SCCP.cpp revision b16689b647811d38ab5a5b990caed7f0014281c4
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Type.h"
31#include "llvm/Support/InstVisitor.h"
32#include "Support/Debug.h"
33#include "Support/Statistic.h"
34#include "Support/STLExtras.h"
35#include <algorithm>
36#include <set>
37using namespace llvm;
38
39// InstVal class - This class represents the different lattice values that an
40// instruction may occupy.  It is a simple class with value semantics.
41//
42namespace {
43  Statistic<> NumInstRemoved("sccp", "Number of instructions removed");
44
45class InstVal {
46  enum {
47    undefined,           // This instruction has no known value
48    constant,            // This instruction has a constant value
49    overdefined          // This instruction has an unknown value
50  } LatticeValue;        // The current lattice position
51  Constant *ConstantVal; // If Constant value, the current value
52public:
53  inline InstVal() : LatticeValue(undefined), ConstantVal(0) {}
54
55  // markOverdefined - Return true if this is a new status to be in...
56  inline bool markOverdefined() {
57    if (LatticeValue != overdefined) {
58      LatticeValue = overdefined;
59      return true;
60    }
61    return false;
62  }
63
64  // markConstant - Return true if this is a new status for us...
65  inline bool markConstant(Constant *V) {
66    if (LatticeValue != constant) {
67      LatticeValue = constant;
68      ConstantVal = V;
69      return true;
70    } else {
71      assert(ConstantVal == V && "Marking constant with different value");
72    }
73    return false;
74  }
75
76  inline bool isUndefined()   const { return LatticeValue == undefined; }
77  inline bool isConstant()    const { return LatticeValue == constant; }
78  inline bool isOverdefined() const { return LatticeValue == overdefined; }
79
80  inline Constant *getConstant() const {
81    assert(isConstant() && "Cannot get the constant of a non-constant!");
82    return ConstantVal;
83  }
84};
85
86} // end anonymous namespace
87
88
89//===----------------------------------------------------------------------===//
90// SCCP Class
91//
92// This class does all of the work of Sparse Conditional Constant Propagation.
93//
94namespace {
95class SCCP : public FunctionPass, public InstVisitor<SCCP> {
96  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
97  std::map<Value*, InstVal> ValueState;  // The state each value is in...
98
99  std::vector<Instruction*> InstWorkList;// The instruction work list
100  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
101
102  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
103  /// overdefined, despite the fact that the PHI node is overdefined.
104  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
105
106  /// KnownFeasibleEdges - Entries in this set are edges which have already had
107  /// PHI nodes retriggered.
108  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
109  std::set<Edge> KnownFeasibleEdges;
110public:
111
112  // runOnFunction - Run the Sparse Conditional Constant Propagation algorithm,
113  // and return true if the function was modified.
114  //
115  bool runOnFunction(Function &F);
116
117  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
118    AU.setPreservesCFG();
119  }
120
121
122  //===--------------------------------------------------------------------===//
123  // The implementation of this class
124  //
125private:
126  friend class InstVisitor<SCCP>;        // Allow callbacks from visitor
127
128  // markValueOverdefined - Make a value be marked as "constant".  If the value
129  // is not already a constant, add it to the instruction work list so that
130  // the users of the instruction are updated later.
131  //
132  inline void markConstant(InstVal &IV, Instruction *I, Constant *C) {
133    if (IV.markConstant(C)) {
134      DEBUG(std::cerr << "markConstant: " << *C << ": " << *I);
135      InstWorkList.push_back(I);
136    }
137  }
138  inline void markConstant(Instruction *I, Constant *C) {
139    markConstant(ValueState[I], I, C);
140  }
141
142  // markValueOverdefined - Make a value be marked as "overdefined". If the
143  // value is not already overdefined, add it to the instruction work list so
144  // that the users of the instruction are updated later.
145  //
146  inline void markOverdefined(InstVal &IV, Instruction *I) {
147    if (IV.markOverdefined()) {
148      DEBUG(std::cerr << "markOverdefined: " << *I);
149      InstWorkList.push_back(I);  // Only instructions go on the work list
150    }
151  }
152  inline void markOverdefined(Instruction *I) {
153    markOverdefined(ValueState[I], I);
154  }
155
156  // getValueState - Return the InstVal object that corresponds to the value.
157  // This function is necessary because not all values should start out in the
158  // underdefined state... Argument's should be overdefined, and
159  // constants should be marked as constants.  If a value is not known to be an
160  // Instruction object, then use this accessor to get its value from the map.
161  //
162  inline InstVal &getValueState(Value *V) {
163    std::map<Value*, InstVal>::iterator I = ValueState.find(V);
164    if (I != ValueState.end()) return I->second;  // Common case, in the map
165
166    if (Constant *CPV = dyn_cast<Constant>(V)) {  // Constants are constant
167      ValueState[CPV].markConstant(CPV);
168    } else if (isa<Argument>(V)) {                // Arguments are overdefined
169      ValueState[V].markOverdefined();
170    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
171      // The address of a global is a constant...
172      ValueState[V].markConstant(ConstantPointerRef::get(GV));
173    }
174    // All others are underdefined by default...
175    return ValueState[V];
176  }
177
178  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
179  // work list if it is not already executable...
180  //
181  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
182    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
183      return;  // This edge is already known to be executable!
184
185    if (BBExecutable.count(Dest)) {
186      DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName()
187                      << " -> " << Dest->getName() << "\n");
188
189      // The destination is already executable, but we just made an edge
190      // feasible that wasn't before.  Revisit the PHI nodes in the block
191      // because they have potentially new operands.
192      for (BasicBlock::iterator I = Dest->begin();
193           PHINode *PN = dyn_cast<PHINode>(I); ++I)
194        visitPHINode(*PN);
195
196    } else {
197      DEBUG(std::cerr << "Marking Block Executable: " << Dest->getName()<<"\n");
198      BBExecutable.insert(Dest);   // Basic block is executable!
199      BBWorkList.push_back(Dest);  // Add the block to the work list!
200    }
201  }
202
203
204  // visit implementations - Something changed in this instruction... Either an
205  // operand made a transition, or the instruction is newly executable.  Change
206  // the value type of I to reflect these changes if appropriate.
207  //
208  void visitPHINode(PHINode &I);
209
210  // Terminators
211  void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ }
212  void visitTerminatorInst(TerminatorInst &TI);
213
214  void visitCastInst(CastInst &I);
215  void visitBinaryOperator(Instruction &I);
216  void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
217
218  // Instructions that cannot be folded away...
219  void visitStoreInst     (Instruction &I) { /*returns void*/ }
220  void visitLoadInst      (LoadInst &I);
221  void visitGetElementPtrInst(GetElementPtrInst &I);
222  void visitCallInst      (Instruction &I) { markOverdefined(&I); }
223  void visitInvokeInst    (TerminatorInst &I) {
224    if (I.getType() != Type::VoidTy) markOverdefined(&I);
225    visitTerminatorInst(I);
226  }
227  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
228  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
229  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
230  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
231  void visitFreeInst      (Instruction &I) { /*returns void*/ }
232
233  void visitInstruction(Instruction &I) {
234    // If a new instruction is added to LLVM that we don't handle...
235    std::cerr << "SCCP: Don't know how to handle: " << I;
236    markOverdefined(&I);   // Just in case
237  }
238
239  // getFeasibleSuccessors - Return a vector of booleans to indicate which
240  // successors are reachable from a given terminator instruction.
241  //
242  void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);
243
244  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
245  // block to the 'To' basic block is currently feasible...
246  //
247  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
248
249  // OperandChangedState - This method is invoked on all of the users of an
250  // instruction that was just changed state somehow....  Based on this
251  // information, we need to update the specified user of this instruction.
252  //
253  void OperandChangedState(User *U) {
254    // Only instructions use other variable values!
255    Instruction &I = cast<Instruction>(*U);
256    if (BBExecutable.count(I.getParent()))   // Inst is executable?
257      visit(I);
258  }
259};
260
261  RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
262} // end anonymous namespace
263
264
265// createSCCPPass - This is the public interface to this file...
266Pass *llvm::createSCCPPass() {
267  return new SCCP();
268}
269
270
271//===----------------------------------------------------------------------===//
272// SCCP Class Implementation
273
274
275// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
276// and return true if the function was modified.
277//
278bool SCCP::runOnFunction(Function &F) {
279  // Mark the first block of the function as being executable...
280  BBExecutable.insert(F.begin());   // Basic block is executable!
281  BBWorkList.push_back(F.begin());  // Add the block to the work list!
282
283  // Process the work lists until their are empty!
284  while (!BBWorkList.empty() || !InstWorkList.empty()) {
285    // Process the instruction work list...
286    while (!InstWorkList.empty()) {
287      Instruction *I = InstWorkList.back();
288      InstWorkList.pop_back();
289
290      DEBUG(std::cerr << "\nPopped off I-WL: " << I);
291
292      // "I" got into the work list because it either made the transition from
293      // bottom to constant, or to Overdefined.
294      //
295      // Update all of the users of this instruction's value...
296      //
297      for_each(I->use_begin(), I->use_end(),
298	       bind_obj(this, &SCCP::OperandChangedState));
299    }
300
301    // Process the basic block work list...
302    while (!BBWorkList.empty()) {
303      BasicBlock *BB = BBWorkList.back();
304      BBWorkList.pop_back();
305
306      DEBUG(std::cerr << "\nPopped off BBWL: " << BB);
307
308      // Notify all instructions in this basic block that they are newly
309      // executable.
310      visit(BB);
311    }
312  }
313
314  if (DebugFlag) {
315    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
316      if (!BBExecutable.count(I))
317        std::cerr << "BasicBlock Dead:" << *I;
318  }
319
320  // Iterate over all of the instructions in a function, replacing them with
321  // constants if we have found them to be of constant values.
322  //
323  bool MadeChanges = false;
324  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB)
325    for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
326      Instruction &Inst = *BI;
327      InstVal &IV = ValueState[&Inst];
328      if (IV.isConstant()) {
329        Constant *Const = IV.getConstant();
330        DEBUG(std::cerr << "Constant: " << Const << " = " << Inst);
331
332        // Replaces all of the uses of a variable with uses of the constant.
333        Inst.replaceAllUsesWith(Const);
334
335        // Remove the operator from the list of definitions... and delete it.
336        BI = BB->getInstList().erase(BI);
337
338        // Hey, we just changed something!
339        MadeChanges = true;
340        ++NumInstRemoved;
341      } else {
342        ++BI;
343      }
344    }
345
346  // Reset state so that the next invocation will have empty data structures
347  BBExecutable.clear();
348  ValueState.clear();
349  std::vector<Instruction*>().swap(InstWorkList);
350  std::vector<BasicBlock*>().swap(BBWorkList);
351
352  return MadeChanges;
353}
354
355
356// getFeasibleSuccessors - Return a vector of booleans to indicate which
357// successors are reachable from a given terminator instruction.
358//
359void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) {
360  Succs.resize(TI.getNumSuccessors());
361  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
362    if (BI->isUnconditional()) {
363      Succs[0] = true;
364    } else {
365      InstVal &BCValue = getValueState(BI->getCondition());
366      if (BCValue.isOverdefined() ||
367          (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) {
368        // Overdefined condition variables, and branches on unfoldable constant
369        // conditions, mean the branch could go either way.
370        Succs[0] = Succs[1] = true;
371      } else if (BCValue.isConstant()) {
372        // Constant condition variables mean the branch can only go a single way
373        Succs[BCValue.getConstant() == ConstantBool::False] = true;
374      }
375    }
376  } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) {
377    // Invoke instructions successors are always executable.
378    Succs[0] = Succs[1] = true;
379  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
380    InstVal &SCValue = getValueState(SI->getCondition());
381    if (SCValue.isOverdefined() ||   // Overdefined condition?
382        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
383      // All destinations are executable!
384      Succs.assign(TI.getNumSuccessors(), true);
385    } else if (SCValue.isConstant()) {
386      Constant *CPV = SCValue.getConstant();
387      // Make sure to skip the "default value" which isn't a value
388      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
389        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
390          Succs[i] = true;
391          return;
392        }
393      }
394
395      // Constant value not equal to any of the branches... must execute
396      // default branch then...
397      Succs[0] = true;
398    }
399  } else {
400    std::cerr << "SCCP: Don't know how to handle: " << TI;
401    Succs.assign(TI.getNumSuccessors(), true);
402  }
403}
404
405
406// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
407// block to the 'To' basic block is currently feasible...
408//
409bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
410  assert(BBExecutable.count(To) && "Dest should always be alive!");
411
412  // Make sure the source basic block is executable!!
413  if (!BBExecutable.count(From)) return false;
414
415  // Check to make sure this edge itself is actually feasible now...
416  TerminatorInst *TI = From->getTerminator();
417  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
418    if (BI->isUnconditional())
419      return true;
420    else {
421      InstVal &BCValue = getValueState(BI->getCondition());
422      if (BCValue.isOverdefined()) {
423        // Overdefined condition variables mean the branch could go either way.
424        return true;
425      } else if (BCValue.isConstant()) {
426        // Not branching on an evaluatable constant?
427        if (!isa<ConstantBool>(BCValue.getConstant())) return true;
428
429        // Constant condition variables mean the branch can only go a single way
430        return BI->getSuccessor(BCValue.getConstant() ==
431                                       ConstantBool::False) == To;
432      }
433      return false;
434    }
435  } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
436    // Invoke instructions successors are always executable.
437    return true;
438  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
439    InstVal &SCValue = getValueState(SI->getCondition());
440    if (SCValue.isOverdefined()) {  // Overdefined condition?
441      // All destinations are executable!
442      return true;
443    } else if (SCValue.isConstant()) {
444      Constant *CPV = SCValue.getConstant();
445      if (!isa<ConstantInt>(CPV))
446        return true;  // not a foldable constant?
447
448      // Make sure to skip the "default value" which isn't a value
449      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
450        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
451          return SI->getSuccessor(i) == To;
452
453      // Constant value not equal to any of the branches... must execute
454      // default branch then...
455      return SI->getDefaultDest() == To;
456    }
457    return false;
458  } else {
459    std::cerr << "Unknown terminator instruction: " << *TI;
460    abort();
461  }
462}
463
464// visit Implementations - Something changed in this instruction... Either an
465// operand made a transition, or the instruction is newly executable.  Change
466// the value type of I to reflect these changes if appropriate.  This method
467// makes sure to do the following actions:
468//
469// 1. If a phi node merges two constants in, and has conflicting value coming
470//    from different branches, or if the PHI node merges in an overdefined
471//    value, then the PHI node becomes overdefined.
472// 2. If a phi node merges only constants in, and they all agree on value, the
473//    PHI node becomes a constant value equal to that.
474// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
475// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
476// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
477// 6. If a conditional branch has a value that is constant, make the selected
478//    destination executable
479// 7. If a conditional branch has a value that is overdefined, make all
480//    successors executable.
481//
482void SCCP::visitPHINode(PHINode &PN) {
483  InstVal &PNIV = getValueState(&PN);
484  if (PNIV.isOverdefined()) {
485    // There may be instructions using this PHI node that are not overdefined
486    // themselves.  If so, make sure that they know that the PHI node operand
487    // changed.
488    std::multimap<PHINode*, Instruction*>::iterator I, E;
489    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
490    if (I != E) {
491      std::vector<Instruction*> Users;
492      Users.reserve(std::distance(I, E));
493      for (; I != E; ++I) Users.push_back(I->second);
494      while (!Users.empty()) {
495        visit(Users.back());
496        Users.pop_back();
497      }
498    }
499    return;  // Quick exit
500  }
501
502  // Look at all of the executable operands of the PHI node.  If any of them
503  // are overdefined, the PHI becomes overdefined as well.  If they are all
504  // constant, and they agree with each other, the PHI becomes the identical
505  // constant.  If they are constant and don't agree, the PHI is overdefined.
506  // If there are no executable operands, the PHI remains undefined.
507  //
508  Constant *OperandVal = 0;
509  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
510    InstVal &IV = getValueState(PN.getIncomingValue(i));
511    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
512
513    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
514      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
515        markOverdefined(PNIV, &PN);
516        return;
517      }
518
519      if (OperandVal == 0) {   // Grab the first value...
520        OperandVal = IV.getConstant();
521      } else {                // Another value is being merged in!
522        // There is already a reachable operand.  If we conflict with it,
523        // then the PHI node becomes overdefined.  If we agree with it, we
524        // can continue on.
525
526        // Check to see if there are two different constants merging...
527        if (IV.getConstant() != OperandVal) {
528          // Yes there is.  This means the PHI node is not constant.
529          // You must be overdefined poor PHI.
530          //
531          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
532          return;    // I'm done analyzing you
533        }
534      }
535    }
536  }
537
538  // If we exited the loop, this means that the PHI node only has constant
539  // arguments that agree with each other(and OperandVal is the constant) or
540  // OperandVal is null because there are no defined incoming arguments.  If
541  // this is the case, the PHI remains undefined.
542  //
543  if (OperandVal)
544    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
545}
546
547void SCCP::visitTerminatorInst(TerminatorInst &TI) {
548  std::vector<bool> SuccFeasible;
549  getFeasibleSuccessors(TI, SuccFeasible);
550
551  BasicBlock *BB = TI.getParent();
552
553  // Mark all feasible successors executable...
554  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
555    if (SuccFeasible[i])
556      markEdgeExecutable(BB, TI.getSuccessor(i));
557}
558
559void SCCP::visitCastInst(CastInst &I) {
560  Value *V = I.getOperand(0);
561  InstVal &VState = getValueState(V);
562  if (VState.isOverdefined())          // Inherit overdefinedness of operand
563    markOverdefined(&I);
564  else if (VState.isConstant())        // Propagate constant value
565    markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType()));
566}
567
568// Handle BinaryOperators and Shift Instructions...
569void SCCP::visitBinaryOperator(Instruction &I) {
570  InstVal &IV = ValueState[&I];
571  if (IV.isOverdefined()) return;
572
573  InstVal &V1State = getValueState(I.getOperand(0));
574  InstVal &V2State = getValueState(I.getOperand(1));
575
576  if (V1State.isOverdefined() || V2State.isOverdefined()) {
577    // If both operands are PHI nodes, it is possible that this instruction has
578    // a constant value, despite the fact that the PHI node doesn't.  Check for
579    // this condition now.
580    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
581      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
582        if (PN1->getParent() == PN2->getParent()) {
583          // Since the two PHI nodes are in the same basic block, they must have
584          // entries for the same predecessors.  Walk the predecessor list, and
585          // if all of the incoming values are constants, and the result of
586          // evaluating this expression with all incoming value pairs is the
587          // same, then this expression is a constant even though the PHI node
588          // is not a constant!
589          InstVal Result;
590          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
591            InstVal &In1 = getValueState(PN1->getIncomingValue(i));
592            BasicBlock *InBlock = PN1->getIncomingBlock(i);
593            InstVal &In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
594
595            if (In1.isOverdefined() || In2.isOverdefined()) {
596              Result.markOverdefined();
597              break;  // Cannot fold this operation over the PHI nodes!
598            } else if (In1.isConstant() && In2.isConstant()) {
599              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
600                                              In2.getConstant());
601              if (Result.isUndefined())
602                Result.markConstant(V);
603              else if (Result.isConstant() && Result.getConstant() != V) {
604                Result.markOverdefined();
605                break;
606              }
607            }
608          }
609
610          // If we found a constant value here, then we know the instruction is
611          // constant despite the fact that the PHI nodes are overdefined.
612          if (Result.isConstant()) {
613            markConstant(IV, &I, Result.getConstant());
614            // Remember that this instruction is virtually using the PHI node
615            // operands.
616            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
617            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
618            return;
619          } else if (Result.isUndefined()) {
620            return;
621          }
622
623          // Okay, this really is overdefined now.  Since we might have
624          // speculatively thought that this was not overdefined before, and
625          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
626          // make sure to clean out any entries that we put there, for
627          // efficiency.
628          std::multimap<PHINode*, Instruction*>::iterator It, E;
629          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
630          while (It != E) {
631            if (It->second == &I) {
632              UsersOfOverdefinedPHIs.erase(It++);
633            } else
634              ++It;
635          }
636          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
637          while (It != E) {
638            if (It->second == &I) {
639              UsersOfOverdefinedPHIs.erase(It++);
640            } else
641              ++It;
642          }
643        }
644
645    markOverdefined(IV, &I);
646  } else if (V1State.isConstant() && V2State.isConstant()) {
647    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
648                                           V2State.getConstant()));
649  }
650}
651
652// Handle getelementptr instructions... if all operands are constants then we
653// can turn this into a getelementptr ConstantExpr.
654//
655void SCCP::visitGetElementPtrInst(GetElementPtrInst &I) {
656  InstVal &IV = ValueState[&I];
657  if (IV.isOverdefined()) return;
658
659  std::vector<Constant*> Operands;
660  Operands.reserve(I.getNumOperands());
661
662  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
663    InstVal &State = getValueState(I.getOperand(i));
664    if (State.isUndefined())
665      return;  // Operands are not resolved yet...
666    else if (State.isOverdefined()) {
667      markOverdefined(IV, &I);
668      return;
669    }
670    assert(State.isConstant() && "Unknown state!");
671    Operands.push_back(State.getConstant());
672  }
673
674  Constant *Ptr = Operands[0];
675  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
676
677  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands));
678}
679
680/// GetGEPGlobalInitializer - Given a constant and a getelementptr constantexpr,
681/// return the constant value being addressed by the constant expression, or
682/// null if something is funny.
683///
684static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
685  if (CE->getOperand(1) != Constant::getNullValue(Type::LongTy))
686    return 0;  // Do not allow stepping over the value!
687
688  // Loop over all of the operands, tracking down which value we are
689  // addressing...
690  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i)
691    if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) {
692      ConstantStruct *CS = cast<ConstantStruct>(C);
693      if (CU->getValue() >= CS->getValues().size()) return 0;
694      C = cast<Constant>(CS->getValues()[CU->getValue()]);
695    } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) {
696      ConstantArray *CA = cast<ConstantArray>(C);
697      if ((uint64_t)CS->getValue() >= CA->getValues().size()) return 0;
698      C = cast<Constant>(CA->getValues()[CS->getValue()]);
699    } else
700      return 0;
701  return C;
702}
703
704// Handle load instructions.  If the operand is a constant pointer to a constant
705// global, we can replace the load with the loaded constant value!
706void SCCP::visitLoadInst(LoadInst &I) {
707  InstVal &IV = ValueState[&I];
708  if (IV.isOverdefined()) return;
709
710  InstVal &PtrVal = getValueState(I.getOperand(0));
711  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
712  if (PtrVal.isConstant() && !I.isVolatile()) {
713    Value *Ptr = PtrVal.getConstant();
714    if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr))
715      Ptr = CPR->getValue();
716
717    // Transform load (constant global) into the value loaded.
718    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr))
719      if (GV->isConstant() && !GV->isExternal()) {
720        markConstant(IV, &I, GV->getInitializer());
721        return;
722      }
723
724    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
725    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
726      if (CE->getOpcode() == Instruction::GetElementPtr)
727        if (ConstantPointerRef *G
728            = dyn_cast<ConstantPointerRef>(CE->getOperand(0)))
729          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getValue()))
730            if (GV->isConstant() && !GV->isExternal())
731              if (Constant *V =
732                  GetGEPGlobalInitializer(GV->getInitializer(), CE)) {
733                markConstant(IV, &I, V);
734                return;
735              }
736  }
737
738  // Otherwise we cannot say for certain what value this load will produce.
739  // Bail out.
740  markOverdefined(IV, &I);
741}
742