SCCP.cpp revision b16689b647811d38ab5a5b990caed7f0014281c4
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#include "llvm/Transforms/Scalar.h" 25#include "llvm/Constants.h" 26#include "llvm/Function.h" 27#include "llvm/GlobalVariable.h" 28#include "llvm/Instructions.h" 29#include "llvm/Pass.h" 30#include "llvm/Type.h" 31#include "llvm/Support/InstVisitor.h" 32#include "Support/Debug.h" 33#include "Support/Statistic.h" 34#include "Support/STLExtras.h" 35#include <algorithm> 36#include <set> 37using namespace llvm; 38 39// InstVal class - This class represents the different lattice values that an 40// instruction may occupy. It is a simple class with value semantics. 41// 42namespace { 43 Statistic<> NumInstRemoved("sccp", "Number of instructions removed"); 44 45class InstVal { 46 enum { 47 undefined, // This instruction has no known value 48 constant, // This instruction has a constant value 49 overdefined // This instruction has an unknown value 50 } LatticeValue; // The current lattice position 51 Constant *ConstantVal; // If Constant value, the current value 52public: 53 inline InstVal() : LatticeValue(undefined), ConstantVal(0) {} 54 55 // markOverdefined - Return true if this is a new status to be in... 56 inline bool markOverdefined() { 57 if (LatticeValue != overdefined) { 58 LatticeValue = overdefined; 59 return true; 60 } 61 return false; 62 } 63 64 // markConstant - Return true if this is a new status for us... 65 inline bool markConstant(Constant *V) { 66 if (LatticeValue != constant) { 67 LatticeValue = constant; 68 ConstantVal = V; 69 return true; 70 } else { 71 assert(ConstantVal == V && "Marking constant with different value"); 72 } 73 return false; 74 } 75 76 inline bool isUndefined() const { return LatticeValue == undefined; } 77 inline bool isConstant() const { return LatticeValue == constant; } 78 inline bool isOverdefined() const { return LatticeValue == overdefined; } 79 80 inline Constant *getConstant() const { 81 assert(isConstant() && "Cannot get the constant of a non-constant!"); 82 return ConstantVal; 83 } 84}; 85 86} // end anonymous namespace 87 88 89//===----------------------------------------------------------------------===// 90// SCCP Class 91// 92// This class does all of the work of Sparse Conditional Constant Propagation. 93// 94namespace { 95class SCCP : public FunctionPass, public InstVisitor<SCCP> { 96 std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable 97 std::map<Value*, InstVal> ValueState; // The state each value is in... 98 99 std::vector<Instruction*> InstWorkList;// The instruction work list 100 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list 101 102 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 103 /// overdefined, despite the fact that the PHI node is overdefined. 104 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 105 106 /// KnownFeasibleEdges - Entries in this set are edges which have already had 107 /// PHI nodes retriggered. 108 typedef std::pair<BasicBlock*,BasicBlock*> Edge; 109 std::set<Edge> KnownFeasibleEdges; 110public: 111 112 // runOnFunction - Run the Sparse Conditional Constant Propagation algorithm, 113 // and return true if the function was modified. 114 // 115 bool runOnFunction(Function &F); 116 117 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 118 AU.setPreservesCFG(); 119 } 120 121 122 //===--------------------------------------------------------------------===// 123 // The implementation of this class 124 // 125private: 126 friend class InstVisitor<SCCP>; // Allow callbacks from visitor 127 128 // markValueOverdefined - Make a value be marked as "constant". If the value 129 // is not already a constant, add it to the instruction work list so that 130 // the users of the instruction are updated later. 131 // 132 inline void markConstant(InstVal &IV, Instruction *I, Constant *C) { 133 if (IV.markConstant(C)) { 134 DEBUG(std::cerr << "markConstant: " << *C << ": " << *I); 135 InstWorkList.push_back(I); 136 } 137 } 138 inline void markConstant(Instruction *I, Constant *C) { 139 markConstant(ValueState[I], I, C); 140 } 141 142 // markValueOverdefined - Make a value be marked as "overdefined". If the 143 // value is not already overdefined, add it to the instruction work list so 144 // that the users of the instruction are updated later. 145 // 146 inline void markOverdefined(InstVal &IV, Instruction *I) { 147 if (IV.markOverdefined()) { 148 DEBUG(std::cerr << "markOverdefined: " << *I); 149 InstWorkList.push_back(I); // Only instructions go on the work list 150 } 151 } 152 inline void markOverdefined(Instruction *I) { 153 markOverdefined(ValueState[I], I); 154 } 155 156 // getValueState - Return the InstVal object that corresponds to the value. 157 // This function is necessary because not all values should start out in the 158 // underdefined state... Argument's should be overdefined, and 159 // constants should be marked as constants. If a value is not known to be an 160 // Instruction object, then use this accessor to get its value from the map. 161 // 162 inline InstVal &getValueState(Value *V) { 163 std::map<Value*, InstVal>::iterator I = ValueState.find(V); 164 if (I != ValueState.end()) return I->second; // Common case, in the map 165 166 if (Constant *CPV = dyn_cast<Constant>(V)) { // Constants are constant 167 ValueState[CPV].markConstant(CPV); 168 } else if (isa<Argument>(V)) { // Arguments are overdefined 169 ValueState[V].markOverdefined(); 170 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 171 // The address of a global is a constant... 172 ValueState[V].markConstant(ConstantPointerRef::get(GV)); 173 } 174 // All others are underdefined by default... 175 return ValueState[V]; 176 } 177 178 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 179 // work list if it is not already executable... 180 // 181 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 182 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 183 return; // This edge is already known to be executable! 184 185 if (BBExecutable.count(Dest)) { 186 DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName() 187 << " -> " << Dest->getName() << "\n"); 188 189 // The destination is already executable, but we just made an edge 190 // feasible that wasn't before. Revisit the PHI nodes in the block 191 // because they have potentially new operands. 192 for (BasicBlock::iterator I = Dest->begin(); 193 PHINode *PN = dyn_cast<PHINode>(I); ++I) 194 visitPHINode(*PN); 195 196 } else { 197 DEBUG(std::cerr << "Marking Block Executable: " << Dest->getName()<<"\n"); 198 BBExecutable.insert(Dest); // Basic block is executable! 199 BBWorkList.push_back(Dest); // Add the block to the work list! 200 } 201 } 202 203 204 // visit implementations - Something changed in this instruction... Either an 205 // operand made a transition, or the instruction is newly executable. Change 206 // the value type of I to reflect these changes if appropriate. 207 // 208 void visitPHINode(PHINode &I); 209 210 // Terminators 211 void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ } 212 void visitTerminatorInst(TerminatorInst &TI); 213 214 void visitCastInst(CastInst &I); 215 void visitBinaryOperator(Instruction &I); 216 void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } 217 218 // Instructions that cannot be folded away... 219 void visitStoreInst (Instruction &I) { /*returns void*/ } 220 void visitLoadInst (LoadInst &I); 221 void visitGetElementPtrInst(GetElementPtrInst &I); 222 void visitCallInst (Instruction &I) { markOverdefined(&I); } 223 void visitInvokeInst (TerminatorInst &I) { 224 if (I.getType() != Type::VoidTy) markOverdefined(&I); 225 visitTerminatorInst(I); 226 } 227 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 228 void visitAllocationInst(Instruction &I) { markOverdefined(&I); } 229 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 230 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 231 void visitFreeInst (Instruction &I) { /*returns void*/ } 232 233 void visitInstruction(Instruction &I) { 234 // If a new instruction is added to LLVM that we don't handle... 235 std::cerr << "SCCP: Don't know how to handle: " << I; 236 markOverdefined(&I); // Just in case 237 } 238 239 // getFeasibleSuccessors - Return a vector of booleans to indicate which 240 // successors are reachable from a given terminator instruction. 241 // 242 void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs); 243 244 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 245 // block to the 'To' basic block is currently feasible... 246 // 247 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 248 249 // OperandChangedState - This method is invoked on all of the users of an 250 // instruction that was just changed state somehow.... Based on this 251 // information, we need to update the specified user of this instruction. 252 // 253 void OperandChangedState(User *U) { 254 // Only instructions use other variable values! 255 Instruction &I = cast<Instruction>(*U); 256 if (BBExecutable.count(I.getParent())) // Inst is executable? 257 visit(I); 258 } 259}; 260 261 RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); 262} // end anonymous namespace 263 264 265// createSCCPPass - This is the public interface to this file... 266Pass *llvm::createSCCPPass() { 267 return new SCCP(); 268} 269 270 271//===----------------------------------------------------------------------===// 272// SCCP Class Implementation 273 274 275// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 276// and return true if the function was modified. 277// 278bool SCCP::runOnFunction(Function &F) { 279 // Mark the first block of the function as being executable... 280 BBExecutable.insert(F.begin()); // Basic block is executable! 281 BBWorkList.push_back(F.begin()); // Add the block to the work list! 282 283 // Process the work lists until their are empty! 284 while (!BBWorkList.empty() || !InstWorkList.empty()) { 285 // Process the instruction work list... 286 while (!InstWorkList.empty()) { 287 Instruction *I = InstWorkList.back(); 288 InstWorkList.pop_back(); 289 290 DEBUG(std::cerr << "\nPopped off I-WL: " << I); 291 292 // "I" got into the work list because it either made the transition from 293 // bottom to constant, or to Overdefined. 294 // 295 // Update all of the users of this instruction's value... 296 // 297 for_each(I->use_begin(), I->use_end(), 298 bind_obj(this, &SCCP::OperandChangedState)); 299 } 300 301 // Process the basic block work list... 302 while (!BBWorkList.empty()) { 303 BasicBlock *BB = BBWorkList.back(); 304 BBWorkList.pop_back(); 305 306 DEBUG(std::cerr << "\nPopped off BBWL: " << BB); 307 308 // Notify all instructions in this basic block that they are newly 309 // executable. 310 visit(BB); 311 } 312 } 313 314 if (DebugFlag) { 315 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 316 if (!BBExecutable.count(I)) 317 std::cerr << "BasicBlock Dead:" << *I; 318 } 319 320 // Iterate over all of the instructions in a function, replacing them with 321 // constants if we have found them to be of constant values. 322 // 323 bool MadeChanges = false; 324 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) 325 for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { 326 Instruction &Inst = *BI; 327 InstVal &IV = ValueState[&Inst]; 328 if (IV.isConstant()) { 329 Constant *Const = IV.getConstant(); 330 DEBUG(std::cerr << "Constant: " << Const << " = " << Inst); 331 332 // Replaces all of the uses of a variable with uses of the constant. 333 Inst.replaceAllUsesWith(Const); 334 335 // Remove the operator from the list of definitions... and delete it. 336 BI = BB->getInstList().erase(BI); 337 338 // Hey, we just changed something! 339 MadeChanges = true; 340 ++NumInstRemoved; 341 } else { 342 ++BI; 343 } 344 } 345 346 // Reset state so that the next invocation will have empty data structures 347 BBExecutable.clear(); 348 ValueState.clear(); 349 std::vector<Instruction*>().swap(InstWorkList); 350 std::vector<BasicBlock*>().swap(BBWorkList); 351 352 return MadeChanges; 353} 354 355 356// getFeasibleSuccessors - Return a vector of booleans to indicate which 357// successors are reachable from a given terminator instruction. 358// 359void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) { 360 Succs.resize(TI.getNumSuccessors()); 361 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 362 if (BI->isUnconditional()) { 363 Succs[0] = true; 364 } else { 365 InstVal &BCValue = getValueState(BI->getCondition()); 366 if (BCValue.isOverdefined() || 367 (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) { 368 // Overdefined condition variables, and branches on unfoldable constant 369 // conditions, mean the branch could go either way. 370 Succs[0] = Succs[1] = true; 371 } else if (BCValue.isConstant()) { 372 // Constant condition variables mean the branch can only go a single way 373 Succs[BCValue.getConstant() == ConstantBool::False] = true; 374 } 375 } 376 } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) { 377 // Invoke instructions successors are always executable. 378 Succs[0] = Succs[1] = true; 379 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 380 InstVal &SCValue = getValueState(SI->getCondition()); 381 if (SCValue.isOverdefined() || // Overdefined condition? 382 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 383 // All destinations are executable! 384 Succs.assign(TI.getNumSuccessors(), true); 385 } else if (SCValue.isConstant()) { 386 Constant *CPV = SCValue.getConstant(); 387 // Make sure to skip the "default value" which isn't a value 388 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { 389 if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... 390 Succs[i] = true; 391 return; 392 } 393 } 394 395 // Constant value not equal to any of the branches... must execute 396 // default branch then... 397 Succs[0] = true; 398 } 399 } else { 400 std::cerr << "SCCP: Don't know how to handle: " << TI; 401 Succs.assign(TI.getNumSuccessors(), true); 402 } 403} 404 405 406// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 407// block to the 'To' basic block is currently feasible... 408// 409bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 410 assert(BBExecutable.count(To) && "Dest should always be alive!"); 411 412 // Make sure the source basic block is executable!! 413 if (!BBExecutable.count(From)) return false; 414 415 // Check to make sure this edge itself is actually feasible now... 416 TerminatorInst *TI = From->getTerminator(); 417 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 418 if (BI->isUnconditional()) 419 return true; 420 else { 421 InstVal &BCValue = getValueState(BI->getCondition()); 422 if (BCValue.isOverdefined()) { 423 // Overdefined condition variables mean the branch could go either way. 424 return true; 425 } else if (BCValue.isConstant()) { 426 // Not branching on an evaluatable constant? 427 if (!isa<ConstantBool>(BCValue.getConstant())) return true; 428 429 // Constant condition variables mean the branch can only go a single way 430 return BI->getSuccessor(BCValue.getConstant() == 431 ConstantBool::False) == To; 432 } 433 return false; 434 } 435 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 436 // Invoke instructions successors are always executable. 437 return true; 438 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 439 InstVal &SCValue = getValueState(SI->getCondition()); 440 if (SCValue.isOverdefined()) { // Overdefined condition? 441 // All destinations are executable! 442 return true; 443 } else if (SCValue.isConstant()) { 444 Constant *CPV = SCValue.getConstant(); 445 if (!isa<ConstantInt>(CPV)) 446 return true; // not a foldable constant? 447 448 // Make sure to skip the "default value" which isn't a value 449 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 450 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 451 return SI->getSuccessor(i) == To; 452 453 // Constant value not equal to any of the branches... must execute 454 // default branch then... 455 return SI->getDefaultDest() == To; 456 } 457 return false; 458 } else { 459 std::cerr << "Unknown terminator instruction: " << *TI; 460 abort(); 461 } 462} 463 464// visit Implementations - Something changed in this instruction... Either an 465// operand made a transition, or the instruction is newly executable. Change 466// the value type of I to reflect these changes if appropriate. This method 467// makes sure to do the following actions: 468// 469// 1. If a phi node merges two constants in, and has conflicting value coming 470// from different branches, or if the PHI node merges in an overdefined 471// value, then the PHI node becomes overdefined. 472// 2. If a phi node merges only constants in, and they all agree on value, the 473// PHI node becomes a constant value equal to that. 474// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 475// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 476// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 477// 6. If a conditional branch has a value that is constant, make the selected 478// destination executable 479// 7. If a conditional branch has a value that is overdefined, make all 480// successors executable. 481// 482void SCCP::visitPHINode(PHINode &PN) { 483 InstVal &PNIV = getValueState(&PN); 484 if (PNIV.isOverdefined()) { 485 // There may be instructions using this PHI node that are not overdefined 486 // themselves. If so, make sure that they know that the PHI node operand 487 // changed. 488 std::multimap<PHINode*, Instruction*>::iterator I, E; 489 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 490 if (I != E) { 491 std::vector<Instruction*> Users; 492 Users.reserve(std::distance(I, E)); 493 for (; I != E; ++I) Users.push_back(I->second); 494 while (!Users.empty()) { 495 visit(Users.back()); 496 Users.pop_back(); 497 } 498 } 499 return; // Quick exit 500 } 501 502 // Look at all of the executable operands of the PHI node. If any of them 503 // are overdefined, the PHI becomes overdefined as well. If they are all 504 // constant, and they agree with each other, the PHI becomes the identical 505 // constant. If they are constant and don't agree, the PHI is overdefined. 506 // If there are no executable operands, the PHI remains undefined. 507 // 508 Constant *OperandVal = 0; 509 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 510 InstVal &IV = getValueState(PN.getIncomingValue(i)); 511 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 512 513 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 514 if (IV.isOverdefined()) { // PHI node becomes overdefined! 515 markOverdefined(PNIV, &PN); 516 return; 517 } 518 519 if (OperandVal == 0) { // Grab the first value... 520 OperandVal = IV.getConstant(); 521 } else { // Another value is being merged in! 522 // There is already a reachable operand. If we conflict with it, 523 // then the PHI node becomes overdefined. If we agree with it, we 524 // can continue on. 525 526 // Check to see if there are two different constants merging... 527 if (IV.getConstant() != OperandVal) { 528 // Yes there is. This means the PHI node is not constant. 529 // You must be overdefined poor PHI. 530 // 531 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined 532 return; // I'm done analyzing you 533 } 534 } 535 } 536 } 537 538 // If we exited the loop, this means that the PHI node only has constant 539 // arguments that agree with each other(and OperandVal is the constant) or 540 // OperandVal is null because there are no defined incoming arguments. If 541 // this is the case, the PHI remains undefined. 542 // 543 if (OperandVal) 544 markConstant(PNIV, &PN, OperandVal); // Acquire operand value 545} 546 547void SCCP::visitTerminatorInst(TerminatorInst &TI) { 548 std::vector<bool> SuccFeasible; 549 getFeasibleSuccessors(TI, SuccFeasible); 550 551 BasicBlock *BB = TI.getParent(); 552 553 // Mark all feasible successors executable... 554 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 555 if (SuccFeasible[i]) 556 markEdgeExecutable(BB, TI.getSuccessor(i)); 557} 558 559void SCCP::visitCastInst(CastInst &I) { 560 Value *V = I.getOperand(0); 561 InstVal &VState = getValueState(V); 562 if (VState.isOverdefined()) // Inherit overdefinedness of operand 563 markOverdefined(&I); 564 else if (VState.isConstant()) // Propagate constant value 565 markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType())); 566} 567 568// Handle BinaryOperators and Shift Instructions... 569void SCCP::visitBinaryOperator(Instruction &I) { 570 InstVal &IV = ValueState[&I]; 571 if (IV.isOverdefined()) return; 572 573 InstVal &V1State = getValueState(I.getOperand(0)); 574 InstVal &V2State = getValueState(I.getOperand(1)); 575 576 if (V1State.isOverdefined() || V2State.isOverdefined()) { 577 // If both operands are PHI nodes, it is possible that this instruction has 578 // a constant value, despite the fact that the PHI node doesn't. Check for 579 // this condition now. 580 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 581 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 582 if (PN1->getParent() == PN2->getParent()) { 583 // Since the two PHI nodes are in the same basic block, they must have 584 // entries for the same predecessors. Walk the predecessor list, and 585 // if all of the incoming values are constants, and the result of 586 // evaluating this expression with all incoming value pairs is the 587 // same, then this expression is a constant even though the PHI node 588 // is not a constant! 589 InstVal Result; 590 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 591 InstVal &In1 = getValueState(PN1->getIncomingValue(i)); 592 BasicBlock *InBlock = PN1->getIncomingBlock(i); 593 InstVal &In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); 594 595 if (In1.isOverdefined() || In2.isOverdefined()) { 596 Result.markOverdefined(); 597 break; // Cannot fold this operation over the PHI nodes! 598 } else if (In1.isConstant() && In2.isConstant()) { 599 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), 600 In2.getConstant()); 601 if (Result.isUndefined()) 602 Result.markConstant(V); 603 else if (Result.isConstant() && Result.getConstant() != V) { 604 Result.markOverdefined(); 605 break; 606 } 607 } 608 } 609 610 // If we found a constant value here, then we know the instruction is 611 // constant despite the fact that the PHI nodes are overdefined. 612 if (Result.isConstant()) { 613 markConstant(IV, &I, Result.getConstant()); 614 // Remember that this instruction is virtually using the PHI node 615 // operands. 616 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 617 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 618 return; 619 } else if (Result.isUndefined()) { 620 return; 621 } 622 623 // Okay, this really is overdefined now. Since we might have 624 // speculatively thought that this was not overdefined before, and 625 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 626 // make sure to clean out any entries that we put there, for 627 // efficiency. 628 std::multimap<PHINode*, Instruction*>::iterator It, E; 629 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 630 while (It != E) { 631 if (It->second == &I) { 632 UsersOfOverdefinedPHIs.erase(It++); 633 } else 634 ++It; 635 } 636 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 637 while (It != E) { 638 if (It->second == &I) { 639 UsersOfOverdefinedPHIs.erase(It++); 640 } else 641 ++It; 642 } 643 } 644 645 markOverdefined(IV, &I); 646 } else if (V1State.isConstant() && V2State.isConstant()) { 647 markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 648 V2State.getConstant())); 649 } 650} 651 652// Handle getelementptr instructions... if all operands are constants then we 653// can turn this into a getelementptr ConstantExpr. 654// 655void SCCP::visitGetElementPtrInst(GetElementPtrInst &I) { 656 InstVal &IV = ValueState[&I]; 657 if (IV.isOverdefined()) return; 658 659 std::vector<Constant*> Operands; 660 Operands.reserve(I.getNumOperands()); 661 662 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 663 InstVal &State = getValueState(I.getOperand(i)); 664 if (State.isUndefined()) 665 return; // Operands are not resolved yet... 666 else if (State.isOverdefined()) { 667 markOverdefined(IV, &I); 668 return; 669 } 670 assert(State.isConstant() && "Unknown state!"); 671 Operands.push_back(State.getConstant()); 672 } 673 674 Constant *Ptr = Operands[0]; 675 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 676 677 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands)); 678} 679 680/// GetGEPGlobalInitializer - Given a constant and a getelementptr constantexpr, 681/// return the constant value being addressed by the constant expression, or 682/// null if something is funny. 683/// 684static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) { 685 if (CE->getOperand(1) != Constant::getNullValue(Type::LongTy)) 686 return 0; // Do not allow stepping over the value! 687 688 // Loop over all of the operands, tracking down which value we are 689 // addressing... 690 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) 691 if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) { 692 ConstantStruct *CS = cast<ConstantStruct>(C); 693 if (CU->getValue() >= CS->getValues().size()) return 0; 694 C = cast<Constant>(CS->getValues()[CU->getValue()]); 695 } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) { 696 ConstantArray *CA = cast<ConstantArray>(C); 697 if ((uint64_t)CS->getValue() >= CA->getValues().size()) return 0; 698 C = cast<Constant>(CA->getValues()[CS->getValue()]); 699 } else 700 return 0; 701 return C; 702} 703 704// Handle load instructions. If the operand is a constant pointer to a constant 705// global, we can replace the load with the loaded constant value! 706void SCCP::visitLoadInst(LoadInst &I) { 707 InstVal &IV = ValueState[&I]; 708 if (IV.isOverdefined()) return; 709 710 InstVal &PtrVal = getValueState(I.getOperand(0)); 711 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 712 if (PtrVal.isConstant() && !I.isVolatile()) { 713 Value *Ptr = PtrVal.getConstant(); 714 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr)) 715 Ptr = CPR->getValue(); 716 717 // Transform load (constant global) into the value loaded. 718 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) 719 if (GV->isConstant() && !GV->isExternal()) { 720 markConstant(IV, &I, GV->getInitializer()); 721 return; 722 } 723 724 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 725 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 726 if (CE->getOpcode() == Instruction::GetElementPtr) 727 if (ConstantPointerRef *G 728 = dyn_cast<ConstantPointerRef>(CE->getOperand(0))) 729 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getValue())) 730 if (GV->isConstant() && !GV->isExternal()) 731 if (Constant *V = 732 GetGEPGlobalInitializer(GV->getInitializer(), CE)) { 733 markConstant(IV, &I, V); 734 return; 735 } 736 } 737 738 // Otherwise we cannot say for certain what value this load will produce. 739 // Bail out. 740 markOverdefined(IV, &I); 741} 742