not handle vectors properly. 753 markOverdefined(&I); 754 return; 755 756#if 0 757 LatticeVal &ValState = getValueState(I.getOperand(0)); 758 LatticeVal &IdxState = getValueState(I.getOperand(1)); 759 760 if (ValState.isOverdefined() || IdxState.isOverdefined()) 761 markOverdefined(&I); 762 else if(ValState.isConstant() && IdxState.isConstant()) 763 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 764 IdxState.getConstant())); 765#endif 766} 767 768void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 769 // FIXME : SCCP does not handle vectors properly. 770 markOverdefined(&I); 771 return; 772#if 0 773 LatticeVal &ValState = getValueState(I.getOperand(0)); 774 LatticeVal &EltState = getValueState(I.getOperand(1)); 775 LatticeVal &IdxState = getValueState(I.getOperand(2)); 776 777 if (ValState.isOverdefined() || EltState.isOverdefined() || 778 IdxState.isOverdefined()) 779 markOverdefined(&I); 780 else if(ValState.isConstant() && EltState.isConstant() && 781 IdxState.isConstant()) 782 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 783 EltState.getConstant(), 784 IdxState.getConstant())); 785 else if (ValState.isUndefined() && EltState.isConstant() && 786 IdxState.isConstant()) 787 markConstant(&I, ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 788 EltState.getConstant(), 789 IdxState.getConstant())); 790#endif 791} 792 793void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 794 // FIXME : SCCP does not handle vectors properly. 795 markOverdefined(&I); 796 return; 797#if 0 798 LatticeVal &V1State = getValueState(I.getOperand(0)); 799 LatticeVal &V2State = getValueState(I.getOperand(1)); 800 LatticeVal &MaskState = getValueState(I.getOperand(2)); 801 802 if (MaskState.isUndefined() || 803 (V1State.isUndefined() && V2State.isUndefined())) 804 return; // Undefined output if mask or both inputs undefined. 805 806 if (V1State.isOverdefined() || V2State.isOverdefined() || 807 MaskState.isOverdefined()) { 808 markOverdefined(&I); 809 } else { 810 // A mix of constant/undef inputs. 811 Constant *V1 = V1State.isConstant() ? 812 V1State.getConstant() : UndefValue::get(I.getType()); 813 Constant *V2 = V2State.isConstant() ? 814 V2State.getConstant() : UndefValue::get(I.getType()); 815 Constant *Mask = MaskState.isConstant() ? 816 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 817 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 818 } 819#endif 820} 821 822// Handle getelementptr instructions... if all operands are constants then we 823// can turn this into a getelementptr ConstantExpr. 824// 825void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 826 LatticeVal &IV = ValueState[&I]; 827 if (IV.isOverdefined()) return; 828 829 std::vector<Constant*> Operands; 830 Operands.reserve(I.getNumOperands()); 831 832 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 833 LatticeVal &State = getValueState(I.getOperand(i)); 834 if (State.isUndefined()) 835 return; // Operands are not resolved yet... 836 else if (State.isOverdefined()) { 837 markOverdefined(IV, &I); 838 return; 839 } 840 assert(State.isConstant() && "Unknown state!"); 841 Operands.push_back(State.getConstant()); 842 } 843 844 Constant *Ptr = Operands[0]; 845 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 846 847 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands)); 848} 849 850void SCCPSolver::visitStoreInst(Instruction &SI) { 851 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 852 return; 853 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 854 hash_map<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 855 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 856 857 // Get the value we are storing into the global. 858 LatticeVal &PtrVal = getValueState(SI.getOperand(0)); 859 860 mergeInValue(I->second, GV, PtrVal); 861 if (I->second.isOverdefined()) 862 TrackedGlobals.erase(I); // No need to keep tracking this! 863} 864 865 866// Handle load instructions. If the operand is a constant pointer to a constant 867// global, we can replace the load with the loaded constant value! 868void SCCPSolver::visitLoadInst(LoadInst &I) { 869 LatticeVal &IV = ValueState[&I]; 870 if (IV.isOverdefined()) return; 871 872 LatticeVal &PtrVal = getValueState(I.getOperand(0)); 873 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 874 if (PtrVal.isConstant() && !I.isVolatile()) { 875 Value *Ptr = PtrVal.getConstant(); 876 if (isa<ConstantPointerNull>(Ptr)) { 877 // load null -> null 878 markConstant(IV, &I, Constant::getNullValue(I.getType())); 879 return; 880 } 881 882 // Transform load (constant global) into the value loaded. 883 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 884 if (GV->isConstant()) { 885 if (!GV->isExternal()) { 886 markConstant(IV, &I, GV->getInitializer()); 887 return; 888 } 889 } else if (!TrackedGlobals.empty()) { 890 // If we are tracking this global, merge in the known value for it. 891 hash_map<GlobalVariable*, LatticeVal>::iterator It = 892 TrackedGlobals.find(GV); 893 if (It != TrackedGlobals.end()) { 894 mergeInValue(IV, &I, It->second); 895 return; 896 } 897 } 898 } 899 900 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 901 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 902 if (CE->getOpcode() == Instruction::GetElementPtr) 903 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 904 if (GV->isConstant() && !GV->isExternal()) 905 if (Constant *V = 906 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) { 907 markConstant(IV, &I, V); 908 return; 909 } 910 } 911 912 // Otherwise we cannot say for certain what value this load will produce. 913 // Bail out. 914 markOverdefined(IV, &I); 915} 916 917void SCCPSolver::visitCallSite(CallSite CS) { 918 Function *F = CS.getCalledFunction(); 919 920 // If we are tracking this function, we must make sure to bind arguments as 921 // appropriate. 922 hash_map<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end(); 923 if (F && F->hasInternalLinkage()) 924 TFRVI = TrackedFunctionRetVals.find(F); 925 926 if (TFRVI != TrackedFunctionRetVals.end()) { 927 // If this is the first call to the function hit, mark its entry block 928 // executable. 929 if (!BBExecutable.count(F->begin())) 930 MarkBlockExecutable(F->begin()); 931 932 CallSite::arg_iterator CAI = CS.arg_begin(); 933 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 934 AI != E; ++AI, ++CAI) { 935 LatticeVal &IV = ValueState[AI]; 936 if (!IV.isOverdefined()) 937 mergeInValue(IV, AI, getValueState(*CAI)); 938 } 939 } 940 Instruction *I = CS.getInstruction(); 941 if (I->getType() == Type::VoidTy) return; 942 943 LatticeVal &IV = ValueState[I]; 944 if (IV.isOverdefined()) return; 945 946 // Propagate the return value of the function to the value of the instruction. 947 if (TFRVI != TrackedFunctionRetVals.end()) { 948 mergeInValue(IV, I, TFRVI->second); 949 return; 950 } 951 952 if (F == 0 || !F->isExternal() || !canConstantFoldCallTo(F)) { 953 markOverdefined(IV, I); 954 return; 955 } 956 957 std::vector<Constant*> Operands; 958 Operands.reserve(I->getNumOperands()-1); 959 960 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 961 AI != E; ++AI) { 962 LatticeVal &State = getValueState(*AI); 963 if (State.isUndefined()) 964 return; // Operands are not resolved yet... 965 else if (State.isOverdefined()) { 966 markOverdefined(IV, I); 967 return; 968 } 969 assert(State.isConstant() && "Unknown state!"); 970 Operands.push_back(State.getConstant()); 971 } 972 973 if (Constant *C = ConstantFoldCall(F, Operands)) 974 markConstant(IV, I, C); 975 else 976 markOverdefined(IV, I); 977} 978 979 980void SCCPSolver::Solve() { 981 // Process the work lists until they are empty! 982 while (!BBWorkList.empty() || !InstWorkList.empty() || 983 !OverdefinedInstWorkList.empty()) { 984 // Process the instruction work list... 985 while (!OverdefinedInstWorkList.empty()) { 986 Value *I = OverdefinedInstWorkList.back(); 987 OverdefinedInstWorkList.pop_back(); 988 989 DOUT << "\nPopped off OI-WL: " << *I; 990 991 // "I" got into the work list because it either made the transition from 992 // bottom to constant 993 // 994 // Anything on this worklist that is overdefined need not be visited 995 // since all of its users will have already been marked as overdefined 996 // Update all of the users of this instruction's value... 997 // 998 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 999 UI != E; ++UI) 1000 OperandChangedState(*UI); 1001 } 1002 // Process the instruction work list... 1003 while (!InstWorkList.empty()) { 1004 Value *I = InstWorkList.back(); 1005 InstWorkList.pop_back(); 1006 1007 DOUT << "\nPopped off I-WL: " << *I; 1008 1009 // "I" got into the work list because it either made the transition from 1010 // bottom to constant 1011 // 1012 // Anything on this worklist that is overdefined need not be visited 1013 // since all of its users will have already been marked as overdefined. 1014 // Update all of the users of this instruction's value... 1015 // 1016 if (!getValueState(I).isOverdefined()) 1017 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1018 UI != E; ++UI) 1019 OperandChangedState(*UI); 1020 } 1021 1022 // Process the basic block work list... 1023 while (!BBWorkList.empty()) { 1024 BasicBlock *BB = BBWorkList.back(); 1025 BBWorkList.pop_back(); 1026 1027 DOUT << "\nPopped off BBWL: " << *BB; 1028 1029 // Notify all instructions in this basic block that they are newly 1030 // executable. 1031 visit(BB); 1032 } 1033 } 1034} 1035 1036/// ResolveBranchesIn - While solving the dataflow for a function, we assume 1037/// that branches on undef values cannot reach any of their successors. 1038/// However, this is not a safe assumption. After we solve dataflow, this 1039/// method should be use to handle this. If this returns true, the solver 1040/// should be rerun. 1041/// 1042/// This method handles this by finding an unresolved branch and marking it one 1043/// of the edges from the block as being feasible, even though the condition 1044/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1045/// CFG and only slightly pessimizes the analysis results (by marking one, 1046/// potentially unfeasible, edge feasible). This cannot usefully modify the 1047/// constraints on the condition of the branch, as that would impact other users 1048/// of the value. 1049bool SCCPSolver::ResolveBranchesIn(Function &F) { 1050 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1051 if (!BBExecutable.count(BB)) 1052 continue; 1053 1054 TerminatorInst *TI = BB->getTerminator(); 1055 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1056 if (!BI->isConditional()) continue; 1057 if (!getValueState(BI->getCondition()).isUndefined()) 1058 continue; 1059 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1060 if (!getValueState(SI->getCondition()).isUndefined()) 1061 continue; 1062 } else { 1063 continue; 1064 } 1065 1066 // If the edge to the first successor isn't thought to be feasible yet, mark 1067 // it so now. 1068 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(0)))) 1069 continue; 1070 1071 // Otherwise, it isn't already thought to be feasible. Mark it as such now 1072 // and return. This will make other blocks reachable, which will allow new 1073 // values to be discovered and existing ones to be moved in the lattice. 1074 markEdgeExecutable(BB, TI->getSuccessor(0)); 1075 return true; 1076 } 1077 1078 return false; 1079} 1080 1081 1082namespace { 1083 Statistic NumInstRemoved("sccp", "Number of instructions removed"); 1084 Statistic NumDeadBlocks ("sccp", "Number of basic blocks unreachable"); 1085 1086 //===--------------------------------------------------------------------===// 1087 // 1088 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1089 /// Sparse Conditional COnstant Propagator. 1090 /// 1091 struct SCCP : public FunctionPass { 1092 // runOnFunction - Run the Sparse Conditional Constant Propagation 1093 // algorithm, and return true if the function was modified. 1094 // 1095 bool runOnFunction(Function &F); 1096 1097 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1098 AU.setPreservesCFG(); 1099 } 1100 }; 1101 1102 RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); 1103} // end anonymous namespace 1104 1105 1106// createSCCPPass - This is the public interface to this file... 1107FunctionPass *llvm::createSCCPPass() { 1108 return new SCCP(); 1109} 1110 1111 1112// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1113// and return true if the function was modified. 1114// 1115bool SCCP::runOnFunction(Function &F) { 1116 DOUT << "SCCP on function '" << F.getName() << "'\n"; 1117 SCCPSolver Solver; 1118 1119 // Mark the first block of the function as being executable. 1120 Solver.MarkBlockExecutable(F.begin()); 1121 1122 // Mark all arguments to the function as being overdefined. 1123 hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1124 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI) 1125 Values[AI].markOverdefined(); 1126 1127 // Solve for constants. 1128 bool ResolvedBranches = true; 1129 while (ResolvedBranches) { 1130 Solver.Solve(); 1131 DOUT << "RESOLVING UNDEF BRANCHES\n"; 1132 ResolvedBranches = Solver.ResolveBranchesIn(F); 1133 } 1134 1135 bool MadeChanges = false; 1136 1137 // If we decided that there are basic blocks that are dead in this function, 1138 // delete their contents now. Note that we cannot actually delete the blocks, 1139 // as we cannot modify the CFG of the function. 1140 // 1141 std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks(); 1142 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1143 if (!ExecutableBBs.count(BB)) { 1144 DOUT << " BasicBlock Dead:" << *BB; 1145 ++NumDeadBlocks; 1146 1147 // Delete the instructions backwards, as it has a reduced likelihood of 1148 // having to update as many def-use and use-def chains. 1149 std::vector<Instruction*> Insts; 1150 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); 1151 I != E; ++I) 1152 Insts.push_back(I); 1153 while (!Insts.empty()) { 1154 Instruction *I = Insts.back(); 1155 Insts.pop_back(); 1156 if (!I->use_empty()) 1157 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1158 BB->getInstList().erase(I); 1159 MadeChanges = true; 1160 ++NumInstRemoved; 1161 } 1162 } else { 1163 // Iterate over all of the instructions in a function, replacing them with 1164 // constants if we have found them to be of constant values. 1165 // 1166 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1167 Instruction *Inst = BI++; 1168 if (Inst->getType() != Type::VoidTy) { 1169 LatticeVal &IV = Values[Inst]; 1170 if (IV.isConstant() || IV.isUndefined() && 1171 !isa<TerminatorInst>(Inst)) { 1172 Constant *Const = IV.isConstant() 1173 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1174 DOUT << " Constant: " << *Const << " = " << *Inst; 1175 1176 // Replaces all of the uses of a variable with uses of the constant. 1177 Inst->replaceAllUsesWith(Const); 1178 1179 // Delete the instruction. 1180 BB->getInstList().erase(Inst); 1181 1182 // Hey, we just changed something! 1183 MadeChanges = true; 1184 ++NumInstRemoved; 1185 } 1186 } 1187 } 1188 } 1189 1190 return MadeChanges; 1191} 1192 1193namespace { 1194 Statistic IPNumInstRemoved("ipsccp", "Number of instructions removed"); 1195 Statistic IPNumDeadBlocks ("ipsccp", "Number of basic blocks unreachable"); 1196 Statistic IPNumArgsElimed ("ipsccp", 1197 "Number of arguments constant propagated"); 1198 Statistic IPNumGlobalConst("ipsccp", 1199 "Number of globals found to be constant"); 1200 1201 //===--------------------------------------------------------------------===// 1202 // 1203 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1204 /// Constant Propagation. 1205 /// 1206 struct IPSCCP : public ModulePass { 1207 bool runOnModule(Module &M); 1208 }; 1209 1210 RegisterPass<IPSCCP> 1211 Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); 1212} // end anonymous namespace 1213 1214// createIPSCCPPass - This is the public interface to this file... 1215ModulePass *llvm::createIPSCCPPass() { 1216 return new IPSCCP(); 1217} 1218 1219 1220static bool AddressIsTaken(GlobalValue *GV) { 1221 // Delete any dead constantexpr klingons. 1222 GV->removeDeadConstantUsers(); 1223 1224 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 1225 UI != E; ++UI) 1226 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 1227 if (SI->getOperand(0) == GV || SI->isVolatile()) 1228 return true; // Storing addr of GV. 1229 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { 1230 // Make sure we are calling the function, not passing the address. 1231 CallSite CS = CallSite::get(cast<Instruction>(*UI)); 1232 for (CallSite::arg_iterator AI = CS.arg_begin(), 1233 E = CS.arg_end(); AI != E; ++AI) 1234 if (*AI == GV) 1235 return true; 1236 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1237 if (LI->isVolatile()) 1238 return true; 1239 } else { 1240 return true; 1241 } 1242 return false; 1243} 1244 1245bool IPSCCP::runOnModule(Module &M) { 1246 SCCPSolver Solver; 1247 1248 // Loop over all functions, marking arguments to those with their addresses 1249 // taken or that are external as overdefined. 1250 // 1251 hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1252 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1253 if (!F->hasInternalLinkage() || AddressIsTaken(F)) { 1254 if (!F->isExternal()) 1255 Solver.MarkBlockExecutable(F->begin()); 1256 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1257 AI != E; ++AI) 1258 Values[AI].markOverdefined(); 1259 } else { 1260 Solver.AddTrackedFunction(F); 1261 } 1262 1263 // Loop over global variables. We inform the solver about any internal global 1264 // variables that do not have their 'addresses taken'. If they don't have 1265 // their addresses taken, we can propagate constants through them. 1266 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1267 G != E; ++G) 1268 if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G)) 1269 Solver.TrackValueOfGlobalVariable(G); 1270 1271 // Solve for constants. 1272 bool ResolvedBranches = true; 1273 while (ResolvedBranches) { 1274 Solver.Solve(); 1275 1276 DOUT << "RESOLVING UNDEF BRANCHES\n"; 1277 ResolvedBranches = false; 1278 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1279 ResolvedBranches |= Solver.ResolveBranchesIn(*F); 1280 } 1281 1282 bool MadeChanges = false; 1283 1284 // Iterate over all of the instructions in the module, replacing them with 1285 // constants if we have found them to be of constant values. 1286 // 1287 std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks(); 1288 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1289 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1290 AI != E; ++AI) 1291 if (!AI->use_empty()) { 1292 LatticeVal &IV = Values[AI]; 1293 if (IV.isConstant() || IV.isUndefined()) { 1294 Constant *CST = IV.isConstant() ? 1295 IV.getConstant() : UndefValue::get(AI->getType()); 1296 DOUT << "*** Arg " << *AI << " = " << *CST <<"\n"; 1297 1298 // Replaces all of the uses of a variable with uses of the 1299 // constant. 1300 AI->replaceAllUsesWith(CST); 1301 ++IPNumArgsElimed; 1302 } 1303 } 1304 1305 std::vector<BasicBlock*> BlocksToErase; 1306 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1307 if (!ExecutableBBs.count(BB)) { 1308 DOUT << " BasicBlock Dead:" << *BB; 1309 ++IPNumDeadBlocks; 1310 1311 // Delete the instructions backwards, as it has a reduced likelihood of 1312 // having to update as many def-use and use-def chains. 1313 std::vector<Instruction*> Insts; 1314 TerminatorInst *TI = BB->getTerminator(); 1315 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) 1316 Insts.push_back(I); 1317 1318 while (!Insts.empty()) { 1319 Instruction *I = Insts.back(); 1320 Insts.pop_back(); 1321 if (!I->use_empty()) 1322 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1323 BB->getInstList().erase(I); 1324 MadeChanges = true; 1325 ++IPNumInstRemoved; 1326 } 1327 1328 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1329 BasicBlock *Succ = TI->getSuccessor(i); 1330 if (Succ->begin() != Succ->end() && isa<PHINode>(Succ->begin())) 1331 TI->getSuccessor(i)->removePredecessor(BB); 1332 } 1333 if (!TI->use_empty()) 1334 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1335 BB->getInstList().erase(TI); 1336 1337 if (&*BB != &F->front()) 1338 BlocksToErase.push_back(BB); 1339 else 1340 new UnreachableInst(BB); 1341 1342 } else { 1343 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1344 Instruction *Inst = BI++; 1345 if (Inst->getType() != Type::VoidTy) { 1346 LatticeVal &IV = Values[Inst]; 1347 if (IV.isConstant() || IV.isUndefined() && 1348 !isa<TerminatorInst>(Inst)) { 1349 Constant *Const = IV.isConstant() 1350 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1351 DOUT << " Constant: " << *Const << " = " << *Inst; 1352 1353 // Replaces all of the uses of a variable with uses of the 1354 // constant. 1355 Inst->replaceAllUsesWith(Const); 1356 1357 // Delete the instruction. 1358 if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst)) 1359 BB->getInstList().erase(Inst); 1360 1361 // Hey, we just changed something! 1362 MadeChanges = true; 1363 ++IPNumInstRemoved; 1364 } 1365 } 1366 } 1367 } 1368 1369 // Now that all instructions in the function are constant folded, erase dead 1370 // blocks, because we can now use ConstantFoldTerminator to get rid of 1371 // in-edges. 1372 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1373 // If there are any PHI nodes in this successor, drop entries for BB now. 1374 BasicBlock *DeadBB = BlocksToErase[i]; 1375 while (!DeadBB->use_empty()) { 1376 Instruction *I = cast<Instruction>(DeadBB->use_back()); 1377 bool Folded = ConstantFoldTerminator(I->getParent()); 1378 if (!Folded) { 1379 // The constant folder may not have been able to fold the termiantor 1380 // if this is a branch or switch on undef. Fold it manually as a 1381 // branch to the first successor. 1382 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1383 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1384 "Branch should be foldable!"); 1385 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1386 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1387 } else { 1388 assert(0 && "Didn't fold away reference to block!"); 1389 } 1390 1391 // Make this an uncond branch to the first successor. 1392 TerminatorInst *TI = I->getParent()->getTerminator(); 1393 new BranchInst(TI->getSuccessor(0), TI); 1394 1395 // Remove entries in successor phi nodes to remove edges. 1396 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1397 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1398 1399 // Remove the old terminator. 1400 TI->eraseFromParent(); 1401 } 1402 } 1403 1404 // Finally, delete the basic block. 1405 F->getBasicBlockList().erase(DeadBB); 1406 } 1407 } 1408 1409 // If we inferred constant or undef return values for a function, we replaced 1410 // all call uses with the inferred value. This means we don't need to bother 1411 // actually returning anything from the function. Replace all return 1412 // instructions with return undef. 1413 const hash_map<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals(); 1414 for (hash_map<Function*, LatticeVal>::const_iterator I = RV.begin(), 1415 E = RV.end(); I != E; ++I) 1416 if (!I->second.isOverdefined() && 1417 I->first->getReturnType() != Type::VoidTy) { 1418 Function *F = I->first; 1419 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1420 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1421 if (!isa<UndefValue>(RI->getOperand(0))) 1422 RI->setOperand(0, UndefValue::get(F->getReturnType())); 1423 } 1424 1425 // If we infered constant or undef values for globals variables, we can delete 1426 // the global and any stores that remain to it. 1427 const hash_map<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1428 for (hash_map<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1429 E = TG.end(); I != E; ++I) { 1430 GlobalVariable *GV = I->first; 1431 assert(!I->second.isOverdefined() && 1432 "Overdefined values should have been taken out of the map!"); 1433 DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n"; 1434 while (!GV->use_empty()) { 1435 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1436 SI->eraseFromParent(); 1437 } 1438 M.getGlobalList().erase(GV); 1439 ++IPNumGlobalConst; 1440 } 1441 1442 return MadeChanges; 1443} 1444