SCCP.cpp revision c3384995258efcec26acf3a88715dc99cd871c3e
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#define DEBUG_TYPE "sccp" 25#include "llvm/Transforms/Scalar.h" 26#include "llvm/Transforms/IPO.h" 27#include "llvm/Constants.h" 28#include "llvm/DerivedTypes.h" 29#include "llvm/Instructions.h" 30#include "llvm/LLVMContext.h" 31#include "llvm/Pass.h" 32#include "llvm/Analysis/ConstantFolding.h" 33#include "llvm/Analysis/MallocHelper.h" 34#include "llvm/Analysis/ValueTracking.h" 35#include "llvm/Transforms/Utils/Local.h" 36#include "llvm/Support/CallSite.h" 37#include "llvm/Support/Debug.h" 38#include "llvm/Support/ErrorHandling.h" 39#include "llvm/Support/InstVisitor.h" 40#include "llvm/Support/raw_ostream.h" 41#include "llvm/ADT/DenseMap.h" 42#include "llvm/ADT/DenseSet.h" 43#include "llvm/ADT/SmallSet.h" 44#include "llvm/ADT/SmallVector.h" 45#include "llvm/ADT/Statistic.h" 46#include "llvm/ADT/STLExtras.h" 47#include <algorithm> 48#include <map> 49using namespace llvm; 50 51STATISTIC(NumInstRemoved, "Number of instructions removed"); 52STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 53 54STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 55STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP"); 56STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 57STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 58 59namespace { 60/// LatticeVal class - This class represents the different lattice values that 61/// an LLVM value may occupy. It is a simple class with value semantics. 62/// 63class LatticeVal { 64 enum { 65 /// undefined - This LLVM Value has no known value yet. 66 undefined, 67 68 /// constant - This LLVM Value has a specific constant value. 69 constant, 70 71 /// forcedconstant - This LLVM Value was thought to be undef until 72 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 73 /// with another (different) constant, it goes to overdefined, instead of 74 /// asserting. 75 forcedconstant, 76 77 /// overdefined - This instruction is not known to be constant, and we know 78 /// it has a value. 79 overdefined 80 } LatticeValue; // The current lattice position 81 82 Constant *ConstantVal; // If Constant value, the current value 83public: 84 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} 85 86 // markOverdefined - Return true if this is a new status to be in... 87 inline bool markOverdefined() { 88 if (LatticeValue != overdefined) { 89 LatticeValue = overdefined; 90 return true; 91 } 92 return false; 93 } 94 95 // markConstant - Return true if this is a new status for us. 96 inline bool markConstant(Constant *V) { 97 if (LatticeValue != constant) { 98 if (LatticeValue == undefined) { 99 LatticeValue = constant; 100 assert(V && "Marking constant with NULL"); 101 ConstantVal = V; 102 } else { 103 assert(LatticeValue == forcedconstant && 104 "Cannot move from overdefined to constant!"); 105 // Stay at forcedconstant if the constant is the same. 106 if (V == ConstantVal) return false; 107 108 // Otherwise, we go to overdefined. Assumptions made based on the 109 // forced value are possibly wrong. Assuming this is another constant 110 // could expose a contradiction. 111 LatticeValue = overdefined; 112 } 113 return true; 114 } else { 115 assert(ConstantVal == V && "Marking constant with different value"); 116 } 117 return false; 118 } 119 120 inline void markForcedConstant(Constant *V) { 121 assert(LatticeValue == undefined && "Can't force a defined value!"); 122 LatticeValue = forcedconstant; 123 ConstantVal = V; 124 } 125 126 inline bool isUndefined() const { return LatticeValue == undefined; } 127 inline bool isConstant() const { 128 return LatticeValue == constant || LatticeValue == forcedconstant; 129 } 130 inline bool isOverdefined() const { return LatticeValue == overdefined; } 131 132 inline Constant *getConstant() const { 133 assert(isConstant() && "Cannot get the constant of a non-constant!"); 134 return ConstantVal; 135 } 136}; 137 138//===----------------------------------------------------------------------===// 139// 140/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 141/// Constant Propagation. 142/// 143class SCCPSolver : public InstVisitor<SCCPSolver> { 144 LLVMContext *Context; 145 DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable 146 std::map<Value*, LatticeVal> ValueState; // The state each value is in. 147 148 /// GlobalValue - If we are tracking any values for the contents of a global 149 /// variable, we keep a mapping from the constant accessor to the element of 150 /// the global, to the currently known value. If the value becomes 151 /// overdefined, it's entry is simply removed from this map. 152 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 153 154 /// TrackedRetVals - If we are tracking arguments into and the return 155 /// value out of a function, it will have an entry in this map, indicating 156 /// what the known return value for the function is. 157 DenseMap<Function*, LatticeVal> TrackedRetVals; 158 159 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 160 /// that return multiple values. 161 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 162 163 // The reason for two worklists is that overdefined is the lowest state 164 // on the lattice, and moving things to overdefined as fast as possible 165 // makes SCCP converge much faster. 166 // By having a separate worklist, we accomplish this because everything 167 // possibly overdefined will become overdefined at the soonest possible 168 // point. 169 SmallVector<Value*, 64> OverdefinedInstWorkList; 170 SmallVector<Value*, 64> InstWorkList; 171 172 173 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 174 175 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 176 /// overdefined, despite the fact that the PHI node is overdefined. 177 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 178 179 /// KnownFeasibleEdges - Entries in this set are edges which have already had 180 /// PHI nodes retriggered. 181 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 182 DenseSet<Edge> KnownFeasibleEdges; 183public: 184 void setContext(LLVMContext *C) { Context = C; } 185 186 /// MarkBlockExecutable - This method can be used by clients to mark all of 187 /// the blocks that are known to be intrinsically live in the processed unit. 188 void MarkBlockExecutable(BasicBlock *BB) { 189 DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n"); 190 BBExecutable.insert(BB); // Basic block is executable! 191 BBWorkList.push_back(BB); // Add the block to the work list! 192 } 193 194 /// TrackValueOfGlobalVariable - Clients can use this method to 195 /// inform the SCCPSolver that it should track loads and stores to the 196 /// specified global variable if it can. This is only legal to call if 197 /// performing Interprocedural SCCP. 198 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 199 const Type *ElTy = GV->getType()->getElementType(); 200 if (ElTy->isFirstClassType()) { 201 LatticeVal &IV = TrackedGlobals[GV]; 202 if (!isa<UndefValue>(GV->getInitializer())) 203 IV.markConstant(GV->getInitializer()); 204 } 205 } 206 207 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 208 /// and out of the specified function (which cannot have its address taken), 209 /// this method must be called. 210 void AddTrackedFunction(Function *F) { 211 assert(F->hasLocalLinkage() && "Can only track internal functions!"); 212 // Add an entry, F -> undef. 213 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 214 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 215 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 216 LatticeVal())); 217 } else 218 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 219 } 220 221 /// Solve - Solve for constants and executable blocks. 222 /// 223 void Solve(); 224 225 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 226 /// that branches on undef values cannot reach any of their successors. 227 /// However, this is not a safe assumption. After we solve dataflow, this 228 /// method should be use to handle this. If this returns true, the solver 229 /// should be rerun. 230 bool ResolvedUndefsIn(Function &F); 231 232 bool isBlockExecutable(BasicBlock *BB) const { 233 return BBExecutable.count(BB); 234 } 235 236 /// getValueMapping - Once we have solved for constants, return the mapping of 237 /// LLVM values to LatticeVals. 238 std::map<Value*, LatticeVal> &getValueMapping() { 239 return ValueState; 240 } 241 242 /// getTrackedRetVals - Get the inferred return value map. 243 /// 244 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 245 return TrackedRetVals; 246 } 247 248 /// getTrackedGlobals - Get and return the set of inferred initializers for 249 /// global variables. 250 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 251 return TrackedGlobals; 252 } 253 254 inline void markOverdefined(Value *V) { 255 markOverdefined(ValueState[V], V); 256 } 257 258private: 259 // markConstant - Make a value be marked as "constant". If the value 260 // is not already a constant, add it to the instruction work list so that 261 // the users of the instruction are updated later. 262 // 263 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { 264 if (IV.markConstant(C)) { 265 DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n'); 266 InstWorkList.push_back(V); 267 } 268 } 269 270 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) { 271 IV.markForcedConstant(C); 272 DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 273 InstWorkList.push_back(V); 274 } 275 276 inline void markConstant(Value *V, Constant *C) { 277 markConstant(ValueState[V], V, C); 278 } 279 280 // markOverdefined - Make a value be marked as "overdefined". If the 281 // value is not already overdefined, add it to the overdefined instruction 282 // work list so that the users of the instruction are updated later. 283 inline void markOverdefined(LatticeVal &IV, Value *V) { 284 if (IV.markOverdefined()) { 285 DEBUG(errs() << "markOverdefined: "; 286 if (Function *F = dyn_cast<Function>(V)) 287 errs() << "Function '" << F->getName() << "'\n"; 288 else 289 errs() << *V << '\n'); 290 // Only instructions go on the work list 291 OverdefinedInstWorkList.push_back(V); 292 } 293 } 294 295 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { 296 if (IV.isOverdefined() || MergeWithV.isUndefined()) 297 return; // Noop. 298 if (MergeWithV.isOverdefined()) 299 markOverdefined(IV, V); 300 else if (IV.isUndefined()) 301 markConstant(IV, V, MergeWithV.getConstant()); 302 else if (IV.getConstant() != MergeWithV.getConstant()) 303 markOverdefined(IV, V); 304 } 305 306 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) { 307 return mergeInValue(ValueState[V], V, MergeWithV); 308 } 309 310 311 // getValueState - Return the LatticeVal object that corresponds to the value. 312 // This function is necessary because not all values should start out in the 313 // underdefined state... Argument's should be overdefined, and 314 // constants should be marked as constants. If a value is not known to be an 315 // Instruction object, then use this accessor to get its value from the map. 316 // 317 inline LatticeVal &getValueState(Value *V) { 318 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V); 319 if (I != ValueState.end()) return I->second; // Common case, in the map 320 321 if (Constant *C = dyn_cast<Constant>(V)) { 322 if (isa<UndefValue>(V)) { 323 // Nothing to do, remain undefined. 324 } else { 325 LatticeVal &LV = ValueState[C]; 326 LV.markConstant(C); // Constants are constant 327 return LV; 328 } 329 } 330 // All others are underdefined by default... 331 return ValueState[V]; 332 } 333 334 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 335 // work list if it is not already executable... 336 // 337 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 338 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 339 return; // This edge is already known to be executable! 340 341 if (BBExecutable.count(Dest)) { 342 DEBUG(errs() << "Marking Edge Executable: " << Source->getName() 343 << " -> " << Dest->getName() << "\n"); 344 345 // The destination is already executable, but we just made an edge 346 // feasible that wasn't before. Revisit the PHI nodes in the block 347 // because they have potentially new operands. 348 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 349 visitPHINode(*cast<PHINode>(I)); 350 351 } else { 352 MarkBlockExecutable(Dest); 353 } 354 } 355 356 // getFeasibleSuccessors - Return a vector of booleans to indicate which 357 // successors are reachable from a given terminator instruction. 358 // 359 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); 360 361 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 362 // block to the 'To' basic block is currently feasible... 363 // 364 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 365 366 // OperandChangedState - This method is invoked on all of the users of an 367 // instruction that was just changed state somehow.... Based on this 368 // information, we need to update the specified user of this instruction. 369 // 370 void OperandChangedState(User *U) { 371 // Only instructions use other variable values! 372 Instruction &I = cast<Instruction>(*U); 373 if (BBExecutable.count(I.getParent())) // Inst is executable? 374 visit(I); 375 } 376 377private: 378 friend class InstVisitor<SCCPSolver>; 379 380 // visit implementations - Something changed in this instruction... Either an 381 // operand made a transition, or the instruction is newly executable. Change 382 // the value type of I to reflect these changes if appropriate. 383 // 384 void visitPHINode(PHINode &I); 385 386 // Terminators 387 void visitReturnInst(ReturnInst &I); 388 void visitTerminatorInst(TerminatorInst &TI); 389 390 void visitCastInst(CastInst &I); 391 void visitSelectInst(SelectInst &I); 392 void visitBinaryOperator(Instruction &I); 393 void visitCmpInst(CmpInst &I); 394 void visitExtractElementInst(ExtractElementInst &I); 395 void visitInsertElementInst(InsertElementInst &I); 396 void visitShuffleVectorInst(ShuffleVectorInst &I); 397 void visitExtractValueInst(ExtractValueInst &EVI); 398 void visitInsertValueInst(InsertValueInst &IVI); 399 400 // Instructions that cannot be folded away... 401 void visitStoreInst (Instruction &I); 402 void visitLoadInst (LoadInst &I); 403 void visitGetElementPtrInst(GetElementPtrInst &I); 404 void visitCallInst (CallInst &I) { 405 if (isMalloc(&I)) 406 markOverdefined(&I); 407 else 408 visitCallSite(CallSite::get(&I)); 409 } 410 void visitInvokeInst (InvokeInst &II) { 411 visitCallSite(CallSite::get(&II)); 412 visitTerminatorInst(II); 413 } 414 void visitCallSite (CallSite CS); 415 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 416 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 417 void visitAllocationInst(Instruction &I) { markOverdefined(&I); } 418 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 419 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 420 void visitFreeInst (Instruction &I) { /*returns void*/ } 421 422 void visitInstruction(Instruction &I) { 423 // If a new instruction is added to LLVM that we don't handle... 424 errs() << "SCCP: Don't know how to handle: " << I; 425 markOverdefined(&I); // Just in case 426 } 427}; 428 429} // end anonymous namespace 430 431 432// getFeasibleSuccessors - Return a vector of booleans to indicate which 433// successors are reachable from a given terminator instruction. 434// 435void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 436 SmallVector<bool, 16> &Succs) { 437 Succs.resize(TI.getNumSuccessors()); 438 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 439 if (BI->isUnconditional()) { 440 Succs[0] = true; 441 } else { 442 LatticeVal &BCValue = getValueState(BI->getCondition()); 443 if (BCValue.isOverdefined() || 444 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) { 445 // Overdefined condition variables, and branches on unfoldable constant 446 // conditions, mean the branch could go either way. 447 Succs[0] = Succs[1] = true; 448 } else if (BCValue.isConstant()) { 449 // Constant condition variables mean the branch can only go a single way 450 Succs[BCValue.getConstant() == ConstantInt::getFalse(*Context)] = true; 451 } 452 } 453 } else if (isa<InvokeInst>(&TI)) { 454 // Invoke instructions successors are always executable. 455 Succs[0] = Succs[1] = true; 456 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 457 LatticeVal &SCValue = getValueState(SI->getCondition()); 458 if (SCValue.isOverdefined() || // Overdefined condition? 459 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 460 // All destinations are executable! 461 Succs.assign(TI.getNumSuccessors(), true); 462 } else if (SCValue.isConstant()) 463 Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true; 464 } else { 465 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 466 } 467} 468 469 470// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 471// block to the 'To' basic block is currently feasible... 472// 473bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 474 assert(BBExecutable.count(To) && "Dest should always be alive!"); 475 476 // Make sure the source basic block is executable!! 477 if (!BBExecutable.count(From)) return false; 478 479 // Check to make sure this edge itself is actually feasible now... 480 TerminatorInst *TI = From->getTerminator(); 481 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 482 if (BI->isUnconditional()) 483 return true; 484 else { 485 LatticeVal &BCValue = getValueState(BI->getCondition()); 486 if (BCValue.isOverdefined()) { 487 // Overdefined condition variables mean the branch could go either way. 488 return true; 489 } else if (BCValue.isConstant()) { 490 // Not branching on an evaluatable constant? 491 if (!isa<ConstantInt>(BCValue.getConstant())) return true; 492 493 // Constant condition variables mean the branch can only go a single way 494 return BI->getSuccessor(BCValue.getConstant() == 495 ConstantInt::getFalse(*Context)) == To; 496 } 497 return false; 498 } 499 } else if (isa<InvokeInst>(TI)) { 500 // Invoke instructions successors are always executable. 501 return true; 502 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 503 LatticeVal &SCValue = getValueState(SI->getCondition()); 504 if (SCValue.isOverdefined()) { // Overdefined condition? 505 // All destinations are executable! 506 return true; 507 } else if (SCValue.isConstant()) { 508 Constant *CPV = SCValue.getConstant(); 509 if (!isa<ConstantInt>(CPV)) 510 return true; // not a foldable constant? 511 512 // Make sure to skip the "default value" which isn't a value 513 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 514 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 515 return SI->getSuccessor(i) == To; 516 517 // Constant value not equal to any of the branches... must execute 518 // default branch then... 519 return SI->getDefaultDest() == To; 520 } 521 return false; 522 } else { 523#ifndef NDEBUG 524 errs() << "Unknown terminator instruction: " << *TI << '\n'; 525#endif 526 llvm_unreachable(0); 527 } 528} 529 530// visit Implementations - Something changed in this instruction... Either an 531// operand made a transition, or the instruction is newly executable. Change 532// the value type of I to reflect these changes if appropriate. This method 533// makes sure to do the following actions: 534// 535// 1. If a phi node merges two constants in, and has conflicting value coming 536// from different branches, or if the PHI node merges in an overdefined 537// value, then the PHI node becomes overdefined. 538// 2. If a phi node merges only constants in, and they all agree on value, the 539// PHI node becomes a constant value equal to that. 540// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 541// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 542// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 543// 6. If a conditional branch has a value that is constant, make the selected 544// destination executable 545// 7. If a conditional branch has a value that is overdefined, make all 546// successors executable. 547// 548void SCCPSolver::visitPHINode(PHINode &PN) { 549 LatticeVal &PNIV = getValueState(&PN); 550 if (PNIV.isOverdefined()) { 551 // There may be instructions using this PHI node that are not overdefined 552 // themselves. If so, make sure that they know that the PHI node operand 553 // changed. 554 std::multimap<PHINode*, Instruction*>::iterator I, E; 555 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 556 if (I != E) { 557 SmallVector<Instruction*, 16> Users; 558 for (; I != E; ++I) Users.push_back(I->second); 559 while (!Users.empty()) { 560 visit(Users.back()); 561 Users.pop_back(); 562 } 563 } 564 return; // Quick exit 565 } 566 567 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 568 // and slow us down a lot. Just mark them overdefined. 569 if (PN.getNumIncomingValues() > 64) { 570 markOverdefined(PNIV, &PN); 571 return; 572 } 573 574 // Look at all of the executable operands of the PHI node. If any of them 575 // are overdefined, the PHI becomes overdefined as well. If they are all 576 // constant, and they agree with each other, the PHI becomes the identical 577 // constant. If they are constant and don't agree, the PHI is overdefined. 578 // If there are no executable operands, the PHI remains undefined. 579 // 580 Constant *OperandVal = 0; 581 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 582 LatticeVal &IV = getValueState(PN.getIncomingValue(i)); 583 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 584 585 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 586 if (IV.isOverdefined()) { // PHI node becomes overdefined! 587 markOverdefined(&PN); 588 return; 589 } 590 591 if (OperandVal == 0) { // Grab the first value... 592 OperandVal = IV.getConstant(); 593 } else { // Another value is being merged in! 594 // There is already a reachable operand. If we conflict with it, 595 // then the PHI node becomes overdefined. If we agree with it, we 596 // can continue on. 597 598 // Check to see if there are two different constants merging... 599 if (IV.getConstant() != OperandVal) { 600 // Yes there is. This means the PHI node is not constant. 601 // You must be overdefined poor PHI. 602 // 603 markOverdefined(&PN); // The PHI node now becomes overdefined 604 return; // I'm done analyzing you 605 } 606 } 607 } 608 } 609 610 // If we exited the loop, this means that the PHI node only has constant 611 // arguments that agree with each other(and OperandVal is the constant) or 612 // OperandVal is null because there are no defined incoming arguments. If 613 // this is the case, the PHI remains undefined. 614 // 615 if (OperandVal) 616 markConstant(&PN, OperandVal); // Acquire operand value 617} 618 619void SCCPSolver::visitReturnInst(ReturnInst &I) { 620 if (I.getNumOperands() == 0) return; // Ret void 621 622 Function *F = I.getParent()->getParent(); 623 // If we are tracking the return value of this function, merge it in. 624 if (!F->hasLocalLinkage()) 625 return; 626 627 if (!TrackedRetVals.empty() && I.getNumOperands() == 1) { 628 DenseMap<Function*, LatticeVal>::iterator TFRVI = 629 TrackedRetVals.find(F); 630 if (TFRVI != TrackedRetVals.end() && 631 !TFRVI->second.isOverdefined()) { 632 LatticeVal &IV = getValueState(I.getOperand(0)); 633 mergeInValue(TFRVI->second, F, IV); 634 return; 635 } 636 } 637 638 // Handle functions that return multiple values. 639 if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) { 640 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 641 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 642 It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 643 if (It == TrackedMultipleRetVals.end()) break; 644 mergeInValue(It->second, F, getValueState(I.getOperand(i))); 645 } 646 } else if (!TrackedMultipleRetVals.empty() && 647 I.getNumOperands() == 1 && 648 isa<StructType>(I.getOperand(0)->getType())) { 649 for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes(); 650 i != e; ++i) { 651 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 652 It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 653 if (It == TrackedMultipleRetVals.end()) break; 654 if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext())) 655 mergeInValue(It->second, F, getValueState(Val)); 656 } 657 } 658} 659 660void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 661 SmallVector<bool, 16> SuccFeasible; 662 getFeasibleSuccessors(TI, SuccFeasible); 663 664 BasicBlock *BB = TI.getParent(); 665 666 // Mark all feasible successors executable... 667 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 668 if (SuccFeasible[i]) 669 markEdgeExecutable(BB, TI.getSuccessor(i)); 670} 671 672void SCCPSolver::visitCastInst(CastInst &I) { 673 Value *V = I.getOperand(0); 674 LatticeVal &VState = getValueState(V); 675 if (VState.isOverdefined()) // Inherit overdefinedness of operand 676 markOverdefined(&I); 677 else if (VState.isConstant()) // Propagate constant value 678 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 679 VState.getConstant(), I.getType())); 680} 681 682void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 683 Value *Aggr = EVI.getAggregateOperand(); 684 685 // If the operand to the extractvalue is an undef, the result is undef. 686 if (isa<UndefValue>(Aggr)) 687 return; 688 689 // Currently only handle single-index extractvalues. 690 if (EVI.getNumIndices() != 1) { 691 markOverdefined(&EVI); 692 return; 693 } 694 695 Function *F = 0; 696 if (CallInst *CI = dyn_cast<CallInst>(Aggr)) 697 F = CI->getCalledFunction(); 698 else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr)) 699 F = II->getCalledFunction(); 700 701 // TODO: If IPSCCP resolves the callee of this function, we could propagate a 702 // result back! 703 if (F == 0 || TrackedMultipleRetVals.empty()) { 704 markOverdefined(&EVI); 705 return; 706 } 707 708 // See if we are tracking the result of the callee. If not tracking this 709 // function (for example, it is a declaration) just move to overdefined. 710 if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) { 711 markOverdefined(&EVI); 712 return; 713 } 714 715 // Otherwise, the value will be merged in here as a result of CallSite 716 // handling. 717} 718 719void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 720 Value *Aggr = IVI.getAggregateOperand(); 721 Value *Val = IVI.getInsertedValueOperand(); 722 723 // If the operands to the insertvalue are undef, the result is undef. 724 if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val)) 725 return; 726 727 // Currently only handle single-index insertvalues. 728 if (IVI.getNumIndices() != 1) { 729 markOverdefined(&IVI); 730 return; 731 } 732 733 // Currently only handle insertvalue instructions that are in a single-use 734 // chain that builds up a return value. 735 for (const InsertValueInst *TmpIVI = &IVI; ; ) { 736 if (!TmpIVI->hasOneUse()) { 737 markOverdefined(&IVI); 738 return; 739 } 740 const Value *V = *TmpIVI->use_begin(); 741 if (isa<ReturnInst>(V)) 742 break; 743 TmpIVI = dyn_cast<InsertValueInst>(V); 744 if (!TmpIVI) { 745 markOverdefined(&IVI); 746 return; 747 } 748 } 749 750 // See if we are tracking the result of the callee. 751 Function *F = IVI.getParent()->getParent(); 752 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 753 It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin())); 754 755 // Merge in the inserted member value. 756 if (It != TrackedMultipleRetVals.end()) 757 mergeInValue(It->second, F, getValueState(Val)); 758 759 // Mark the aggregate result of the IVI overdefined; any tracking that we do 760 // will be done on the individual member values. 761 markOverdefined(&IVI); 762} 763 764void SCCPSolver::visitSelectInst(SelectInst &I) { 765 LatticeVal &CondValue = getValueState(I.getCondition()); 766 if (CondValue.isUndefined()) 767 return; 768 if (CondValue.isConstant()) { 769 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){ 770 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue() 771 : I.getFalseValue())); 772 return; 773 } 774 } 775 776 // Otherwise, the condition is overdefined or a constant we can't evaluate. 777 // See if we can produce something better than overdefined based on the T/F 778 // value. 779 LatticeVal &TVal = getValueState(I.getTrueValue()); 780 LatticeVal &FVal = getValueState(I.getFalseValue()); 781 782 // select ?, C, C -> C. 783 if (TVal.isConstant() && FVal.isConstant() && 784 TVal.getConstant() == FVal.getConstant()) { 785 markConstant(&I, FVal.getConstant()); 786 return; 787 } 788 789 if (TVal.isUndefined()) { // select ?, undef, X -> X. 790 mergeInValue(&I, FVal); 791 } else if (FVal.isUndefined()) { // select ?, X, undef -> X. 792 mergeInValue(&I, TVal); 793 } else { 794 markOverdefined(&I); 795 } 796} 797 798// Handle BinaryOperators and Shift Instructions... 799void SCCPSolver::visitBinaryOperator(Instruction &I) { 800 LatticeVal &IV = ValueState[&I]; 801 if (IV.isOverdefined()) return; 802 803 LatticeVal &V1State = getValueState(I.getOperand(0)); 804 LatticeVal &V2State = getValueState(I.getOperand(1)); 805 806 if (V1State.isOverdefined() || V2State.isOverdefined()) { 807 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 808 // operand is overdefined. 809 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 810 LatticeVal *NonOverdefVal = 0; 811 if (!V1State.isOverdefined()) { 812 NonOverdefVal = &V1State; 813 } else if (!V2State.isOverdefined()) { 814 NonOverdefVal = &V2State; 815 } 816 817 if (NonOverdefVal) { 818 if (NonOverdefVal->isUndefined()) { 819 // Could annihilate value. 820 if (I.getOpcode() == Instruction::And) 821 markConstant(IV, &I, Constant::getNullValue(I.getType())); 822 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType())) 823 markConstant(IV, &I, Constant::getAllOnesValue(PT)); 824 else 825 markConstant(IV, &I, 826 Constant::getAllOnesValue(I.getType())); 827 return; 828 } else { 829 if (I.getOpcode() == Instruction::And) { 830 if (NonOverdefVal->getConstant()->isNullValue()) { 831 markConstant(IV, &I, NonOverdefVal->getConstant()); 832 return; // X and 0 = 0 833 } 834 } else { 835 if (ConstantInt *CI = 836 dyn_cast<ConstantInt>(NonOverdefVal->getConstant())) 837 if (CI->isAllOnesValue()) { 838 markConstant(IV, &I, NonOverdefVal->getConstant()); 839 return; // X or -1 = -1 840 } 841 } 842 } 843 } 844 } 845 846 847 // If both operands are PHI nodes, it is possible that this instruction has 848 // a constant value, despite the fact that the PHI node doesn't. Check for 849 // this condition now. 850 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 851 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 852 if (PN1->getParent() == PN2->getParent()) { 853 // Since the two PHI nodes are in the same basic block, they must have 854 // entries for the same predecessors. Walk the predecessor list, and 855 // if all of the incoming values are constants, and the result of 856 // evaluating this expression with all incoming value pairs is the 857 // same, then this expression is a constant even though the PHI node 858 // is not a constant! 859 LatticeVal Result; 860 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 861 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 862 BasicBlock *InBlock = PN1->getIncomingBlock(i); 863 LatticeVal &In2 = 864 getValueState(PN2->getIncomingValueForBlock(InBlock)); 865 866 if (In1.isOverdefined() || In2.isOverdefined()) { 867 Result.markOverdefined(); 868 break; // Cannot fold this operation over the PHI nodes! 869 } else if (In1.isConstant() && In2.isConstant()) { 870 Constant *V = 871 ConstantExpr::get(I.getOpcode(), In1.getConstant(), 872 In2.getConstant()); 873 if (Result.isUndefined()) 874 Result.markConstant(V); 875 else if (Result.isConstant() && Result.getConstant() != V) { 876 Result.markOverdefined(); 877 break; 878 } 879 } 880 } 881 882 // If we found a constant value here, then we know the instruction is 883 // constant despite the fact that the PHI nodes are overdefined. 884 if (Result.isConstant()) { 885 markConstant(IV, &I, Result.getConstant()); 886 // Remember that this instruction is virtually using the PHI node 887 // operands. 888 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 889 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 890 return; 891 } else if (Result.isUndefined()) { 892 return; 893 } 894 895 // Okay, this really is overdefined now. Since we might have 896 // speculatively thought that this was not overdefined before, and 897 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 898 // make sure to clean out any entries that we put there, for 899 // efficiency. 900 std::multimap<PHINode*, Instruction*>::iterator It, E; 901 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 902 while (It != E) { 903 if (It->second == &I) { 904 UsersOfOverdefinedPHIs.erase(It++); 905 } else 906 ++It; 907 } 908 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 909 while (It != E) { 910 if (It->second == &I) { 911 UsersOfOverdefinedPHIs.erase(It++); 912 } else 913 ++It; 914 } 915 } 916 917 markOverdefined(IV, &I); 918 } else if (V1State.isConstant() && V2State.isConstant()) { 919 markConstant(IV, &I, 920 ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 921 V2State.getConstant())); 922 } 923} 924 925// Handle ICmpInst instruction... 926void SCCPSolver::visitCmpInst(CmpInst &I) { 927 LatticeVal &IV = ValueState[&I]; 928 if (IV.isOverdefined()) return; 929 930 LatticeVal &V1State = getValueState(I.getOperand(0)); 931 LatticeVal &V2State = getValueState(I.getOperand(1)); 932 933 if (V1State.isOverdefined() || V2State.isOverdefined()) { 934 // If both operands are PHI nodes, it is possible that this instruction has 935 // a constant value, despite the fact that the PHI node doesn't. Check for 936 // this condition now. 937 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 938 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 939 if (PN1->getParent() == PN2->getParent()) { 940 // Since the two PHI nodes are in the same basic block, they must have 941 // entries for the same predecessors. Walk the predecessor list, and 942 // if all of the incoming values are constants, and the result of 943 // evaluating this expression with all incoming value pairs is the 944 // same, then this expression is a constant even though the PHI node 945 // is not a constant! 946 LatticeVal Result; 947 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 948 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 949 BasicBlock *InBlock = PN1->getIncomingBlock(i); 950 LatticeVal &In2 = 951 getValueState(PN2->getIncomingValueForBlock(InBlock)); 952 953 if (In1.isOverdefined() || In2.isOverdefined()) { 954 Result.markOverdefined(); 955 break; // Cannot fold this operation over the PHI nodes! 956 } else if (In1.isConstant() && In2.isConstant()) { 957 Constant *V = ConstantExpr::getCompare(I.getPredicate(), 958 In1.getConstant(), 959 In2.getConstant()); 960 if (Result.isUndefined()) 961 Result.markConstant(V); 962 else if (Result.isConstant() && Result.getConstant() != V) { 963 Result.markOverdefined(); 964 break; 965 } 966 } 967 } 968 969 // If we found a constant value here, then we know the instruction is 970 // constant despite the fact that the PHI nodes are overdefined. 971 if (Result.isConstant()) { 972 markConstant(IV, &I, Result.getConstant()); 973 // Remember that this instruction is virtually using the PHI node 974 // operands. 975 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 976 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 977 return; 978 } else if (Result.isUndefined()) { 979 return; 980 } 981 982 // Okay, this really is overdefined now. Since we might have 983 // speculatively thought that this was not overdefined before, and 984 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 985 // make sure to clean out any entries that we put there, for 986 // efficiency. 987 std::multimap<PHINode*, Instruction*>::iterator It, E; 988 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 989 while (It != E) { 990 if (It->second == &I) { 991 UsersOfOverdefinedPHIs.erase(It++); 992 } else 993 ++It; 994 } 995 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 996 while (It != E) { 997 if (It->second == &I) { 998 UsersOfOverdefinedPHIs.erase(It++); 999 } else 1000 ++It; 1001 } 1002 } 1003 1004 markOverdefined(IV, &I); 1005 } else if (V1State.isConstant() && V2State.isConstant()) { 1006 markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 1007 V1State.getConstant(), 1008 V2State.getConstant())); 1009 } 1010} 1011 1012void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 1013 // FIXME : SCCP does not handle vectors properly. 1014 markOverdefined(&I); 1015 return; 1016 1017#if 0 1018 LatticeVal &ValState = getValueState(I.getOperand(0)); 1019 LatticeVal &IdxState = getValueState(I.getOperand(1)); 1020 1021 if (ValState.isOverdefined() || IdxState.isOverdefined()) 1022 markOverdefined(&I); 1023 else if(ValState.isConstant() && IdxState.isConstant()) 1024 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 1025 IdxState.getConstant())); 1026#endif 1027} 1028 1029void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 1030 // FIXME : SCCP does not handle vectors properly. 1031 markOverdefined(&I); 1032 return; 1033#if 0 1034 LatticeVal &ValState = getValueState(I.getOperand(0)); 1035 LatticeVal &EltState = getValueState(I.getOperand(1)); 1036 LatticeVal &IdxState = getValueState(I.getOperand(2)); 1037 1038 if (ValState.isOverdefined() || EltState.isOverdefined() || 1039 IdxState.isOverdefined()) 1040 markOverdefined(&I); 1041 else if(ValState.isConstant() && EltState.isConstant() && 1042 IdxState.isConstant()) 1043 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 1044 EltState.getConstant(), 1045 IdxState.getConstant())); 1046 else if (ValState.isUndefined() && EltState.isConstant() && 1047 IdxState.isConstant()) 1048 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 1049 EltState.getConstant(), 1050 IdxState.getConstant())); 1051#endif 1052} 1053 1054void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 1055 // FIXME : SCCP does not handle vectors properly. 1056 markOverdefined(&I); 1057 return; 1058#if 0 1059 LatticeVal &V1State = getValueState(I.getOperand(0)); 1060 LatticeVal &V2State = getValueState(I.getOperand(1)); 1061 LatticeVal &MaskState = getValueState(I.getOperand(2)); 1062 1063 if (MaskState.isUndefined() || 1064 (V1State.isUndefined() && V2State.isUndefined())) 1065 return; // Undefined output if mask or both inputs undefined. 1066 1067 if (V1State.isOverdefined() || V2State.isOverdefined() || 1068 MaskState.isOverdefined()) { 1069 markOverdefined(&I); 1070 } else { 1071 // A mix of constant/undef inputs. 1072 Constant *V1 = V1State.isConstant() ? 1073 V1State.getConstant() : UndefValue::get(I.getType()); 1074 Constant *V2 = V2State.isConstant() ? 1075 V2State.getConstant() : UndefValue::get(I.getType()); 1076 Constant *Mask = MaskState.isConstant() ? 1077 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 1078 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 1079 } 1080#endif 1081} 1082 1083// Handle getelementptr instructions... if all operands are constants then we 1084// can turn this into a getelementptr ConstantExpr. 1085// 1086void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1087 LatticeVal &IV = ValueState[&I]; 1088 if (IV.isOverdefined()) return; 1089 1090 SmallVector<Constant*, 8> Operands; 1091 Operands.reserve(I.getNumOperands()); 1092 1093 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1094 LatticeVal &State = getValueState(I.getOperand(i)); 1095 if (State.isUndefined()) 1096 return; // Operands are not resolved yet... 1097 else if (State.isOverdefined()) { 1098 markOverdefined(IV, &I); 1099 return; 1100 } 1101 assert(State.isConstant() && "Unknown state!"); 1102 Operands.push_back(State.getConstant()); 1103 } 1104 1105 Constant *Ptr = Operands[0]; 1106 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 1107 1108 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0], 1109 Operands.size())); 1110} 1111 1112void SCCPSolver::visitStoreInst(Instruction &SI) { 1113 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1114 return; 1115 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1116 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1117 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1118 1119 // Get the value we are storing into the global. 1120 LatticeVal &PtrVal = getValueState(SI.getOperand(0)); 1121 1122 mergeInValue(I->second, GV, PtrVal); 1123 if (I->second.isOverdefined()) 1124 TrackedGlobals.erase(I); // No need to keep tracking this! 1125} 1126 1127 1128// Handle load instructions. If the operand is a constant pointer to a constant 1129// global, we can replace the load with the loaded constant value! 1130void SCCPSolver::visitLoadInst(LoadInst &I) { 1131 LatticeVal &IV = ValueState[&I]; 1132 if (IV.isOverdefined()) return; 1133 1134 LatticeVal &PtrVal = getValueState(I.getOperand(0)); 1135 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1136 if (PtrVal.isConstant() && !I.isVolatile()) { 1137 Value *Ptr = PtrVal.getConstant(); 1138 // TODO: Consider a target hook for valid address spaces for this xform. 1139 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) { 1140 // load null -> null 1141 markConstant(IV, &I, Constant::getNullValue(I.getType())); 1142 return; 1143 } 1144 1145 // Transform load (constant global) into the value loaded. 1146 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1147 if (GV->isConstant()) { 1148 if (GV->hasDefinitiveInitializer()) { 1149 markConstant(IV, &I, GV->getInitializer()); 1150 return; 1151 } 1152 } else if (!TrackedGlobals.empty()) { 1153 // If we are tracking this global, merge in the known value for it. 1154 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1155 TrackedGlobals.find(GV); 1156 if (It != TrackedGlobals.end()) { 1157 mergeInValue(IV, &I, It->second); 1158 return; 1159 } 1160 } 1161 } 1162 1163 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 1164 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 1165 if (CE->getOpcode() == Instruction::GetElementPtr) 1166 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 1167 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1168 if (Constant *V = 1169 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE, 1170 *Context)) { 1171 markConstant(IV, &I, V); 1172 return; 1173 } 1174 } 1175 1176 // Otherwise we cannot say for certain what value this load will produce. 1177 // Bail out. 1178 markOverdefined(IV, &I); 1179} 1180 1181void SCCPSolver::visitCallSite(CallSite CS) { 1182 Function *F = CS.getCalledFunction(); 1183 Instruction *I = CS.getInstruction(); 1184 1185 // The common case is that we aren't tracking the callee, either because we 1186 // are not doing interprocedural analysis or the callee is indirect, or is 1187 // external. Handle these cases first. 1188 if (F == 0 || !F->hasLocalLinkage()) { 1189CallOverdefined: 1190 // Void return and not tracking callee, just bail. 1191 if (I->getType() == Type::getVoidTy(I->getContext())) return; 1192 1193 // Otherwise, if we have a single return value case, and if the function is 1194 // a declaration, maybe we can constant fold it. 1195 if (!isa<StructType>(I->getType()) && F && F->isDeclaration() && 1196 canConstantFoldCallTo(F)) { 1197 1198 SmallVector<Constant*, 8> Operands; 1199 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1200 AI != E; ++AI) { 1201 LatticeVal &State = getValueState(*AI); 1202 if (State.isUndefined()) 1203 return; // Operands are not resolved yet. 1204 else if (State.isOverdefined()) { 1205 markOverdefined(I); 1206 return; 1207 } 1208 assert(State.isConstant() && "Unknown state!"); 1209 Operands.push_back(State.getConstant()); 1210 } 1211 1212 // If we can constant fold this, mark the result of the call as a 1213 // constant. 1214 if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) { 1215 markConstant(I, C); 1216 return; 1217 } 1218 } 1219 1220 // Otherwise, we don't know anything about this call, mark it overdefined. 1221 markOverdefined(I); 1222 return; 1223 } 1224 1225 // If this is a single/zero retval case, see if we're tracking the function. 1226 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1227 if (TFRVI != TrackedRetVals.end()) { 1228 // If so, propagate the return value of the callee into this call result. 1229 mergeInValue(I, TFRVI->second); 1230 } else if (isa<StructType>(I->getType())) { 1231 // Check to see if we're tracking this callee, if not, handle it in the 1232 // common path above. 1233 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 1234 TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0)); 1235 if (TMRVI == TrackedMultipleRetVals.end()) 1236 goto CallOverdefined; 1237 1238 // If we are tracking this callee, propagate the return values of the call 1239 // into this call site. We do this by walking all the uses. Single-index 1240 // ExtractValueInst uses can be tracked; anything more complicated is 1241 // currently handled conservatively. 1242 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1243 UI != E; ++UI) { 1244 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) { 1245 if (EVI->getNumIndices() == 1) { 1246 mergeInValue(EVI, 1247 TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]); 1248 continue; 1249 } 1250 } 1251 // The aggregate value is used in a way not handled here. Assume nothing. 1252 markOverdefined(*UI); 1253 } 1254 } else { 1255 // Otherwise we're not tracking this callee, so handle it in the 1256 // common path above. 1257 goto CallOverdefined; 1258 } 1259 1260 // Finally, if this is the first call to the function hit, mark its entry 1261 // block executable. 1262 if (!BBExecutable.count(F->begin())) 1263 MarkBlockExecutable(F->begin()); 1264 1265 // Propagate information from this call site into the callee. 1266 CallSite::arg_iterator CAI = CS.arg_begin(); 1267 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1268 AI != E; ++AI, ++CAI) { 1269 LatticeVal &IV = ValueState[AI]; 1270 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1271 IV.markOverdefined(); 1272 continue; 1273 } 1274 if (!IV.isOverdefined()) 1275 mergeInValue(IV, AI, getValueState(*CAI)); 1276 } 1277} 1278 1279 1280void SCCPSolver::Solve() { 1281 // Process the work lists until they are empty! 1282 while (!BBWorkList.empty() || !InstWorkList.empty() || 1283 !OverdefinedInstWorkList.empty()) { 1284 // Process the instruction work list... 1285 while (!OverdefinedInstWorkList.empty()) { 1286 Value *I = OverdefinedInstWorkList.back(); 1287 OverdefinedInstWorkList.pop_back(); 1288 1289 DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n'); 1290 1291 // "I" got into the work list because it either made the transition from 1292 // bottom to constant 1293 // 1294 // Anything on this worklist that is overdefined need not be visited 1295 // since all of its users will have already been marked as overdefined 1296 // Update all of the users of this instruction's value... 1297 // 1298 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1299 UI != E; ++UI) 1300 OperandChangedState(*UI); 1301 } 1302 // Process the instruction work list... 1303 while (!InstWorkList.empty()) { 1304 Value *I = InstWorkList.back(); 1305 InstWorkList.pop_back(); 1306 1307 DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n'); 1308 1309 // "I" got into the work list because it either made the transition from 1310 // bottom to constant 1311 // 1312 // Anything on this worklist that is overdefined need not be visited 1313 // since all of its users will have already been marked as overdefined. 1314 // Update all of the users of this instruction's value... 1315 // 1316 if (!getValueState(I).isOverdefined()) 1317 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1318 UI != E; ++UI) 1319 OperandChangedState(*UI); 1320 } 1321 1322 // Process the basic block work list... 1323 while (!BBWorkList.empty()) { 1324 BasicBlock *BB = BBWorkList.back(); 1325 BBWorkList.pop_back(); 1326 1327 DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n'); 1328 1329 // Notify all instructions in this basic block that they are newly 1330 // executable. 1331 visit(BB); 1332 } 1333 } 1334} 1335 1336/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1337/// that branches on undef values cannot reach any of their successors. 1338/// However, this is not a safe assumption. After we solve dataflow, this 1339/// method should be use to handle this. If this returns true, the solver 1340/// should be rerun. 1341/// 1342/// This method handles this by finding an unresolved branch and marking it one 1343/// of the edges from the block as being feasible, even though the condition 1344/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1345/// CFG and only slightly pessimizes the analysis results (by marking one, 1346/// potentially infeasible, edge feasible). This cannot usefully modify the 1347/// constraints on the condition of the branch, as that would impact other users 1348/// of the value. 1349/// 1350/// This scan also checks for values that use undefs, whose results are actually 1351/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1352/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1353/// even if X isn't defined. 1354bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1355 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1356 if (!BBExecutable.count(BB)) 1357 continue; 1358 1359 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1360 // Look for instructions which produce undef values. 1361 if (I->getType() == Type::getVoidTy(F.getContext())) continue; 1362 1363 LatticeVal &LV = getValueState(I); 1364 if (!LV.isUndefined()) continue; 1365 1366 // Get the lattice values of the first two operands for use below. 1367 LatticeVal &Op0LV = getValueState(I->getOperand(0)); 1368 LatticeVal Op1LV; 1369 if (I->getNumOperands() == 2) { 1370 // If this is a two-operand instruction, and if both operands are 1371 // undefs, the result stays undef. 1372 Op1LV = getValueState(I->getOperand(1)); 1373 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1374 continue; 1375 } 1376 1377 // If this is an instructions whose result is defined even if the input is 1378 // not fully defined, propagate the information. 1379 const Type *ITy = I->getType(); 1380 switch (I->getOpcode()) { 1381 default: break; // Leave the instruction as an undef. 1382 case Instruction::ZExt: 1383 // After a zero extend, we know the top part is zero. SExt doesn't have 1384 // to be handled here, because we don't know whether the top part is 1's 1385 // or 0's. 1386 assert(Op0LV.isUndefined()); 1387 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1388 return true; 1389 case Instruction::Mul: 1390 case Instruction::And: 1391 // undef * X -> 0. X could be zero. 1392 // undef & X -> 0. X could be zero. 1393 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1394 return true; 1395 1396 case Instruction::Or: 1397 // undef | X -> -1. X could be -1. 1398 if (const VectorType *PTy = dyn_cast<VectorType>(ITy)) 1399 markForcedConstant(LV, I, 1400 Constant::getAllOnesValue(PTy)); 1401 else 1402 markForcedConstant(LV, I, Constant::getAllOnesValue(ITy)); 1403 return true; 1404 1405 case Instruction::SDiv: 1406 case Instruction::UDiv: 1407 case Instruction::SRem: 1408 case Instruction::URem: 1409 // X / undef -> undef. No change. 1410 // X % undef -> undef. No change. 1411 if (Op1LV.isUndefined()) break; 1412 1413 // undef / X -> 0. X could be maxint. 1414 // undef % X -> 0. X could be 1. 1415 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1416 return true; 1417 1418 case Instruction::AShr: 1419 // undef >>s X -> undef. No change. 1420 if (Op0LV.isUndefined()) break; 1421 1422 // X >>s undef -> X. X could be 0, X could have the high-bit known set. 1423 if (Op0LV.isConstant()) 1424 markForcedConstant(LV, I, Op0LV.getConstant()); 1425 else 1426 markOverdefined(LV, I); 1427 return true; 1428 case Instruction::LShr: 1429 case Instruction::Shl: 1430 // undef >> X -> undef. No change. 1431 // undef << X -> undef. No change. 1432 if (Op0LV.isUndefined()) break; 1433 1434 // X >> undef -> 0. X could be 0. 1435 // X << undef -> 0. X could be 0. 1436 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1437 return true; 1438 case Instruction::Select: 1439 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1440 if (Op0LV.isUndefined()) { 1441 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1442 Op1LV = getValueState(I->getOperand(2)); 1443 } else if (Op1LV.isUndefined()) { 1444 // c ? undef : undef -> undef. No change. 1445 Op1LV = getValueState(I->getOperand(2)); 1446 if (Op1LV.isUndefined()) 1447 break; 1448 // Otherwise, c ? undef : x -> x. 1449 } else { 1450 // Leave Op1LV as Operand(1)'s LatticeValue. 1451 } 1452 1453 if (Op1LV.isConstant()) 1454 markForcedConstant(LV, I, Op1LV.getConstant()); 1455 else 1456 markOverdefined(LV, I); 1457 return true; 1458 case Instruction::Call: 1459 // If a call has an undef result, it is because it is constant foldable 1460 // but one of the inputs was undef. Just force the result to 1461 // overdefined. 1462 markOverdefined(LV, I); 1463 return true; 1464 } 1465 } 1466 1467 TerminatorInst *TI = BB->getTerminator(); 1468 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1469 if (!BI->isConditional()) continue; 1470 if (!getValueState(BI->getCondition()).isUndefined()) 1471 continue; 1472 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1473 if (SI->getNumSuccessors()<2) // no cases 1474 continue; 1475 if (!getValueState(SI->getCondition()).isUndefined()) 1476 continue; 1477 } else { 1478 continue; 1479 } 1480 1481 // If the edge to the second successor isn't thought to be feasible yet, 1482 // mark it so now. We pick the second one so that this goes to some 1483 // enumerated value in a switch instead of going to the default destination. 1484 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1)))) 1485 continue; 1486 1487 // Otherwise, it isn't already thought to be feasible. Mark it as such now 1488 // and return. This will make other blocks reachable, which will allow new 1489 // values to be discovered and existing ones to be moved in the lattice. 1490 markEdgeExecutable(BB, TI->getSuccessor(1)); 1491 1492 // This must be a conditional branch of switch on undef. At this point, 1493 // force the old terminator to branch to the first successor. This is 1494 // required because we are now influencing the dataflow of the function with 1495 // the assumption that this edge is taken. If we leave the branch condition 1496 // as undef, then further analysis could think the undef went another way 1497 // leading to an inconsistent set of conclusions. 1498 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1499 BI->setCondition(ConstantInt::getFalse(*Context)); 1500 } else { 1501 SwitchInst *SI = cast<SwitchInst>(TI); 1502 SI->setCondition(SI->getCaseValue(1)); 1503 } 1504 1505 return true; 1506 } 1507 1508 return false; 1509} 1510 1511 1512namespace { 1513 //===--------------------------------------------------------------------===// 1514 // 1515 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1516 /// Sparse Conditional Constant Propagator. 1517 /// 1518 struct SCCP : public FunctionPass { 1519 static char ID; // Pass identification, replacement for typeid 1520 SCCP() : FunctionPass(&ID) {} 1521 1522 // runOnFunction - Run the Sparse Conditional Constant Propagation 1523 // algorithm, and return true if the function was modified. 1524 // 1525 bool runOnFunction(Function &F); 1526 1527 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1528 AU.setPreservesCFG(); 1529 } 1530 }; 1531} // end anonymous namespace 1532 1533char SCCP::ID = 0; 1534static RegisterPass<SCCP> 1535X("sccp", "Sparse Conditional Constant Propagation"); 1536 1537// createSCCPPass - This is the public interface to this file... 1538FunctionPass *llvm::createSCCPPass() { 1539 return new SCCP(); 1540} 1541 1542 1543// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1544// and return true if the function was modified. 1545// 1546bool SCCP::runOnFunction(Function &F) { 1547 DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n"); 1548 SCCPSolver Solver; 1549 Solver.setContext(&F.getContext()); 1550 1551 // Mark the first block of the function as being executable. 1552 Solver.MarkBlockExecutable(F.begin()); 1553 1554 // Mark all arguments to the function as being overdefined. 1555 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1556 Solver.markOverdefined(AI); 1557 1558 // Solve for constants. 1559 bool ResolvedUndefs = true; 1560 while (ResolvedUndefs) { 1561 Solver.Solve(); 1562 DEBUG(errs() << "RESOLVING UNDEFs\n"); 1563 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1564 } 1565 1566 bool MadeChanges = false; 1567 1568 // If we decided that there are basic blocks that are dead in this function, 1569 // delete their contents now. Note that we cannot actually delete the blocks, 1570 // as we cannot modify the CFG of the function. 1571 // 1572 SmallVector<Instruction*, 512> Insts; 1573 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1574 1575 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1576 if (!Solver.isBlockExecutable(BB)) { 1577 DEBUG(errs() << " BasicBlock Dead:" << *BB); 1578 ++NumDeadBlocks; 1579 1580 // Delete the instructions backwards, as it has a reduced likelihood of 1581 // having to update as many def-use and use-def chains. 1582 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); 1583 I != E; ++I) 1584 Insts.push_back(I); 1585 while (!Insts.empty()) { 1586 Instruction *I = Insts.back(); 1587 Insts.pop_back(); 1588 if (!I->use_empty()) 1589 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1590 BB->getInstList().erase(I); 1591 MadeChanges = true; 1592 ++NumInstRemoved; 1593 } 1594 } else { 1595 // Iterate over all of the instructions in a function, replacing them with 1596 // constants if we have found them to be of constant values. 1597 // 1598 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1599 Instruction *Inst = BI++; 1600 if (Inst->getType() == Type::getVoidTy(F.getContext()) || 1601 isa<TerminatorInst>(Inst)) 1602 continue; 1603 1604 LatticeVal &IV = Values[Inst]; 1605 if (!IV.isConstant() && !IV.isUndefined()) 1606 continue; 1607 1608 Constant *Const = IV.isConstant() 1609 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1610 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst); 1611 1612 // Replaces all of the uses of a variable with uses of the constant. 1613 Inst->replaceAllUsesWith(Const); 1614 1615 // Delete the instruction. 1616 Inst->eraseFromParent(); 1617 1618 // Hey, we just changed something! 1619 MadeChanges = true; 1620 ++NumInstRemoved; 1621 } 1622 } 1623 1624 return MadeChanges; 1625} 1626 1627namespace { 1628 //===--------------------------------------------------------------------===// 1629 // 1630 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1631 /// Constant Propagation. 1632 /// 1633 struct IPSCCP : public ModulePass { 1634 static char ID; 1635 IPSCCP() : ModulePass(&ID) {} 1636 bool runOnModule(Module &M); 1637 }; 1638} // end anonymous namespace 1639 1640char IPSCCP::ID = 0; 1641static RegisterPass<IPSCCP> 1642Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); 1643 1644// createIPSCCPPass - This is the public interface to this file... 1645ModulePass *llvm::createIPSCCPPass() { 1646 return new IPSCCP(); 1647} 1648 1649 1650static bool AddressIsTaken(GlobalValue *GV) { 1651 // Delete any dead constantexpr klingons. 1652 GV->removeDeadConstantUsers(); 1653 1654 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 1655 UI != E; ++UI) 1656 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 1657 if (SI->getOperand(0) == GV || SI->isVolatile()) 1658 return true; // Storing addr of GV. 1659 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { 1660 // Make sure we are calling the function, not passing the address. 1661 CallSite CS = CallSite::get(cast<Instruction>(*UI)); 1662 if (CS.hasArgument(GV)) 1663 return true; 1664 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1665 if (LI->isVolatile()) 1666 return true; 1667 } else { 1668 return true; 1669 } 1670 return false; 1671} 1672 1673bool IPSCCP::runOnModule(Module &M) { 1674 LLVMContext *Context = &M.getContext(); 1675 1676 SCCPSolver Solver; 1677 Solver.setContext(Context); 1678 1679 // Loop over all functions, marking arguments to those with their addresses 1680 // taken or that are external as overdefined. 1681 // 1682 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1683 if (!F->hasLocalLinkage() || AddressIsTaken(F)) { 1684 if (!F->isDeclaration()) 1685 Solver.MarkBlockExecutable(F->begin()); 1686 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1687 AI != E; ++AI) 1688 Solver.markOverdefined(AI); 1689 } else { 1690 Solver.AddTrackedFunction(F); 1691 } 1692 1693 // Loop over global variables. We inform the solver about any internal global 1694 // variables that do not have their 'addresses taken'. If they don't have 1695 // their addresses taken, we can propagate constants through them. 1696 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1697 G != E; ++G) 1698 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) 1699 Solver.TrackValueOfGlobalVariable(G); 1700 1701 // Solve for constants. 1702 bool ResolvedUndefs = true; 1703 while (ResolvedUndefs) { 1704 Solver.Solve(); 1705 1706 DEBUG(errs() << "RESOLVING UNDEFS\n"); 1707 ResolvedUndefs = false; 1708 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1709 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1710 } 1711 1712 bool MadeChanges = false; 1713 1714 // Iterate over all of the instructions in the module, replacing them with 1715 // constants if we have found them to be of constant values. 1716 // 1717 SmallVector<Instruction*, 512> Insts; 1718 SmallVector<BasicBlock*, 512> BlocksToErase; 1719 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1720 1721 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1722 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1723 AI != E; ++AI) 1724 if (!AI->use_empty()) { 1725 LatticeVal &IV = Values[AI]; 1726 if (IV.isConstant() || IV.isUndefined()) { 1727 Constant *CST = IV.isConstant() ? 1728 IV.getConstant() : UndefValue::get(AI->getType()); 1729 DEBUG(errs() << "*** Arg " << *AI << " = " << *CST <<"\n"); 1730 1731 // Replaces all of the uses of a variable with uses of the 1732 // constant. 1733 AI->replaceAllUsesWith(CST); 1734 ++IPNumArgsElimed; 1735 } 1736 } 1737 1738 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1739 if (!Solver.isBlockExecutable(BB)) { 1740 DEBUG(errs() << " BasicBlock Dead:" << *BB); 1741 ++IPNumDeadBlocks; 1742 1743 // Delete the instructions backwards, as it has a reduced likelihood of 1744 // having to update as many def-use and use-def chains. 1745 TerminatorInst *TI = BB->getTerminator(); 1746 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) 1747 Insts.push_back(I); 1748 1749 while (!Insts.empty()) { 1750 Instruction *I = Insts.back(); 1751 Insts.pop_back(); 1752 if (!I->use_empty()) 1753 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1754 BB->getInstList().erase(I); 1755 MadeChanges = true; 1756 ++IPNumInstRemoved; 1757 } 1758 1759 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1760 BasicBlock *Succ = TI->getSuccessor(i); 1761 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1762 TI->getSuccessor(i)->removePredecessor(BB); 1763 } 1764 if (!TI->use_empty()) 1765 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1766 BB->getInstList().erase(TI); 1767 1768 if (&*BB != &F->front()) 1769 BlocksToErase.push_back(BB); 1770 else 1771 new UnreachableInst(M.getContext(), BB); 1772 1773 } else { 1774 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1775 Instruction *Inst = BI++; 1776 if (Inst->getType() == Type::getVoidTy(M.getContext())) 1777 continue; 1778 1779 LatticeVal &IV = Values[Inst]; 1780 if (!IV.isConstant() && !IV.isUndefined()) 1781 continue; 1782 1783 Constant *Const = IV.isConstant() 1784 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1785 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst); 1786 1787 // Replaces all of the uses of a variable with uses of the 1788 // constant. 1789 Inst->replaceAllUsesWith(Const); 1790 1791 // Delete the instruction. 1792 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1793 Inst->eraseFromParent(); 1794 1795 // Hey, we just changed something! 1796 MadeChanges = true; 1797 ++IPNumInstRemoved; 1798 } 1799 } 1800 1801 // Now that all instructions in the function are constant folded, erase dead 1802 // blocks, because we can now use ConstantFoldTerminator to get rid of 1803 // in-edges. 1804 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1805 // If there are any PHI nodes in this successor, drop entries for BB now. 1806 BasicBlock *DeadBB = BlocksToErase[i]; 1807 while (!DeadBB->use_empty()) { 1808 Instruction *I = cast<Instruction>(DeadBB->use_back()); 1809 bool Folded = ConstantFoldTerminator(I->getParent()); 1810 if (!Folded) { 1811 // The constant folder may not have been able to fold the terminator 1812 // if this is a branch or switch on undef. Fold it manually as a 1813 // branch to the first successor. 1814#ifndef NDEBUG 1815 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1816 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1817 "Branch should be foldable!"); 1818 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1819 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1820 } else { 1821 llvm_unreachable("Didn't fold away reference to block!"); 1822 } 1823#endif 1824 1825 // Make this an uncond branch to the first successor. 1826 TerminatorInst *TI = I->getParent()->getTerminator(); 1827 BranchInst::Create(TI->getSuccessor(0), TI); 1828 1829 // Remove entries in successor phi nodes to remove edges. 1830 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1831 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1832 1833 // Remove the old terminator. 1834 TI->eraseFromParent(); 1835 } 1836 } 1837 1838 // Finally, delete the basic block. 1839 F->getBasicBlockList().erase(DeadBB); 1840 } 1841 BlocksToErase.clear(); 1842 } 1843 1844 // If we inferred constant or undef return values for a function, we replaced 1845 // all call uses with the inferred value. This means we don't need to bother 1846 // actually returning anything from the function. Replace all return 1847 // instructions with return undef. 1848 // TODO: Process multiple value ret instructions also. 1849 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1850 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1851 E = RV.end(); I != E; ++I) 1852 if (!I->second.isOverdefined() && 1853 I->first->getReturnType() != Type::getVoidTy(M.getContext())) { 1854 Function *F = I->first; 1855 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1856 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1857 if (!isa<UndefValue>(RI->getOperand(0))) 1858 RI->setOperand(0, UndefValue::get(F->getReturnType())); 1859 } 1860 1861 // If we infered constant or undef values for globals variables, we can delete 1862 // the global and any stores that remain to it. 1863 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1864 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1865 E = TG.end(); I != E; ++I) { 1866 GlobalVariable *GV = I->first; 1867 assert(!I->second.isOverdefined() && 1868 "Overdefined values should have been taken out of the map!"); 1869 DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n"); 1870 while (!GV->use_empty()) { 1871 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1872 SI->eraseFromParent(); 1873 } 1874 M.getGlobalList().erase(GV); 1875 ++IPNumGlobalConst; 1876 } 1877 1878 return MadeChanges; 1879} 1880