SCCP.cpp revision c3384995258efcec26acf3a88715dc99cd871c3e
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/ConstantFolding.h"
33#include "llvm/Analysis/MallocHelper.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/DenseSet.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47#include <algorithm>
48#include <map>
49using namespace llvm;
50
51STATISTIC(NumInstRemoved, "Number of instructions removed");
52STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
53
54STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
55STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
56STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
57STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
58
59namespace {
60/// LatticeVal class - This class represents the different lattice values that
61/// an LLVM value may occupy.  It is a simple class with value semantics.
62///
63class LatticeVal {
64  enum {
65    /// undefined - This LLVM Value has no known value yet.
66    undefined,
67
68    /// constant - This LLVM Value has a specific constant value.
69    constant,
70
71    /// forcedconstant - This LLVM Value was thought to be undef until
72    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
73    /// with another (different) constant, it goes to overdefined, instead of
74    /// asserting.
75    forcedconstant,
76
77    /// overdefined - This instruction is not known to be constant, and we know
78    /// it has a value.
79    overdefined
80  } LatticeValue;    // The current lattice position
81
82  Constant *ConstantVal; // If Constant value, the current value
83public:
84  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
85
86  // markOverdefined - Return true if this is a new status to be in...
87  inline bool markOverdefined() {
88    if (LatticeValue != overdefined) {
89      LatticeValue = overdefined;
90      return true;
91    }
92    return false;
93  }
94
95  // markConstant - Return true if this is a new status for us.
96  inline bool markConstant(Constant *V) {
97    if (LatticeValue != constant) {
98      if (LatticeValue == undefined) {
99        LatticeValue = constant;
100        assert(V && "Marking constant with NULL");
101        ConstantVal = V;
102      } else {
103        assert(LatticeValue == forcedconstant &&
104               "Cannot move from overdefined to constant!");
105        // Stay at forcedconstant if the constant is the same.
106        if (V == ConstantVal) return false;
107
108        // Otherwise, we go to overdefined.  Assumptions made based on the
109        // forced value are possibly wrong.  Assuming this is another constant
110        // could expose a contradiction.
111        LatticeValue = overdefined;
112      }
113      return true;
114    } else {
115      assert(ConstantVal == V && "Marking constant with different value");
116    }
117    return false;
118  }
119
120  inline void markForcedConstant(Constant *V) {
121    assert(LatticeValue == undefined && "Can't force a defined value!");
122    LatticeValue = forcedconstant;
123    ConstantVal = V;
124  }
125
126  inline bool isUndefined() const { return LatticeValue == undefined; }
127  inline bool isConstant() const {
128    return LatticeValue == constant || LatticeValue == forcedconstant;
129  }
130  inline bool isOverdefined() const { return LatticeValue == overdefined; }
131
132  inline Constant *getConstant() const {
133    assert(isConstant() && "Cannot get the constant of a non-constant!");
134    return ConstantVal;
135  }
136};
137
138//===----------------------------------------------------------------------===//
139//
140/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
141/// Constant Propagation.
142///
143class SCCPSolver : public InstVisitor<SCCPSolver> {
144  LLVMContext *Context;
145  DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
146  std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
147
148  /// GlobalValue - If we are tracking any values for the contents of a global
149  /// variable, we keep a mapping from the constant accessor to the element of
150  /// the global, to the currently known value.  If the value becomes
151  /// overdefined, it's entry is simply removed from this map.
152  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
153
154  /// TrackedRetVals - If we are tracking arguments into and the return
155  /// value out of a function, it will have an entry in this map, indicating
156  /// what the known return value for the function is.
157  DenseMap<Function*, LatticeVal> TrackedRetVals;
158
159  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
160  /// that return multiple values.
161  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
162
163  // The reason for two worklists is that overdefined is the lowest state
164  // on the lattice, and moving things to overdefined as fast as possible
165  // makes SCCP converge much faster.
166  // By having a separate worklist, we accomplish this because everything
167  // possibly overdefined will become overdefined at the soonest possible
168  // point.
169  SmallVector<Value*, 64> OverdefinedInstWorkList;
170  SmallVector<Value*, 64> InstWorkList;
171
172
173  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
174
175  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
176  /// overdefined, despite the fact that the PHI node is overdefined.
177  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
178
179  /// KnownFeasibleEdges - Entries in this set are edges which have already had
180  /// PHI nodes retriggered.
181  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
182  DenseSet<Edge> KnownFeasibleEdges;
183public:
184  void setContext(LLVMContext *C) { Context = C; }
185
186  /// MarkBlockExecutable - This method can be used by clients to mark all of
187  /// the blocks that are known to be intrinsically live in the processed unit.
188  void MarkBlockExecutable(BasicBlock *BB) {
189    DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
190    BBExecutable.insert(BB);   // Basic block is executable!
191    BBWorkList.push_back(BB);  // Add the block to the work list!
192  }
193
194  /// TrackValueOfGlobalVariable - Clients can use this method to
195  /// inform the SCCPSolver that it should track loads and stores to the
196  /// specified global variable if it can.  This is only legal to call if
197  /// performing Interprocedural SCCP.
198  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
199    const Type *ElTy = GV->getType()->getElementType();
200    if (ElTy->isFirstClassType()) {
201      LatticeVal &IV = TrackedGlobals[GV];
202      if (!isa<UndefValue>(GV->getInitializer()))
203        IV.markConstant(GV->getInitializer());
204    }
205  }
206
207  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
208  /// and out of the specified function (which cannot have its address taken),
209  /// this method must be called.
210  void AddTrackedFunction(Function *F) {
211    assert(F->hasLocalLinkage() && "Can only track internal functions!");
212    // Add an entry, F -> undef.
213    if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
214      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
215        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
216                                                     LatticeVal()));
217    } else
218      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
219  }
220
221  /// Solve - Solve for constants and executable blocks.
222  ///
223  void Solve();
224
225  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
226  /// that branches on undef values cannot reach any of their successors.
227  /// However, this is not a safe assumption.  After we solve dataflow, this
228  /// method should be use to handle this.  If this returns true, the solver
229  /// should be rerun.
230  bool ResolvedUndefsIn(Function &F);
231
232  bool isBlockExecutable(BasicBlock *BB) const {
233    return BBExecutable.count(BB);
234  }
235
236  /// getValueMapping - Once we have solved for constants, return the mapping of
237  /// LLVM values to LatticeVals.
238  std::map<Value*, LatticeVal> &getValueMapping() {
239    return ValueState;
240  }
241
242  /// getTrackedRetVals - Get the inferred return value map.
243  ///
244  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
245    return TrackedRetVals;
246  }
247
248  /// getTrackedGlobals - Get and return the set of inferred initializers for
249  /// global variables.
250  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
251    return TrackedGlobals;
252  }
253
254  inline void markOverdefined(Value *V) {
255    markOverdefined(ValueState[V], V);
256  }
257
258private:
259  // markConstant - Make a value be marked as "constant".  If the value
260  // is not already a constant, add it to the instruction work list so that
261  // the users of the instruction are updated later.
262  //
263  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
264    if (IV.markConstant(C)) {
265      DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n');
266      InstWorkList.push_back(V);
267    }
268  }
269
270  inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
271    IV.markForcedConstant(C);
272    DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n');
273    InstWorkList.push_back(V);
274  }
275
276  inline void markConstant(Value *V, Constant *C) {
277    markConstant(ValueState[V], V, C);
278  }
279
280  // markOverdefined - Make a value be marked as "overdefined". If the
281  // value is not already overdefined, add it to the overdefined instruction
282  // work list so that the users of the instruction are updated later.
283  inline void markOverdefined(LatticeVal &IV, Value *V) {
284    if (IV.markOverdefined()) {
285      DEBUG(errs() << "markOverdefined: ";
286            if (Function *F = dyn_cast<Function>(V))
287              errs() << "Function '" << F->getName() << "'\n";
288            else
289              errs() << *V << '\n');
290      // Only instructions go on the work list
291      OverdefinedInstWorkList.push_back(V);
292    }
293  }
294
295  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
296    if (IV.isOverdefined() || MergeWithV.isUndefined())
297      return;  // Noop.
298    if (MergeWithV.isOverdefined())
299      markOverdefined(IV, V);
300    else if (IV.isUndefined())
301      markConstant(IV, V, MergeWithV.getConstant());
302    else if (IV.getConstant() != MergeWithV.getConstant())
303      markOverdefined(IV, V);
304  }
305
306  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
307    return mergeInValue(ValueState[V], V, MergeWithV);
308  }
309
310
311  // getValueState - Return the LatticeVal object that corresponds to the value.
312  // This function is necessary because not all values should start out in the
313  // underdefined state... Argument's should be overdefined, and
314  // constants should be marked as constants.  If a value is not known to be an
315  // Instruction object, then use this accessor to get its value from the map.
316  //
317  inline LatticeVal &getValueState(Value *V) {
318    std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
319    if (I != ValueState.end()) return I->second;  // Common case, in the map
320
321    if (Constant *C = dyn_cast<Constant>(V)) {
322      if (isa<UndefValue>(V)) {
323        // Nothing to do, remain undefined.
324      } else {
325        LatticeVal &LV = ValueState[C];
326        LV.markConstant(C);          // Constants are constant
327        return LV;
328      }
329    }
330    // All others are underdefined by default...
331    return ValueState[V];
332  }
333
334  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
335  // work list if it is not already executable...
336  //
337  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
338    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
339      return;  // This edge is already known to be executable!
340
341    if (BBExecutable.count(Dest)) {
342      DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
343            << " -> " << Dest->getName() << "\n");
344
345      // The destination is already executable, but we just made an edge
346      // feasible that wasn't before.  Revisit the PHI nodes in the block
347      // because they have potentially new operands.
348      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
349        visitPHINode(*cast<PHINode>(I));
350
351    } else {
352      MarkBlockExecutable(Dest);
353    }
354  }
355
356  // getFeasibleSuccessors - Return a vector of booleans to indicate which
357  // successors are reachable from a given terminator instruction.
358  //
359  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
360
361  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
362  // block to the 'To' basic block is currently feasible...
363  //
364  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
365
366  // OperandChangedState - This method is invoked on all of the users of an
367  // instruction that was just changed state somehow....  Based on this
368  // information, we need to update the specified user of this instruction.
369  //
370  void OperandChangedState(User *U) {
371    // Only instructions use other variable values!
372    Instruction &I = cast<Instruction>(*U);
373    if (BBExecutable.count(I.getParent()))   // Inst is executable?
374      visit(I);
375  }
376
377private:
378  friend class InstVisitor<SCCPSolver>;
379
380  // visit implementations - Something changed in this instruction... Either an
381  // operand made a transition, or the instruction is newly executable.  Change
382  // the value type of I to reflect these changes if appropriate.
383  //
384  void visitPHINode(PHINode &I);
385
386  // Terminators
387  void visitReturnInst(ReturnInst &I);
388  void visitTerminatorInst(TerminatorInst &TI);
389
390  void visitCastInst(CastInst &I);
391  void visitSelectInst(SelectInst &I);
392  void visitBinaryOperator(Instruction &I);
393  void visitCmpInst(CmpInst &I);
394  void visitExtractElementInst(ExtractElementInst &I);
395  void visitInsertElementInst(InsertElementInst &I);
396  void visitShuffleVectorInst(ShuffleVectorInst &I);
397  void visitExtractValueInst(ExtractValueInst &EVI);
398  void visitInsertValueInst(InsertValueInst &IVI);
399
400  // Instructions that cannot be folded away...
401  void visitStoreInst     (Instruction &I);
402  void visitLoadInst      (LoadInst &I);
403  void visitGetElementPtrInst(GetElementPtrInst &I);
404  void visitCallInst      (CallInst &I) {
405    if (isMalloc(&I))
406      markOverdefined(&I);
407    else
408      visitCallSite(CallSite::get(&I));
409  }
410  void visitInvokeInst    (InvokeInst &II) {
411    visitCallSite(CallSite::get(&II));
412    visitTerminatorInst(II);
413  }
414  void visitCallSite      (CallSite CS);
415  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
416  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
417  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
418  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
419  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
420  void visitFreeInst      (Instruction &I) { /*returns void*/ }
421
422  void visitInstruction(Instruction &I) {
423    // If a new instruction is added to LLVM that we don't handle...
424    errs() << "SCCP: Don't know how to handle: " << I;
425    markOverdefined(&I);   // Just in case
426  }
427};
428
429} // end anonymous namespace
430
431
432// getFeasibleSuccessors - Return a vector of booleans to indicate which
433// successors are reachable from a given terminator instruction.
434//
435void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
436                                       SmallVector<bool, 16> &Succs) {
437  Succs.resize(TI.getNumSuccessors());
438  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
439    if (BI->isUnconditional()) {
440      Succs[0] = true;
441    } else {
442      LatticeVal &BCValue = getValueState(BI->getCondition());
443      if (BCValue.isOverdefined() ||
444          (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
445        // Overdefined condition variables, and branches on unfoldable constant
446        // conditions, mean the branch could go either way.
447        Succs[0] = Succs[1] = true;
448      } else if (BCValue.isConstant()) {
449        // Constant condition variables mean the branch can only go a single way
450        Succs[BCValue.getConstant() == ConstantInt::getFalse(*Context)] = true;
451      }
452    }
453  } else if (isa<InvokeInst>(&TI)) {
454    // Invoke instructions successors are always executable.
455    Succs[0] = Succs[1] = true;
456  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
457    LatticeVal &SCValue = getValueState(SI->getCondition());
458    if (SCValue.isOverdefined() ||   // Overdefined condition?
459        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
460      // All destinations are executable!
461      Succs.assign(TI.getNumSuccessors(), true);
462    } else if (SCValue.isConstant())
463      Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
464  } else {
465    llvm_unreachable("SCCP: Don't know how to handle this terminator!");
466  }
467}
468
469
470// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
471// block to the 'To' basic block is currently feasible...
472//
473bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
474  assert(BBExecutable.count(To) && "Dest should always be alive!");
475
476  // Make sure the source basic block is executable!!
477  if (!BBExecutable.count(From)) return false;
478
479  // Check to make sure this edge itself is actually feasible now...
480  TerminatorInst *TI = From->getTerminator();
481  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
482    if (BI->isUnconditional())
483      return true;
484    else {
485      LatticeVal &BCValue = getValueState(BI->getCondition());
486      if (BCValue.isOverdefined()) {
487        // Overdefined condition variables mean the branch could go either way.
488        return true;
489      } else if (BCValue.isConstant()) {
490        // Not branching on an evaluatable constant?
491        if (!isa<ConstantInt>(BCValue.getConstant())) return true;
492
493        // Constant condition variables mean the branch can only go a single way
494        return BI->getSuccessor(BCValue.getConstant() ==
495                                       ConstantInt::getFalse(*Context)) == To;
496      }
497      return false;
498    }
499  } else if (isa<InvokeInst>(TI)) {
500    // Invoke instructions successors are always executable.
501    return true;
502  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
503    LatticeVal &SCValue = getValueState(SI->getCondition());
504    if (SCValue.isOverdefined()) {  // Overdefined condition?
505      // All destinations are executable!
506      return true;
507    } else if (SCValue.isConstant()) {
508      Constant *CPV = SCValue.getConstant();
509      if (!isa<ConstantInt>(CPV))
510        return true;  // not a foldable constant?
511
512      // Make sure to skip the "default value" which isn't a value
513      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
514        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
515          return SI->getSuccessor(i) == To;
516
517      // Constant value not equal to any of the branches... must execute
518      // default branch then...
519      return SI->getDefaultDest() == To;
520    }
521    return false;
522  } else {
523#ifndef NDEBUG
524    errs() << "Unknown terminator instruction: " << *TI << '\n';
525#endif
526    llvm_unreachable(0);
527  }
528}
529
530// visit Implementations - Something changed in this instruction... Either an
531// operand made a transition, or the instruction is newly executable.  Change
532// the value type of I to reflect these changes if appropriate.  This method
533// makes sure to do the following actions:
534//
535// 1. If a phi node merges two constants in, and has conflicting value coming
536//    from different branches, or if the PHI node merges in an overdefined
537//    value, then the PHI node becomes overdefined.
538// 2. If a phi node merges only constants in, and they all agree on value, the
539//    PHI node becomes a constant value equal to that.
540// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
541// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
542// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
543// 6. If a conditional branch has a value that is constant, make the selected
544//    destination executable
545// 7. If a conditional branch has a value that is overdefined, make all
546//    successors executable.
547//
548void SCCPSolver::visitPHINode(PHINode &PN) {
549  LatticeVal &PNIV = getValueState(&PN);
550  if (PNIV.isOverdefined()) {
551    // There may be instructions using this PHI node that are not overdefined
552    // themselves.  If so, make sure that they know that the PHI node operand
553    // changed.
554    std::multimap<PHINode*, Instruction*>::iterator I, E;
555    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
556    if (I != E) {
557      SmallVector<Instruction*, 16> Users;
558      for (; I != E; ++I) Users.push_back(I->second);
559      while (!Users.empty()) {
560        visit(Users.back());
561        Users.pop_back();
562      }
563    }
564    return;  // Quick exit
565  }
566
567  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
568  // and slow us down a lot.  Just mark them overdefined.
569  if (PN.getNumIncomingValues() > 64) {
570    markOverdefined(PNIV, &PN);
571    return;
572  }
573
574  // Look at all of the executable operands of the PHI node.  If any of them
575  // are overdefined, the PHI becomes overdefined as well.  If they are all
576  // constant, and they agree with each other, the PHI becomes the identical
577  // constant.  If they are constant and don't agree, the PHI is overdefined.
578  // If there are no executable operands, the PHI remains undefined.
579  //
580  Constant *OperandVal = 0;
581  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
582    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
583    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
584
585    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
586      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
587        markOverdefined(&PN);
588        return;
589      }
590
591      if (OperandVal == 0) {   // Grab the first value...
592        OperandVal = IV.getConstant();
593      } else {                // Another value is being merged in!
594        // There is already a reachable operand.  If we conflict with it,
595        // then the PHI node becomes overdefined.  If we agree with it, we
596        // can continue on.
597
598        // Check to see if there are two different constants merging...
599        if (IV.getConstant() != OperandVal) {
600          // Yes there is.  This means the PHI node is not constant.
601          // You must be overdefined poor PHI.
602          //
603          markOverdefined(&PN);    // The PHI node now becomes overdefined
604          return;    // I'm done analyzing you
605        }
606      }
607    }
608  }
609
610  // If we exited the loop, this means that the PHI node only has constant
611  // arguments that agree with each other(and OperandVal is the constant) or
612  // OperandVal is null because there are no defined incoming arguments.  If
613  // this is the case, the PHI remains undefined.
614  //
615  if (OperandVal)
616    markConstant(&PN, OperandVal);      // Acquire operand value
617}
618
619void SCCPSolver::visitReturnInst(ReturnInst &I) {
620  if (I.getNumOperands() == 0) return;  // Ret void
621
622  Function *F = I.getParent()->getParent();
623  // If we are tracking the return value of this function, merge it in.
624  if (!F->hasLocalLinkage())
625    return;
626
627  if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
628    DenseMap<Function*, LatticeVal>::iterator TFRVI =
629      TrackedRetVals.find(F);
630    if (TFRVI != TrackedRetVals.end() &&
631        !TFRVI->second.isOverdefined()) {
632      LatticeVal &IV = getValueState(I.getOperand(0));
633      mergeInValue(TFRVI->second, F, IV);
634      return;
635    }
636  }
637
638  // Handle functions that return multiple values.
639  if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
640    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
641      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
642        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
643      if (It == TrackedMultipleRetVals.end()) break;
644      mergeInValue(It->second, F, getValueState(I.getOperand(i)));
645    }
646  } else if (!TrackedMultipleRetVals.empty() &&
647             I.getNumOperands() == 1 &&
648             isa<StructType>(I.getOperand(0)->getType())) {
649    for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
650         i != e; ++i) {
651      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
652        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
653      if (It == TrackedMultipleRetVals.end()) break;
654      if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext()))
655        mergeInValue(It->second, F, getValueState(Val));
656    }
657  }
658}
659
660void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
661  SmallVector<bool, 16> SuccFeasible;
662  getFeasibleSuccessors(TI, SuccFeasible);
663
664  BasicBlock *BB = TI.getParent();
665
666  // Mark all feasible successors executable...
667  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
668    if (SuccFeasible[i])
669      markEdgeExecutable(BB, TI.getSuccessor(i));
670}
671
672void SCCPSolver::visitCastInst(CastInst &I) {
673  Value *V = I.getOperand(0);
674  LatticeVal &VState = getValueState(V);
675  if (VState.isOverdefined())          // Inherit overdefinedness of operand
676    markOverdefined(&I);
677  else if (VState.isConstant())        // Propagate constant value
678    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
679                                           VState.getConstant(), I.getType()));
680}
681
682void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
683  Value *Aggr = EVI.getAggregateOperand();
684
685  // If the operand to the extractvalue is an undef, the result is undef.
686  if (isa<UndefValue>(Aggr))
687    return;
688
689  // Currently only handle single-index extractvalues.
690  if (EVI.getNumIndices() != 1) {
691    markOverdefined(&EVI);
692    return;
693  }
694
695  Function *F = 0;
696  if (CallInst *CI = dyn_cast<CallInst>(Aggr))
697    F = CI->getCalledFunction();
698  else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
699    F = II->getCalledFunction();
700
701  // TODO: If IPSCCP resolves the callee of this function, we could propagate a
702  // result back!
703  if (F == 0 || TrackedMultipleRetVals.empty()) {
704    markOverdefined(&EVI);
705    return;
706  }
707
708  // See if we are tracking the result of the callee.  If not tracking this
709  // function (for example, it is a declaration) just move to overdefined.
710  if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
711    markOverdefined(&EVI);
712    return;
713  }
714
715  // Otherwise, the value will be merged in here as a result of CallSite
716  // handling.
717}
718
719void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
720  Value *Aggr = IVI.getAggregateOperand();
721  Value *Val = IVI.getInsertedValueOperand();
722
723  // If the operands to the insertvalue are undef, the result is undef.
724  if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
725    return;
726
727  // Currently only handle single-index insertvalues.
728  if (IVI.getNumIndices() != 1) {
729    markOverdefined(&IVI);
730    return;
731  }
732
733  // Currently only handle insertvalue instructions that are in a single-use
734  // chain that builds up a return value.
735  for (const InsertValueInst *TmpIVI = &IVI; ; ) {
736    if (!TmpIVI->hasOneUse()) {
737      markOverdefined(&IVI);
738      return;
739    }
740    const Value *V = *TmpIVI->use_begin();
741    if (isa<ReturnInst>(V))
742      break;
743    TmpIVI = dyn_cast<InsertValueInst>(V);
744    if (!TmpIVI) {
745      markOverdefined(&IVI);
746      return;
747    }
748  }
749
750  // See if we are tracking the result of the callee.
751  Function *F = IVI.getParent()->getParent();
752  DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
753    It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
754
755  // Merge in the inserted member value.
756  if (It != TrackedMultipleRetVals.end())
757    mergeInValue(It->second, F, getValueState(Val));
758
759  // Mark the aggregate result of the IVI overdefined; any tracking that we do
760  // will be done on the individual member values.
761  markOverdefined(&IVI);
762}
763
764void SCCPSolver::visitSelectInst(SelectInst &I) {
765  LatticeVal &CondValue = getValueState(I.getCondition());
766  if (CondValue.isUndefined())
767    return;
768  if (CondValue.isConstant()) {
769    if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
770      mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
771                                                          : I.getFalseValue()));
772      return;
773    }
774  }
775
776  // Otherwise, the condition is overdefined or a constant we can't evaluate.
777  // See if we can produce something better than overdefined based on the T/F
778  // value.
779  LatticeVal &TVal = getValueState(I.getTrueValue());
780  LatticeVal &FVal = getValueState(I.getFalseValue());
781
782  // select ?, C, C -> C.
783  if (TVal.isConstant() && FVal.isConstant() &&
784      TVal.getConstant() == FVal.getConstant()) {
785    markConstant(&I, FVal.getConstant());
786    return;
787  }
788
789  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
790    mergeInValue(&I, FVal);
791  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
792    mergeInValue(&I, TVal);
793  } else {
794    markOverdefined(&I);
795  }
796}
797
798// Handle BinaryOperators and Shift Instructions...
799void SCCPSolver::visitBinaryOperator(Instruction &I) {
800  LatticeVal &IV = ValueState[&I];
801  if (IV.isOverdefined()) return;
802
803  LatticeVal &V1State = getValueState(I.getOperand(0));
804  LatticeVal &V2State = getValueState(I.getOperand(1));
805
806  if (V1State.isOverdefined() || V2State.isOverdefined()) {
807    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
808    // operand is overdefined.
809    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
810      LatticeVal *NonOverdefVal = 0;
811      if (!V1State.isOverdefined()) {
812        NonOverdefVal = &V1State;
813      } else if (!V2State.isOverdefined()) {
814        NonOverdefVal = &V2State;
815      }
816
817      if (NonOverdefVal) {
818        if (NonOverdefVal->isUndefined()) {
819          // Could annihilate value.
820          if (I.getOpcode() == Instruction::And)
821            markConstant(IV, &I, Constant::getNullValue(I.getType()));
822          else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
823            markConstant(IV, &I, Constant::getAllOnesValue(PT));
824          else
825            markConstant(IV, &I,
826                         Constant::getAllOnesValue(I.getType()));
827          return;
828        } else {
829          if (I.getOpcode() == Instruction::And) {
830            if (NonOverdefVal->getConstant()->isNullValue()) {
831              markConstant(IV, &I, NonOverdefVal->getConstant());
832              return;      // X and 0 = 0
833            }
834          } else {
835            if (ConstantInt *CI =
836                     dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
837              if (CI->isAllOnesValue()) {
838                markConstant(IV, &I, NonOverdefVal->getConstant());
839                return;    // X or -1 = -1
840              }
841          }
842        }
843      }
844    }
845
846
847    // If both operands are PHI nodes, it is possible that this instruction has
848    // a constant value, despite the fact that the PHI node doesn't.  Check for
849    // this condition now.
850    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
851      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
852        if (PN1->getParent() == PN2->getParent()) {
853          // Since the two PHI nodes are in the same basic block, they must have
854          // entries for the same predecessors.  Walk the predecessor list, and
855          // if all of the incoming values are constants, and the result of
856          // evaluating this expression with all incoming value pairs is the
857          // same, then this expression is a constant even though the PHI node
858          // is not a constant!
859          LatticeVal Result;
860          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
861            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
862            BasicBlock *InBlock = PN1->getIncomingBlock(i);
863            LatticeVal &In2 =
864              getValueState(PN2->getIncomingValueForBlock(InBlock));
865
866            if (In1.isOverdefined() || In2.isOverdefined()) {
867              Result.markOverdefined();
868              break;  // Cannot fold this operation over the PHI nodes!
869            } else if (In1.isConstant() && In2.isConstant()) {
870              Constant *V =
871                     ConstantExpr::get(I.getOpcode(), In1.getConstant(),
872                                              In2.getConstant());
873              if (Result.isUndefined())
874                Result.markConstant(V);
875              else if (Result.isConstant() && Result.getConstant() != V) {
876                Result.markOverdefined();
877                break;
878              }
879            }
880          }
881
882          // If we found a constant value here, then we know the instruction is
883          // constant despite the fact that the PHI nodes are overdefined.
884          if (Result.isConstant()) {
885            markConstant(IV, &I, Result.getConstant());
886            // Remember that this instruction is virtually using the PHI node
887            // operands.
888            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
889            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
890            return;
891          } else if (Result.isUndefined()) {
892            return;
893          }
894
895          // Okay, this really is overdefined now.  Since we might have
896          // speculatively thought that this was not overdefined before, and
897          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
898          // make sure to clean out any entries that we put there, for
899          // efficiency.
900          std::multimap<PHINode*, Instruction*>::iterator It, E;
901          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
902          while (It != E) {
903            if (It->second == &I) {
904              UsersOfOverdefinedPHIs.erase(It++);
905            } else
906              ++It;
907          }
908          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
909          while (It != E) {
910            if (It->second == &I) {
911              UsersOfOverdefinedPHIs.erase(It++);
912            } else
913              ++It;
914          }
915        }
916
917    markOverdefined(IV, &I);
918  } else if (V1State.isConstant() && V2State.isConstant()) {
919    markConstant(IV, &I,
920                ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
921                                           V2State.getConstant()));
922  }
923}
924
925// Handle ICmpInst instruction...
926void SCCPSolver::visitCmpInst(CmpInst &I) {
927  LatticeVal &IV = ValueState[&I];
928  if (IV.isOverdefined()) return;
929
930  LatticeVal &V1State = getValueState(I.getOperand(0));
931  LatticeVal &V2State = getValueState(I.getOperand(1));
932
933  if (V1State.isOverdefined() || V2State.isOverdefined()) {
934    // If both operands are PHI nodes, it is possible that this instruction has
935    // a constant value, despite the fact that the PHI node doesn't.  Check for
936    // this condition now.
937    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
938      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
939        if (PN1->getParent() == PN2->getParent()) {
940          // Since the two PHI nodes are in the same basic block, they must have
941          // entries for the same predecessors.  Walk the predecessor list, and
942          // if all of the incoming values are constants, and the result of
943          // evaluating this expression with all incoming value pairs is the
944          // same, then this expression is a constant even though the PHI node
945          // is not a constant!
946          LatticeVal Result;
947          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
948            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
949            BasicBlock *InBlock = PN1->getIncomingBlock(i);
950            LatticeVal &In2 =
951              getValueState(PN2->getIncomingValueForBlock(InBlock));
952
953            if (In1.isOverdefined() || In2.isOverdefined()) {
954              Result.markOverdefined();
955              break;  // Cannot fold this operation over the PHI nodes!
956            } else if (In1.isConstant() && In2.isConstant()) {
957              Constant *V = ConstantExpr::getCompare(I.getPredicate(),
958                                                     In1.getConstant(),
959                                                     In2.getConstant());
960              if (Result.isUndefined())
961                Result.markConstant(V);
962              else if (Result.isConstant() && Result.getConstant() != V) {
963                Result.markOverdefined();
964                break;
965              }
966            }
967          }
968
969          // If we found a constant value here, then we know the instruction is
970          // constant despite the fact that the PHI nodes are overdefined.
971          if (Result.isConstant()) {
972            markConstant(IV, &I, Result.getConstant());
973            // Remember that this instruction is virtually using the PHI node
974            // operands.
975            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
976            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
977            return;
978          } else if (Result.isUndefined()) {
979            return;
980          }
981
982          // Okay, this really is overdefined now.  Since we might have
983          // speculatively thought that this was not overdefined before, and
984          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
985          // make sure to clean out any entries that we put there, for
986          // efficiency.
987          std::multimap<PHINode*, Instruction*>::iterator It, E;
988          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
989          while (It != E) {
990            if (It->second == &I) {
991              UsersOfOverdefinedPHIs.erase(It++);
992            } else
993              ++It;
994          }
995          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
996          while (It != E) {
997            if (It->second == &I) {
998              UsersOfOverdefinedPHIs.erase(It++);
999            } else
1000              ++It;
1001          }
1002        }
1003
1004    markOverdefined(IV, &I);
1005  } else if (V1State.isConstant() && V2State.isConstant()) {
1006    markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1007                                                  V1State.getConstant(),
1008                                                  V2State.getConstant()));
1009  }
1010}
1011
1012void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1013  // FIXME : SCCP does not handle vectors properly.
1014  markOverdefined(&I);
1015  return;
1016
1017#if 0
1018  LatticeVal &ValState = getValueState(I.getOperand(0));
1019  LatticeVal &IdxState = getValueState(I.getOperand(1));
1020
1021  if (ValState.isOverdefined() || IdxState.isOverdefined())
1022    markOverdefined(&I);
1023  else if(ValState.isConstant() && IdxState.isConstant())
1024    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1025                                                     IdxState.getConstant()));
1026#endif
1027}
1028
1029void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1030  // FIXME : SCCP does not handle vectors properly.
1031  markOverdefined(&I);
1032  return;
1033#if 0
1034  LatticeVal &ValState = getValueState(I.getOperand(0));
1035  LatticeVal &EltState = getValueState(I.getOperand(1));
1036  LatticeVal &IdxState = getValueState(I.getOperand(2));
1037
1038  if (ValState.isOverdefined() || EltState.isOverdefined() ||
1039      IdxState.isOverdefined())
1040    markOverdefined(&I);
1041  else if(ValState.isConstant() && EltState.isConstant() &&
1042          IdxState.isConstant())
1043    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1044                                                    EltState.getConstant(),
1045                                                    IdxState.getConstant()));
1046  else if (ValState.isUndefined() && EltState.isConstant() &&
1047           IdxState.isConstant())
1048    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1049                                                   EltState.getConstant(),
1050                                                   IdxState.getConstant()));
1051#endif
1052}
1053
1054void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1055  // FIXME : SCCP does not handle vectors properly.
1056  markOverdefined(&I);
1057  return;
1058#if 0
1059  LatticeVal &V1State   = getValueState(I.getOperand(0));
1060  LatticeVal &V2State   = getValueState(I.getOperand(1));
1061  LatticeVal &MaskState = getValueState(I.getOperand(2));
1062
1063  if (MaskState.isUndefined() ||
1064      (V1State.isUndefined() && V2State.isUndefined()))
1065    return;  // Undefined output if mask or both inputs undefined.
1066
1067  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1068      MaskState.isOverdefined()) {
1069    markOverdefined(&I);
1070  } else {
1071    // A mix of constant/undef inputs.
1072    Constant *V1 = V1State.isConstant() ?
1073        V1State.getConstant() : UndefValue::get(I.getType());
1074    Constant *V2 = V2State.isConstant() ?
1075        V2State.getConstant() : UndefValue::get(I.getType());
1076    Constant *Mask = MaskState.isConstant() ?
1077      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1078    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1079  }
1080#endif
1081}
1082
1083// Handle getelementptr instructions... if all operands are constants then we
1084// can turn this into a getelementptr ConstantExpr.
1085//
1086void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1087  LatticeVal &IV = ValueState[&I];
1088  if (IV.isOverdefined()) return;
1089
1090  SmallVector<Constant*, 8> Operands;
1091  Operands.reserve(I.getNumOperands());
1092
1093  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1094    LatticeVal &State = getValueState(I.getOperand(i));
1095    if (State.isUndefined())
1096      return;  // Operands are not resolved yet...
1097    else if (State.isOverdefined()) {
1098      markOverdefined(IV, &I);
1099      return;
1100    }
1101    assert(State.isConstant() && "Unknown state!");
1102    Operands.push_back(State.getConstant());
1103  }
1104
1105  Constant *Ptr = Operands[0];
1106  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
1107
1108  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
1109                                                      Operands.size()));
1110}
1111
1112void SCCPSolver::visitStoreInst(Instruction &SI) {
1113  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1114    return;
1115  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1116  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1117  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1118
1119  // Get the value we are storing into the global.
1120  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1121
1122  mergeInValue(I->second, GV, PtrVal);
1123  if (I->second.isOverdefined())
1124    TrackedGlobals.erase(I);      // No need to keep tracking this!
1125}
1126
1127
1128// Handle load instructions.  If the operand is a constant pointer to a constant
1129// global, we can replace the load with the loaded constant value!
1130void SCCPSolver::visitLoadInst(LoadInst &I) {
1131  LatticeVal &IV = ValueState[&I];
1132  if (IV.isOverdefined()) return;
1133
1134  LatticeVal &PtrVal = getValueState(I.getOperand(0));
1135  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1136  if (PtrVal.isConstant() && !I.isVolatile()) {
1137    Value *Ptr = PtrVal.getConstant();
1138    // TODO: Consider a target hook for valid address spaces for this xform.
1139    if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) {
1140      // load null -> null
1141      markConstant(IV, &I, Constant::getNullValue(I.getType()));
1142      return;
1143    }
1144
1145    // Transform load (constant global) into the value loaded.
1146    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1147      if (GV->isConstant()) {
1148        if (GV->hasDefinitiveInitializer()) {
1149          markConstant(IV, &I, GV->getInitializer());
1150          return;
1151        }
1152      } else if (!TrackedGlobals.empty()) {
1153        // If we are tracking this global, merge in the known value for it.
1154        DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1155          TrackedGlobals.find(GV);
1156        if (It != TrackedGlobals.end()) {
1157          mergeInValue(IV, &I, It->second);
1158          return;
1159        }
1160      }
1161    }
1162
1163    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1164    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1165      if (CE->getOpcode() == Instruction::GetElementPtr)
1166    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1167      if (GV->isConstant() && GV->hasDefinitiveInitializer())
1168        if (Constant *V =
1169             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
1170                                                    *Context)) {
1171          markConstant(IV, &I, V);
1172          return;
1173        }
1174  }
1175
1176  // Otherwise we cannot say for certain what value this load will produce.
1177  // Bail out.
1178  markOverdefined(IV, &I);
1179}
1180
1181void SCCPSolver::visitCallSite(CallSite CS) {
1182  Function *F = CS.getCalledFunction();
1183  Instruction *I = CS.getInstruction();
1184
1185  // The common case is that we aren't tracking the callee, either because we
1186  // are not doing interprocedural analysis or the callee is indirect, or is
1187  // external.  Handle these cases first.
1188  if (F == 0 || !F->hasLocalLinkage()) {
1189CallOverdefined:
1190    // Void return and not tracking callee, just bail.
1191    if (I->getType() == Type::getVoidTy(I->getContext())) return;
1192
1193    // Otherwise, if we have a single return value case, and if the function is
1194    // a declaration, maybe we can constant fold it.
1195    if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1196        canConstantFoldCallTo(F)) {
1197
1198      SmallVector<Constant*, 8> Operands;
1199      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1200           AI != E; ++AI) {
1201        LatticeVal &State = getValueState(*AI);
1202        if (State.isUndefined())
1203          return;  // Operands are not resolved yet.
1204        else if (State.isOverdefined()) {
1205          markOverdefined(I);
1206          return;
1207        }
1208        assert(State.isConstant() && "Unknown state!");
1209        Operands.push_back(State.getConstant());
1210      }
1211
1212      // If we can constant fold this, mark the result of the call as a
1213      // constant.
1214      if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) {
1215        markConstant(I, C);
1216        return;
1217      }
1218    }
1219
1220    // Otherwise, we don't know anything about this call, mark it overdefined.
1221    markOverdefined(I);
1222    return;
1223  }
1224
1225  // If this is a single/zero retval case, see if we're tracking the function.
1226  DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1227  if (TFRVI != TrackedRetVals.end()) {
1228    // If so, propagate the return value of the callee into this call result.
1229    mergeInValue(I, TFRVI->second);
1230  } else if (isa<StructType>(I->getType())) {
1231    // Check to see if we're tracking this callee, if not, handle it in the
1232    // common path above.
1233    DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1234    TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1235    if (TMRVI == TrackedMultipleRetVals.end())
1236      goto CallOverdefined;
1237
1238    // If we are tracking this callee, propagate the return values of the call
1239    // into this call site.  We do this by walking all the uses. Single-index
1240    // ExtractValueInst uses can be tracked; anything more complicated is
1241    // currently handled conservatively.
1242    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1243         UI != E; ++UI) {
1244      if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1245        if (EVI->getNumIndices() == 1) {
1246          mergeInValue(EVI,
1247                  TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1248          continue;
1249        }
1250      }
1251      // The aggregate value is used in a way not handled here. Assume nothing.
1252      markOverdefined(*UI);
1253    }
1254  } else {
1255    // Otherwise we're not tracking this callee, so handle it in the
1256    // common path above.
1257    goto CallOverdefined;
1258  }
1259
1260  // Finally, if this is the first call to the function hit, mark its entry
1261  // block executable.
1262  if (!BBExecutable.count(F->begin()))
1263    MarkBlockExecutable(F->begin());
1264
1265  // Propagate information from this call site into the callee.
1266  CallSite::arg_iterator CAI = CS.arg_begin();
1267  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1268       AI != E; ++AI, ++CAI) {
1269    LatticeVal &IV = ValueState[AI];
1270    if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1271      IV.markOverdefined();
1272      continue;
1273    }
1274    if (!IV.isOverdefined())
1275      mergeInValue(IV, AI, getValueState(*CAI));
1276  }
1277}
1278
1279
1280void SCCPSolver::Solve() {
1281  // Process the work lists until they are empty!
1282  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1283         !OverdefinedInstWorkList.empty()) {
1284    // Process the instruction work list...
1285    while (!OverdefinedInstWorkList.empty()) {
1286      Value *I = OverdefinedInstWorkList.back();
1287      OverdefinedInstWorkList.pop_back();
1288
1289      DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n');
1290
1291      // "I" got into the work list because it either made the transition from
1292      // bottom to constant
1293      //
1294      // Anything on this worklist that is overdefined need not be visited
1295      // since all of its users will have already been marked as overdefined
1296      // Update all of the users of this instruction's value...
1297      //
1298      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1299           UI != E; ++UI)
1300        OperandChangedState(*UI);
1301    }
1302    // Process the instruction work list...
1303    while (!InstWorkList.empty()) {
1304      Value *I = InstWorkList.back();
1305      InstWorkList.pop_back();
1306
1307      DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n');
1308
1309      // "I" got into the work list because it either made the transition from
1310      // bottom to constant
1311      //
1312      // Anything on this worklist that is overdefined need not be visited
1313      // since all of its users will have already been marked as overdefined.
1314      // Update all of the users of this instruction's value...
1315      //
1316      if (!getValueState(I).isOverdefined())
1317        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1318             UI != E; ++UI)
1319          OperandChangedState(*UI);
1320    }
1321
1322    // Process the basic block work list...
1323    while (!BBWorkList.empty()) {
1324      BasicBlock *BB = BBWorkList.back();
1325      BBWorkList.pop_back();
1326
1327      DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n');
1328
1329      // Notify all instructions in this basic block that they are newly
1330      // executable.
1331      visit(BB);
1332    }
1333  }
1334}
1335
1336/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1337/// that branches on undef values cannot reach any of their successors.
1338/// However, this is not a safe assumption.  After we solve dataflow, this
1339/// method should be use to handle this.  If this returns true, the solver
1340/// should be rerun.
1341///
1342/// This method handles this by finding an unresolved branch and marking it one
1343/// of the edges from the block as being feasible, even though the condition
1344/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1345/// CFG and only slightly pessimizes the analysis results (by marking one,
1346/// potentially infeasible, edge feasible).  This cannot usefully modify the
1347/// constraints on the condition of the branch, as that would impact other users
1348/// of the value.
1349///
1350/// This scan also checks for values that use undefs, whose results are actually
1351/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1352/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1353/// even if X isn't defined.
1354bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1355  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1356    if (!BBExecutable.count(BB))
1357      continue;
1358
1359    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1360      // Look for instructions which produce undef values.
1361      if (I->getType() == Type::getVoidTy(F.getContext())) continue;
1362
1363      LatticeVal &LV = getValueState(I);
1364      if (!LV.isUndefined()) continue;
1365
1366      // Get the lattice values of the first two operands for use below.
1367      LatticeVal &Op0LV = getValueState(I->getOperand(0));
1368      LatticeVal Op1LV;
1369      if (I->getNumOperands() == 2) {
1370        // If this is a two-operand instruction, and if both operands are
1371        // undefs, the result stays undef.
1372        Op1LV = getValueState(I->getOperand(1));
1373        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1374          continue;
1375      }
1376
1377      // If this is an instructions whose result is defined even if the input is
1378      // not fully defined, propagate the information.
1379      const Type *ITy = I->getType();
1380      switch (I->getOpcode()) {
1381      default: break;          // Leave the instruction as an undef.
1382      case Instruction::ZExt:
1383        // After a zero extend, we know the top part is zero.  SExt doesn't have
1384        // to be handled here, because we don't know whether the top part is 1's
1385        // or 0's.
1386        assert(Op0LV.isUndefined());
1387        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1388        return true;
1389      case Instruction::Mul:
1390      case Instruction::And:
1391        // undef * X -> 0.   X could be zero.
1392        // undef & X -> 0.   X could be zero.
1393        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1394        return true;
1395
1396      case Instruction::Or:
1397        // undef | X -> -1.   X could be -1.
1398        if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1399          markForcedConstant(LV, I,
1400                             Constant::getAllOnesValue(PTy));
1401        else
1402          markForcedConstant(LV, I, Constant::getAllOnesValue(ITy));
1403        return true;
1404
1405      case Instruction::SDiv:
1406      case Instruction::UDiv:
1407      case Instruction::SRem:
1408      case Instruction::URem:
1409        // X / undef -> undef.  No change.
1410        // X % undef -> undef.  No change.
1411        if (Op1LV.isUndefined()) break;
1412
1413        // undef / X -> 0.   X could be maxint.
1414        // undef % X -> 0.   X could be 1.
1415        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1416        return true;
1417
1418      case Instruction::AShr:
1419        // undef >>s X -> undef.  No change.
1420        if (Op0LV.isUndefined()) break;
1421
1422        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1423        if (Op0LV.isConstant())
1424          markForcedConstant(LV, I, Op0LV.getConstant());
1425        else
1426          markOverdefined(LV, I);
1427        return true;
1428      case Instruction::LShr:
1429      case Instruction::Shl:
1430        // undef >> X -> undef.  No change.
1431        // undef << X -> undef.  No change.
1432        if (Op0LV.isUndefined()) break;
1433
1434        // X >> undef -> 0.  X could be 0.
1435        // X << undef -> 0.  X could be 0.
1436        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1437        return true;
1438      case Instruction::Select:
1439        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1440        if (Op0LV.isUndefined()) {
1441          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1442            Op1LV = getValueState(I->getOperand(2));
1443        } else if (Op1LV.isUndefined()) {
1444          // c ? undef : undef -> undef.  No change.
1445          Op1LV = getValueState(I->getOperand(2));
1446          if (Op1LV.isUndefined())
1447            break;
1448          // Otherwise, c ? undef : x -> x.
1449        } else {
1450          // Leave Op1LV as Operand(1)'s LatticeValue.
1451        }
1452
1453        if (Op1LV.isConstant())
1454          markForcedConstant(LV, I, Op1LV.getConstant());
1455        else
1456          markOverdefined(LV, I);
1457        return true;
1458      case Instruction::Call:
1459        // If a call has an undef result, it is because it is constant foldable
1460        // but one of the inputs was undef.  Just force the result to
1461        // overdefined.
1462        markOverdefined(LV, I);
1463        return true;
1464      }
1465    }
1466
1467    TerminatorInst *TI = BB->getTerminator();
1468    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1469      if (!BI->isConditional()) continue;
1470      if (!getValueState(BI->getCondition()).isUndefined())
1471        continue;
1472    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1473      if (SI->getNumSuccessors()<2)   // no cases
1474        continue;
1475      if (!getValueState(SI->getCondition()).isUndefined())
1476        continue;
1477    } else {
1478      continue;
1479    }
1480
1481    // If the edge to the second successor isn't thought to be feasible yet,
1482    // mark it so now.  We pick the second one so that this goes to some
1483    // enumerated value in a switch instead of going to the default destination.
1484    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1485      continue;
1486
1487    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1488    // and return.  This will make other blocks reachable, which will allow new
1489    // values to be discovered and existing ones to be moved in the lattice.
1490    markEdgeExecutable(BB, TI->getSuccessor(1));
1491
1492    // This must be a conditional branch of switch on undef.  At this point,
1493    // force the old terminator to branch to the first successor.  This is
1494    // required because we are now influencing the dataflow of the function with
1495    // the assumption that this edge is taken.  If we leave the branch condition
1496    // as undef, then further analysis could think the undef went another way
1497    // leading to an inconsistent set of conclusions.
1498    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1499      BI->setCondition(ConstantInt::getFalse(*Context));
1500    } else {
1501      SwitchInst *SI = cast<SwitchInst>(TI);
1502      SI->setCondition(SI->getCaseValue(1));
1503    }
1504
1505    return true;
1506  }
1507
1508  return false;
1509}
1510
1511
1512namespace {
1513  //===--------------------------------------------------------------------===//
1514  //
1515  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1516  /// Sparse Conditional Constant Propagator.
1517  ///
1518  struct SCCP : public FunctionPass {
1519    static char ID; // Pass identification, replacement for typeid
1520    SCCP() : FunctionPass(&ID) {}
1521
1522    // runOnFunction - Run the Sparse Conditional Constant Propagation
1523    // algorithm, and return true if the function was modified.
1524    //
1525    bool runOnFunction(Function &F);
1526
1527    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1528      AU.setPreservesCFG();
1529    }
1530  };
1531} // end anonymous namespace
1532
1533char SCCP::ID = 0;
1534static RegisterPass<SCCP>
1535X("sccp", "Sparse Conditional Constant Propagation");
1536
1537// createSCCPPass - This is the public interface to this file...
1538FunctionPass *llvm::createSCCPPass() {
1539  return new SCCP();
1540}
1541
1542
1543// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1544// and return true if the function was modified.
1545//
1546bool SCCP::runOnFunction(Function &F) {
1547  DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n");
1548  SCCPSolver Solver;
1549  Solver.setContext(&F.getContext());
1550
1551  // Mark the first block of the function as being executable.
1552  Solver.MarkBlockExecutable(F.begin());
1553
1554  // Mark all arguments to the function as being overdefined.
1555  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1556    Solver.markOverdefined(AI);
1557
1558  // Solve for constants.
1559  bool ResolvedUndefs = true;
1560  while (ResolvedUndefs) {
1561    Solver.Solve();
1562    DEBUG(errs() << "RESOLVING UNDEFs\n");
1563    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1564  }
1565
1566  bool MadeChanges = false;
1567
1568  // If we decided that there are basic blocks that are dead in this function,
1569  // delete their contents now.  Note that we cannot actually delete the blocks,
1570  // as we cannot modify the CFG of the function.
1571  //
1572  SmallVector<Instruction*, 512> Insts;
1573  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1574
1575  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1576    if (!Solver.isBlockExecutable(BB)) {
1577      DEBUG(errs() << "  BasicBlock Dead:" << *BB);
1578      ++NumDeadBlocks;
1579
1580      // Delete the instructions backwards, as it has a reduced likelihood of
1581      // having to update as many def-use and use-def chains.
1582      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1583           I != E; ++I)
1584        Insts.push_back(I);
1585      while (!Insts.empty()) {
1586        Instruction *I = Insts.back();
1587        Insts.pop_back();
1588        if (!I->use_empty())
1589          I->replaceAllUsesWith(UndefValue::get(I->getType()));
1590        BB->getInstList().erase(I);
1591        MadeChanges = true;
1592        ++NumInstRemoved;
1593      }
1594    } else {
1595      // Iterate over all of the instructions in a function, replacing them with
1596      // constants if we have found them to be of constant values.
1597      //
1598      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1599        Instruction *Inst = BI++;
1600        if (Inst->getType() == Type::getVoidTy(F.getContext()) ||
1601            isa<TerminatorInst>(Inst))
1602          continue;
1603
1604        LatticeVal &IV = Values[Inst];
1605        if (!IV.isConstant() && !IV.isUndefined())
1606          continue;
1607
1608        Constant *Const = IV.isConstant()
1609          ? IV.getConstant() : UndefValue::get(Inst->getType());
1610        DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1611
1612        // Replaces all of the uses of a variable with uses of the constant.
1613        Inst->replaceAllUsesWith(Const);
1614
1615        // Delete the instruction.
1616        Inst->eraseFromParent();
1617
1618        // Hey, we just changed something!
1619        MadeChanges = true;
1620        ++NumInstRemoved;
1621      }
1622    }
1623
1624  return MadeChanges;
1625}
1626
1627namespace {
1628  //===--------------------------------------------------------------------===//
1629  //
1630  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1631  /// Constant Propagation.
1632  ///
1633  struct IPSCCP : public ModulePass {
1634    static char ID;
1635    IPSCCP() : ModulePass(&ID) {}
1636    bool runOnModule(Module &M);
1637  };
1638} // end anonymous namespace
1639
1640char IPSCCP::ID = 0;
1641static RegisterPass<IPSCCP>
1642Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1643
1644// createIPSCCPPass - This is the public interface to this file...
1645ModulePass *llvm::createIPSCCPPass() {
1646  return new IPSCCP();
1647}
1648
1649
1650static bool AddressIsTaken(GlobalValue *GV) {
1651  // Delete any dead constantexpr klingons.
1652  GV->removeDeadConstantUsers();
1653
1654  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1655       UI != E; ++UI)
1656    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1657      if (SI->getOperand(0) == GV || SI->isVolatile())
1658        return true;  // Storing addr of GV.
1659    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1660      // Make sure we are calling the function, not passing the address.
1661      CallSite CS = CallSite::get(cast<Instruction>(*UI));
1662      if (CS.hasArgument(GV))
1663        return true;
1664    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1665      if (LI->isVolatile())
1666        return true;
1667    } else {
1668      return true;
1669    }
1670  return false;
1671}
1672
1673bool IPSCCP::runOnModule(Module &M) {
1674  LLVMContext *Context = &M.getContext();
1675
1676  SCCPSolver Solver;
1677  Solver.setContext(Context);
1678
1679  // Loop over all functions, marking arguments to those with their addresses
1680  // taken or that are external as overdefined.
1681  //
1682  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1683    if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
1684      if (!F->isDeclaration())
1685        Solver.MarkBlockExecutable(F->begin());
1686      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1687           AI != E; ++AI)
1688        Solver.markOverdefined(AI);
1689    } else {
1690      Solver.AddTrackedFunction(F);
1691    }
1692
1693  // Loop over global variables.  We inform the solver about any internal global
1694  // variables that do not have their 'addresses taken'.  If they don't have
1695  // their addresses taken, we can propagate constants through them.
1696  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1697       G != E; ++G)
1698    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1699      Solver.TrackValueOfGlobalVariable(G);
1700
1701  // Solve for constants.
1702  bool ResolvedUndefs = true;
1703  while (ResolvedUndefs) {
1704    Solver.Solve();
1705
1706    DEBUG(errs() << "RESOLVING UNDEFS\n");
1707    ResolvedUndefs = false;
1708    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1709      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1710  }
1711
1712  bool MadeChanges = false;
1713
1714  // Iterate over all of the instructions in the module, replacing them with
1715  // constants if we have found them to be of constant values.
1716  //
1717  SmallVector<Instruction*, 512> Insts;
1718  SmallVector<BasicBlock*, 512> BlocksToErase;
1719  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1720
1721  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1722    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1723         AI != E; ++AI)
1724      if (!AI->use_empty()) {
1725        LatticeVal &IV = Values[AI];
1726        if (IV.isConstant() || IV.isUndefined()) {
1727          Constant *CST = IV.isConstant() ?
1728            IV.getConstant() : UndefValue::get(AI->getType());
1729          DEBUG(errs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1730
1731          // Replaces all of the uses of a variable with uses of the
1732          // constant.
1733          AI->replaceAllUsesWith(CST);
1734          ++IPNumArgsElimed;
1735        }
1736      }
1737
1738    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1739      if (!Solver.isBlockExecutable(BB)) {
1740        DEBUG(errs() << "  BasicBlock Dead:" << *BB);
1741        ++IPNumDeadBlocks;
1742
1743        // Delete the instructions backwards, as it has a reduced likelihood of
1744        // having to update as many def-use and use-def chains.
1745        TerminatorInst *TI = BB->getTerminator();
1746        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1747          Insts.push_back(I);
1748
1749        while (!Insts.empty()) {
1750          Instruction *I = Insts.back();
1751          Insts.pop_back();
1752          if (!I->use_empty())
1753            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1754          BB->getInstList().erase(I);
1755          MadeChanges = true;
1756          ++IPNumInstRemoved;
1757        }
1758
1759        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1760          BasicBlock *Succ = TI->getSuccessor(i);
1761          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1762            TI->getSuccessor(i)->removePredecessor(BB);
1763        }
1764        if (!TI->use_empty())
1765          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1766        BB->getInstList().erase(TI);
1767
1768        if (&*BB != &F->front())
1769          BlocksToErase.push_back(BB);
1770        else
1771          new UnreachableInst(M.getContext(), BB);
1772
1773      } else {
1774        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1775          Instruction *Inst = BI++;
1776          if (Inst->getType() == Type::getVoidTy(M.getContext()))
1777            continue;
1778
1779          LatticeVal &IV = Values[Inst];
1780          if (!IV.isConstant() && !IV.isUndefined())
1781            continue;
1782
1783          Constant *Const = IV.isConstant()
1784            ? IV.getConstant() : UndefValue::get(Inst->getType());
1785          DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1786
1787          // Replaces all of the uses of a variable with uses of the
1788          // constant.
1789          Inst->replaceAllUsesWith(Const);
1790
1791          // Delete the instruction.
1792          if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1793            Inst->eraseFromParent();
1794
1795          // Hey, we just changed something!
1796          MadeChanges = true;
1797          ++IPNumInstRemoved;
1798        }
1799      }
1800
1801    // Now that all instructions in the function are constant folded, erase dead
1802    // blocks, because we can now use ConstantFoldTerminator to get rid of
1803    // in-edges.
1804    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1805      // If there are any PHI nodes in this successor, drop entries for BB now.
1806      BasicBlock *DeadBB = BlocksToErase[i];
1807      while (!DeadBB->use_empty()) {
1808        Instruction *I = cast<Instruction>(DeadBB->use_back());
1809        bool Folded = ConstantFoldTerminator(I->getParent());
1810        if (!Folded) {
1811          // The constant folder may not have been able to fold the terminator
1812          // if this is a branch or switch on undef.  Fold it manually as a
1813          // branch to the first successor.
1814#ifndef NDEBUG
1815          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1816            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1817                   "Branch should be foldable!");
1818          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1819            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1820          } else {
1821            llvm_unreachable("Didn't fold away reference to block!");
1822          }
1823#endif
1824
1825          // Make this an uncond branch to the first successor.
1826          TerminatorInst *TI = I->getParent()->getTerminator();
1827          BranchInst::Create(TI->getSuccessor(0), TI);
1828
1829          // Remove entries in successor phi nodes to remove edges.
1830          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1831            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1832
1833          // Remove the old terminator.
1834          TI->eraseFromParent();
1835        }
1836      }
1837
1838      // Finally, delete the basic block.
1839      F->getBasicBlockList().erase(DeadBB);
1840    }
1841    BlocksToErase.clear();
1842  }
1843
1844  // If we inferred constant or undef return values for a function, we replaced
1845  // all call uses with the inferred value.  This means we don't need to bother
1846  // actually returning anything from the function.  Replace all return
1847  // instructions with return undef.
1848  // TODO: Process multiple value ret instructions also.
1849  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1850  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1851         E = RV.end(); I != E; ++I)
1852    if (!I->second.isOverdefined() &&
1853        I->first->getReturnType() != Type::getVoidTy(M.getContext())) {
1854      Function *F = I->first;
1855      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1856        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1857          if (!isa<UndefValue>(RI->getOperand(0)))
1858            RI->setOperand(0, UndefValue::get(F->getReturnType()));
1859    }
1860
1861  // If we infered constant or undef values for globals variables, we can delete
1862  // the global and any stores that remain to it.
1863  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1864  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1865         E = TG.end(); I != E; ++I) {
1866    GlobalVariable *GV = I->first;
1867    assert(!I->second.isOverdefined() &&
1868           "Overdefined values should have been taken out of the map!");
1869    DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1870    while (!GV->use_empty()) {
1871      StoreInst *SI = cast<StoreInst>(GV->use_back());
1872      SI->eraseFromParent();
1873    }
1874    M.getGlobalList().erase(GV);
1875    ++IPNumGlobalConst;
1876  }
1877
1878  return MadeChanges;
1879}
1880