SCCP.cpp revision ce63ffb52f249b62cdf2d250c128007b13f27e71
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#define DEBUG_TYPE "sccp" 25#include "llvm/Transforms/Scalar.h" 26#include "llvm/Transforms/IPO.h" 27#include "llvm/Constants.h" 28#include "llvm/DerivedTypes.h" 29#include "llvm/Instructions.h" 30#include "llvm/LLVMContext.h" 31#include "llvm/Pass.h" 32#include "llvm/Analysis/ConstantFolding.h" 33#include "llvm/Analysis/ValueTracking.h" 34#include "llvm/Transforms/Utils/Local.h" 35#include "llvm/Support/CallSite.h" 36#include "llvm/Support/Compiler.h" 37#include "llvm/Support/Debug.h" 38#include "llvm/Support/ErrorHandling.h" 39#include "llvm/Support/InstVisitor.h" 40#include "llvm/Support/raw_ostream.h" 41#include "llvm/ADT/DenseMap.h" 42#include "llvm/ADT/DenseSet.h" 43#include "llvm/ADT/SmallSet.h" 44#include "llvm/ADT/SmallVector.h" 45#include "llvm/ADT/Statistic.h" 46#include "llvm/ADT/STLExtras.h" 47#include <algorithm> 48#include <map> 49using namespace llvm; 50 51STATISTIC(NumInstRemoved, "Number of instructions removed"); 52STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 53 54STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 55STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP"); 56STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 57STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 58 59namespace { 60/// LatticeVal class - This class represents the different lattice values that 61/// an LLVM value may occupy. It is a simple class with value semantics. 62/// 63class VISIBILITY_HIDDEN LatticeVal { 64 enum { 65 /// undefined - This LLVM Value has no known value yet. 66 undefined, 67 68 /// constant - This LLVM Value has a specific constant value. 69 constant, 70 71 /// forcedconstant - This LLVM Value was thought to be undef until 72 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 73 /// with another (different) constant, it goes to overdefined, instead of 74 /// asserting. 75 forcedconstant, 76 77 /// overdefined - This instruction is not known to be constant, and we know 78 /// it has a value. 79 overdefined 80 } LatticeValue; // The current lattice position 81 82 Constant *ConstantVal; // If Constant value, the current value 83public: 84 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} 85 86 // markOverdefined - Return true if this is a new status to be in... 87 inline bool markOverdefined() { 88 if (LatticeValue != overdefined) { 89 LatticeValue = overdefined; 90 return true; 91 } 92 return false; 93 } 94 95 // markConstant - Return true if this is a new status for us. 96 inline bool markConstant(Constant *V) { 97 if (LatticeValue != constant) { 98 if (LatticeValue == undefined) { 99 LatticeValue = constant; 100 assert(V && "Marking constant with NULL"); 101 ConstantVal = V; 102 } else { 103 assert(LatticeValue == forcedconstant && 104 "Cannot move from overdefined to constant!"); 105 // Stay at forcedconstant if the constant is the same. 106 if (V == ConstantVal) return false; 107 108 // Otherwise, we go to overdefined. Assumptions made based on the 109 // forced value are possibly wrong. Assuming this is another constant 110 // could expose a contradiction. 111 LatticeValue = overdefined; 112 } 113 return true; 114 } else { 115 assert(ConstantVal == V && "Marking constant with different value"); 116 } 117 return false; 118 } 119 120 inline void markForcedConstant(Constant *V) { 121 assert(LatticeValue == undefined && "Can't force a defined value!"); 122 LatticeValue = forcedconstant; 123 ConstantVal = V; 124 } 125 126 inline bool isUndefined() const { return LatticeValue == undefined; } 127 inline bool isConstant() const { 128 return LatticeValue == constant || LatticeValue == forcedconstant; 129 } 130 inline bool isOverdefined() const { return LatticeValue == overdefined; } 131 132 inline Constant *getConstant() const { 133 assert(isConstant() && "Cannot get the constant of a non-constant!"); 134 return ConstantVal; 135 } 136}; 137 138//===----------------------------------------------------------------------===// 139// 140/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 141/// Constant Propagation. 142/// 143class SCCPSolver : public InstVisitor<SCCPSolver> { 144 LLVMContext *Context; 145 DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable 146 std::map<Value*, LatticeVal> ValueState; // The state each value is in. 147 148 /// GlobalValue - If we are tracking any values for the contents of a global 149 /// variable, we keep a mapping from the constant accessor to the element of 150 /// the global, to the currently known value. If the value becomes 151 /// overdefined, it's entry is simply removed from this map. 152 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 153 154 /// TrackedRetVals - If we are tracking arguments into and the return 155 /// value out of a function, it will have an entry in this map, indicating 156 /// what the known return value for the function is. 157 DenseMap<Function*, LatticeVal> TrackedRetVals; 158 159 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 160 /// that return multiple values. 161 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 162 163 // The reason for two worklists is that overdefined is the lowest state 164 // on the lattice, and moving things to overdefined as fast as possible 165 // makes SCCP converge much faster. 166 // By having a separate worklist, we accomplish this because everything 167 // possibly overdefined will become overdefined at the soonest possible 168 // point. 169 SmallVector<Value*, 64> OverdefinedInstWorkList; 170 SmallVector<Value*, 64> InstWorkList; 171 172 173 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 174 175 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 176 /// overdefined, despite the fact that the PHI node is overdefined. 177 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 178 179 /// KnownFeasibleEdges - Entries in this set are edges which have already had 180 /// PHI nodes retriggered. 181 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 182 DenseSet<Edge> KnownFeasibleEdges; 183public: 184 void setContext(LLVMContext *C) { Context = C; } 185 186 /// MarkBlockExecutable - This method can be used by clients to mark all of 187 /// the blocks that are known to be intrinsically live in the processed unit. 188 void MarkBlockExecutable(BasicBlock *BB) { 189 DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n"; 190 BBExecutable.insert(BB); // Basic block is executable! 191 BBWorkList.push_back(BB); // Add the block to the work list! 192 } 193 194 /// TrackValueOfGlobalVariable - Clients can use this method to 195 /// inform the SCCPSolver that it should track loads and stores to the 196 /// specified global variable if it can. This is only legal to call if 197 /// performing Interprocedural SCCP. 198 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 199 const Type *ElTy = GV->getType()->getElementType(); 200 if (ElTy->isFirstClassType()) { 201 LatticeVal &IV = TrackedGlobals[GV]; 202 if (!isa<UndefValue>(GV->getInitializer())) 203 IV.markConstant(GV->getInitializer()); 204 } 205 } 206 207 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 208 /// and out of the specified function (which cannot have its address taken), 209 /// this method must be called. 210 void AddTrackedFunction(Function *F) { 211 assert(F->hasLocalLinkage() && "Can only track internal functions!"); 212 // Add an entry, F -> undef. 213 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 214 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 215 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 216 LatticeVal())); 217 } else 218 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 219 } 220 221 /// Solve - Solve for constants and executable blocks. 222 /// 223 void Solve(); 224 225 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 226 /// that branches on undef values cannot reach any of their successors. 227 /// However, this is not a safe assumption. After we solve dataflow, this 228 /// method should be use to handle this. If this returns true, the solver 229 /// should be rerun. 230 bool ResolvedUndefsIn(Function &F); 231 232 bool isBlockExecutable(BasicBlock *BB) const { 233 return BBExecutable.count(BB); 234 } 235 236 /// getValueMapping - Once we have solved for constants, return the mapping of 237 /// LLVM values to LatticeVals. 238 std::map<Value*, LatticeVal> &getValueMapping() { 239 return ValueState; 240 } 241 242 /// getTrackedRetVals - Get the inferred return value map. 243 /// 244 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 245 return TrackedRetVals; 246 } 247 248 /// getTrackedGlobals - Get and return the set of inferred initializers for 249 /// global variables. 250 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 251 return TrackedGlobals; 252 } 253 254 inline void markOverdefined(Value *V) { 255 markOverdefined(ValueState[V], V); 256 } 257 258private: 259 // markConstant - Make a value be marked as "constant". If the value 260 // is not already a constant, add it to the instruction work list so that 261 // the users of the instruction are updated later. 262 // 263 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { 264 if (IV.markConstant(C)) { 265 DOUT << "markConstant: " << *C << ": " << *V; 266 InstWorkList.push_back(V); 267 } 268 } 269 270 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) { 271 IV.markForcedConstant(C); 272 DOUT << "markForcedConstant: " << *C << ": " << *V; 273 InstWorkList.push_back(V); 274 } 275 276 inline void markConstant(Value *V, Constant *C) { 277 markConstant(ValueState[V], V, C); 278 } 279 280 // markOverdefined - Make a value be marked as "overdefined". If the 281 // value is not already overdefined, add it to the overdefined instruction 282 // work list so that the users of the instruction are updated later. 283 inline void markOverdefined(LatticeVal &IV, Value *V) { 284 if (IV.markOverdefined()) { 285 DEBUG(errs() << "markOverdefined: "; 286 if (Function *F = dyn_cast<Function>(V)) 287 errs() << "Function '" << F->getName() << "'\n"; 288 else 289 errs() << *V); 290 // Only instructions go on the work list 291 OverdefinedInstWorkList.push_back(V); 292 } 293 } 294 295 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { 296 if (IV.isOverdefined() || MergeWithV.isUndefined()) 297 return; // Noop. 298 if (MergeWithV.isOverdefined()) 299 markOverdefined(IV, V); 300 else if (IV.isUndefined()) 301 markConstant(IV, V, MergeWithV.getConstant()); 302 else if (IV.getConstant() != MergeWithV.getConstant()) 303 markOverdefined(IV, V); 304 } 305 306 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) { 307 return mergeInValue(ValueState[V], V, MergeWithV); 308 } 309 310 311 // getValueState - Return the LatticeVal object that corresponds to the value. 312 // This function is necessary because not all values should start out in the 313 // underdefined state... Argument's should be overdefined, and 314 // constants should be marked as constants. If a value is not known to be an 315 // Instruction object, then use this accessor to get its value from the map. 316 // 317 inline LatticeVal &getValueState(Value *V) { 318 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V); 319 if (I != ValueState.end()) return I->second; // Common case, in the map 320 321 if (Constant *C = dyn_cast<Constant>(V)) { 322 if (isa<UndefValue>(V)) { 323 // Nothing to do, remain undefined. 324 } else { 325 LatticeVal &LV = ValueState[C]; 326 LV.markConstant(C); // Constants are constant 327 return LV; 328 } 329 } 330 // All others are underdefined by default... 331 return ValueState[V]; 332 } 333 334 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 335 // work list if it is not already executable... 336 // 337 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 338 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 339 return; // This edge is already known to be executable! 340 341 if (BBExecutable.count(Dest)) { 342 DOUT << "Marking Edge Executable: " << Source->getNameStart() 343 << " -> " << Dest->getNameStart() << "\n"; 344 345 // The destination is already executable, but we just made an edge 346 // feasible that wasn't before. Revisit the PHI nodes in the block 347 // because they have potentially new operands. 348 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 349 visitPHINode(*cast<PHINode>(I)); 350 351 } else { 352 MarkBlockExecutable(Dest); 353 } 354 } 355 356 // getFeasibleSuccessors - Return a vector of booleans to indicate which 357 // successors are reachable from a given terminator instruction. 358 // 359 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); 360 361 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 362 // block to the 'To' basic block is currently feasible... 363 // 364 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 365 366 // OperandChangedState - This method is invoked on all of the users of an 367 // instruction that was just changed state somehow.... Based on this 368 // information, we need to update the specified user of this instruction. 369 // 370 void OperandChangedState(User *U) { 371 // Only instructions use other variable values! 372 Instruction &I = cast<Instruction>(*U); 373 if (BBExecutable.count(I.getParent())) // Inst is executable? 374 visit(I); 375 } 376 377private: 378 friend class InstVisitor<SCCPSolver>; 379 380 // visit implementations - Something changed in this instruction... Either an 381 // operand made a transition, or the instruction is newly executable. Change 382 // the value type of I to reflect these changes if appropriate. 383 // 384 void visitPHINode(PHINode &I); 385 386 // Terminators 387 void visitReturnInst(ReturnInst &I); 388 void visitTerminatorInst(TerminatorInst &TI); 389 390 void visitCastInst(CastInst &I); 391 void visitSelectInst(SelectInst &I); 392 void visitBinaryOperator(Instruction &I); 393 void visitCmpInst(CmpInst &I); 394 void visitExtractElementInst(ExtractElementInst &I); 395 void visitInsertElementInst(InsertElementInst &I); 396 void visitShuffleVectorInst(ShuffleVectorInst &I); 397 void visitExtractValueInst(ExtractValueInst &EVI); 398 void visitInsertValueInst(InsertValueInst &IVI); 399 400 // Instructions that cannot be folded away... 401 void visitStoreInst (Instruction &I); 402 void visitLoadInst (LoadInst &I); 403 void visitGetElementPtrInst(GetElementPtrInst &I); 404 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); } 405 void visitInvokeInst (InvokeInst &II) { 406 visitCallSite(CallSite::get(&II)); 407 visitTerminatorInst(II); 408 } 409 void visitCallSite (CallSite CS); 410 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 411 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 412 void visitAllocationInst(Instruction &I) { markOverdefined(&I); } 413 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 414 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 415 void visitFreeInst (Instruction &I) { /*returns void*/ } 416 417 void visitInstruction(Instruction &I) { 418 // If a new instruction is added to LLVM that we don't handle... 419 cerr << "SCCP: Don't know how to handle: " << I; 420 markOverdefined(&I); // Just in case 421 } 422}; 423 424} // end anonymous namespace 425 426 427// getFeasibleSuccessors - Return a vector of booleans to indicate which 428// successors are reachable from a given terminator instruction. 429// 430void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 431 SmallVector<bool, 16> &Succs) { 432 Succs.resize(TI.getNumSuccessors()); 433 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 434 if (BI->isUnconditional()) { 435 Succs[0] = true; 436 } else { 437 LatticeVal &BCValue = getValueState(BI->getCondition()); 438 if (BCValue.isOverdefined() || 439 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) { 440 // Overdefined condition variables, and branches on unfoldable constant 441 // conditions, mean the branch could go either way. 442 Succs[0] = Succs[1] = true; 443 } else if (BCValue.isConstant()) { 444 // Constant condition variables mean the branch can only go a single way 445 Succs[BCValue.getConstant() == Context->getFalse()] = true; 446 } 447 } 448 } else if (isa<InvokeInst>(&TI)) { 449 // Invoke instructions successors are always executable. 450 Succs[0] = Succs[1] = true; 451 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 452 LatticeVal &SCValue = getValueState(SI->getCondition()); 453 if (SCValue.isOverdefined() || // Overdefined condition? 454 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 455 // All destinations are executable! 456 Succs.assign(TI.getNumSuccessors(), true); 457 } else if (SCValue.isConstant()) 458 Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true; 459 } else { 460 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 461 } 462} 463 464 465// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 466// block to the 'To' basic block is currently feasible... 467// 468bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 469 assert(BBExecutable.count(To) && "Dest should always be alive!"); 470 471 // Make sure the source basic block is executable!! 472 if (!BBExecutable.count(From)) return false; 473 474 // Check to make sure this edge itself is actually feasible now... 475 TerminatorInst *TI = From->getTerminator(); 476 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 477 if (BI->isUnconditional()) 478 return true; 479 else { 480 LatticeVal &BCValue = getValueState(BI->getCondition()); 481 if (BCValue.isOverdefined()) { 482 // Overdefined condition variables mean the branch could go either way. 483 return true; 484 } else if (BCValue.isConstant()) { 485 // Not branching on an evaluatable constant? 486 if (!isa<ConstantInt>(BCValue.getConstant())) return true; 487 488 // Constant condition variables mean the branch can only go a single way 489 return BI->getSuccessor(BCValue.getConstant() == 490 Context->getFalse()) == To; 491 } 492 return false; 493 } 494 } else if (isa<InvokeInst>(TI)) { 495 // Invoke instructions successors are always executable. 496 return true; 497 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 498 LatticeVal &SCValue = getValueState(SI->getCondition()); 499 if (SCValue.isOverdefined()) { // Overdefined condition? 500 // All destinations are executable! 501 return true; 502 } else if (SCValue.isConstant()) { 503 Constant *CPV = SCValue.getConstant(); 504 if (!isa<ConstantInt>(CPV)) 505 return true; // not a foldable constant? 506 507 // Make sure to skip the "default value" which isn't a value 508 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 509 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 510 return SI->getSuccessor(i) == To; 511 512 // Constant value not equal to any of the branches... must execute 513 // default branch then... 514 return SI->getDefaultDest() == To; 515 } 516 return false; 517 } else { 518#ifndef NDEBUG 519 cerr << "Unknown terminator instruction: " << *TI; 520#endif 521 llvm_unreachable(0); 522 } 523} 524 525// visit Implementations - Something changed in this instruction... Either an 526// operand made a transition, or the instruction is newly executable. Change 527// the value type of I to reflect these changes if appropriate. This method 528// makes sure to do the following actions: 529// 530// 1. If a phi node merges two constants in, and has conflicting value coming 531// from different branches, or if the PHI node merges in an overdefined 532// value, then the PHI node becomes overdefined. 533// 2. If a phi node merges only constants in, and they all agree on value, the 534// PHI node becomes a constant value equal to that. 535// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 536// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 537// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 538// 6. If a conditional branch has a value that is constant, make the selected 539// destination executable 540// 7. If a conditional branch has a value that is overdefined, make all 541// successors executable. 542// 543void SCCPSolver::visitPHINode(PHINode &PN) { 544 LatticeVal &PNIV = getValueState(&PN); 545 if (PNIV.isOverdefined()) { 546 // There may be instructions using this PHI node that are not overdefined 547 // themselves. If so, make sure that they know that the PHI node operand 548 // changed. 549 std::multimap<PHINode*, Instruction*>::iterator I, E; 550 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 551 if (I != E) { 552 SmallVector<Instruction*, 16> Users; 553 for (; I != E; ++I) Users.push_back(I->second); 554 while (!Users.empty()) { 555 visit(Users.back()); 556 Users.pop_back(); 557 } 558 } 559 return; // Quick exit 560 } 561 562 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 563 // and slow us down a lot. Just mark them overdefined. 564 if (PN.getNumIncomingValues() > 64) { 565 markOverdefined(PNIV, &PN); 566 return; 567 } 568 569 // Look at all of the executable operands of the PHI node. If any of them 570 // are overdefined, the PHI becomes overdefined as well. If they are all 571 // constant, and they agree with each other, the PHI becomes the identical 572 // constant. If they are constant and don't agree, the PHI is overdefined. 573 // If there are no executable operands, the PHI remains undefined. 574 // 575 Constant *OperandVal = 0; 576 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 577 LatticeVal &IV = getValueState(PN.getIncomingValue(i)); 578 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 579 580 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 581 if (IV.isOverdefined()) { // PHI node becomes overdefined! 582 markOverdefined(&PN); 583 return; 584 } 585 586 if (OperandVal == 0) { // Grab the first value... 587 OperandVal = IV.getConstant(); 588 } else { // Another value is being merged in! 589 // There is already a reachable operand. If we conflict with it, 590 // then the PHI node becomes overdefined. If we agree with it, we 591 // can continue on. 592 593 // Check to see if there are two different constants merging... 594 if (IV.getConstant() != OperandVal) { 595 // Yes there is. This means the PHI node is not constant. 596 // You must be overdefined poor PHI. 597 // 598 markOverdefined(&PN); // The PHI node now becomes overdefined 599 return; // I'm done analyzing you 600 } 601 } 602 } 603 } 604 605 // If we exited the loop, this means that the PHI node only has constant 606 // arguments that agree with each other(and OperandVal is the constant) or 607 // OperandVal is null because there are no defined incoming arguments. If 608 // this is the case, the PHI remains undefined. 609 // 610 if (OperandVal) 611 markConstant(&PN, OperandVal); // Acquire operand value 612} 613 614void SCCPSolver::visitReturnInst(ReturnInst &I) { 615 if (I.getNumOperands() == 0) return; // Ret void 616 617 Function *F = I.getParent()->getParent(); 618 // If we are tracking the return value of this function, merge it in. 619 if (!F->hasLocalLinkage()) 620 return; 621 622 if (!TrackedRetVals.empty() && I.getNumOperands() == 1) { 623 DenseMap<Function*, LatticeVal>::iterator TFRVI = 624 TrackedRetVals.find(F); 625 if (TFRVI != TrackedRetVals.end() && 626 !TFRVI->second.isOverdefined()) { 627 LatticeVal &IV = getValueState(I.getOperand(0)); 628 mergeInValue(TFRVI->second, F, IV); 629 return; 630 } 631 } 632 633 // Handle functions that return multiple values. 634 if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) { 635 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 636 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 637 It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 638 if (It == TrackedMultipleRetVals.end()) break; 639 mergeInValue(It->second, F, getValueState(I.getOperand(i))); 640 } 641 } else if (!TrackedMultipleRetVals.empty() && 642 I.getNumOperands() == 1 && 643 isa<StructType>(I.getOperand(0)->getType())) { 644 for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes(); 645 i != e; ++i) { 646 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 647 It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 648 if (It == TrackedMultipleRetVals.end()) break; 649 if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext())) 650 mergeInValue(It->second, F, getValueState(Val)); 651 } 652 } 653} 654 655void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 656 SmallVector<bool, 16> SuccFeasible; 657 getFeasibleSuccessors(TI, SuccFeasible); 658 659 BasicBlock *BB = TI.getParent(); 660 661 // Mark all feasible successors executable... 662 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 663 if (SuccFeasible[i]) 664 markEdgeExecutable(BB, TI.getSuccessor(i)); 665} 666 667void SCCPSolver::visitCastInst(CastInst &I) { 668 Value *V = I.getOperand(0); 669 LatticeVal &VState = getValueState(V); 670 if (VState.isOverdefined()) // Inherit overdefinedness of operand 671 markOverdefined(&I); 672 else if (VState.isConstant()) // Propagate constant value 673 markConstant(&I, Context->getConstantExprCast(I.getOpcode(), 674 VState.getConstant(), I.getType())); 675} 676 677void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 678 Value *Aggr = EVI.getAggregateOperand(); 679 680 // If the operand to the extractvalue is an undef, the result is undef. 681 if (isa<UndefValue>(Aggr)) 682 return; 683 684 // Currently only handle single-index extractvalues. 685 if (EVI.getNumIndices() != 1) { 686 markOverdefined(&EVI); 687 return; 688 } 689 690 Function *F = 0; 691 if (CallInst *CI = dyn_cast<CallInst>(Aggr)) 692 F = CI->getCalledFunction(); 693 else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr)) 694 F = II->getCalledFunction(); 695 696 // TODO: If IPSCCP resolves the callee of this function, we could propagate a 697 // result back! 698 if (F == 0 || TrackedMultipleRetVals.empty()) { 699 markOverdefined(&EVI); 700 return; 701 } 702 703 // See if we are tracking the result of the callee. If not tracking this 704 // function (for example, it is a declaration) just move to overdefined. 705 if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) { 706 markOverdefined(&EVI); 707 return; 708 } 709 710 // Otherwise, the value will be merged in here as a result of CallSite 711 // handling. 712} 713 714void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 715 Value *Aggr = IVI.getAggregateOperand(); 716 Value *Val = IVI.getInsertedValueOperand(); 717 718 // If the operands to the insertvalue are undef, the result is undef. 719 if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val)) 720 return; 721 722 // Currently only handle single-index insertvalues. 723 if (IVI.getNumIndices() != 1) { 724 markOverdefined(&IVI); 725 return; 726 } 727 728 // Currently only handle insertvalue instructions that are in a single-use 729 // chain that builds up a return value. 730 for (const InsertValueInst *TmpIVI = &IVI; ; ) { 731 if (!TmpIVI->hasOneUse()) { 732 markOverdefined(&IVI); 733 return; 734 } 735 const Value *V = *TmpIVI->use_begin(); 736 if (isa<ReturnInst>(V)) 737 break; 738 TmpIVI = dyn_cast<InsertValueInst>(V); 739 if (!TmpIVI) { 740 markOverdefined(&IVI); 741 return; 742 } 743 } 744 745 // See if we are tracking the result of the callee. 746 Function *F = IVI.getParent()->getParent(); 747 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 748 It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin())); 749 750 // Merge in the inserted member value. 751 if (It != TrackedMultipleRetVals.end()) 752 mergeInValue(It->second, F, getValueState(Val)); 753 754 // Mark the aggregate result of the IVI overdefined; any tracking that we do 755 // will be done on the individual member values. 756 markOverdefined(&IVI); 757} 758 759void SCCPSolver::visitSelectInst(SelectInst &I) { 760 LatticeVal &CondValue = getValueState(I.getCondition()); 761 if (CondValue.isUndefined()) 762 return; 763 if (CondValue.isConstant()) { 764 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){ 765 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue() 766 : I.getFalseValue())); 767 return; 768 } 769 } 770 771 // Otherwise, the condition is overdefined or a constant we can't evaluate. 772 // See if we can produce something better than overdefined based on the T/F 773 // value. 774 LatticeVal &TVal = getValueState(I.getTrueValue()); 775 LatticeVal &FVal = getValueState(I.getFalseValue()); 776 777 // select ?, C, C -> C. 778 if (TVal.isConstant() && FVal.isConstant() && 779 TVal.getConstant() == FVal.getConstant()) { 780 markConstant(&I, FVal.getConstant()); 781 return; 782 } 783 784 if (TVal.isUndefined()) { // select ?, undef, X -> X. 785 mergeInValue(&I, FVal); 786 } else if (FVal.isUndefined()) { // select ?, X, undef -> X. 787 mergeInValue(&I, TVal); 788 } else { 789 markOverdefined(&I); 790 } 791} 792 793// Handle BinaryOperators and Shift Instructions... 794void SCCPSolver::visitBinaryOperator(Instruction &I) { 795 LatticeVal &IV = ValueState[&I]; 796 if (IV.isOverdefined()) return; 797 798 LatticeVal &V1State = getValueState(I.getOperand(0)); 799 LatticeVal &V2State = getValueState(I.getOperand(1)); 800 801 if (V1State.isOverdefined() || V2State.isOverdefined()) { 802 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 803 // operand is overdefined. 804 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 805 LatticeVal *NonOverdefVal = 0; 806 if (!V1State.isOverdefined()) { 807 NonOverdefVal = &V1State; 808 } else if (!V2State.isOverdefined()) { 809 NonOverdefVal = &V2State; 810 } 811 812 if (NonOverdefVal) { 813 if (NonOverdefVal->isUndefined()) { 814 // Could annihilate value. 815 if (I.getOpcode() == Instruction::And) 816 markConstant(IV, &I, Context->getNullValue(I.getType())); 817 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType())) 818 markConstant(IV, &I, Context->getAllOnesValue(PT)); 819 else 820 markConstant(IV, &I, 821 Context->getAllOnesValue(I.getType())); 822 return; 823 } else { 824 if (I.getOpcode() == Instruction::And) { 825 if (NonOverdefVal->getConstant()->isNullValue()) { 826 markConstant(IV, &I, NonOverdefVal->getConstant()); 827 return; // X and 0 = 0 828 } 829 } else { 830 if (ConstantInt *CI = 831 dyn_cast<ConstantInt>(NonOverdefVal->getConstant())) 832 if (CI->isAllOnesValue()) { 833 markConstant(IV, &I, NonOverdefVal->getConstant()); 834 return; // X or -1 = -1 835 } 836 } 837 } 838 } 839 } 840 841 842 // If both operands are PHI nodes, it is possible that this instruction has 843 // a constant value, despite the fact that the PHI node doesn't. Check for 844 // this condition now. 845 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 846 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 847 if (PN1->getParent() == PN2->getParent()) { 848 // Since the two PHI nodes are in the same basic block, they must have 849 // entries for the same predecessors. Walk the predecessor list, and 850 // if all of the incoming values are constants, and the result of 851 // evaluating this expression with all incoming value pairs is the 852 // same, then this expression is a constant even though the PHI node 853 // is not a constant! 854 LatticeVal Result; 855 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 856 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 857 BasicBlock *InBlock = PN1->getIncomingBlock(i); 858 LatticeVal &In2 = 859 getValueState(PN2->getIncomingValueForBlock(InBlock)); 860 861 if (In1.isOverdefined() || In2.isOverdefined()) { 862 Result.markOverdefined(); 863 break; // Cannot fold this operation over the PHI nodes! 864 } else if (In1.isConstant() && In2.isConstant()) { 865 Constant *V = 866 Context->getConstantExpr(I.getOpcode(), In1.getConstant(), 867 In2.getConstant()); 868 if (Result.isUndefined()) 869 Result.markConstant(V); 870 else if (Result.isConstant() && Result.getConstant() != V) { 871 Result.markOverdefined(); 872 break; 873 } 874 } 875 } 876 877 // If we found a constant value here, then we know the instruction is 878 // constant despite the fact that the PHI nodes are overdefined. 879 if (Result.isConstant()) { 880 markConstant(IV, &I, Result.getConstant()); 881 // Remember that this instruction is virtually using the PHI node 882 // operands. 883 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 884 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 885 return; 886 } else if (Result.isUndefined()) { 887 return; 888 } 889 890 // Okay, this really is overdefined now. Since we might have 891 // speculatively thought that this was not overdefined before, and 892 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 893 // make sure to clean out any entries that we put there, for 894 // efficiency. 895 std::multimap<PHINode*, Instruction*>::iterator It, E; 896 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 897 while (It != E) { 898 if (It->second == &I) { 899 UsersOfOverdefinedPHIs.erase(It++); 900 } else 901 ++It; 902 } 903 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 904 while (It != E) { 905 if (It->second == &I) { 906 UsersOfOverdefinedPHIs.erase(It++); 907 } else 908 ++It; 909 } 910 } 911 912 markOverdefined(IV, &I); 913 } else if (V1State.isConstant() && V2State.isConstant()) { 914 markConstant(IV, &I, 915 Context->getConstantExpr(I.getOpcode(), V1State.getConstant(), 916 V2State.getConstant())); 917 } 918} 919 920// Handle ICmpInst instruction... 921void SCCPSolver::visitCmpInst(CmpInst &I) { 922 LatticeVal &IV = ValueState[&I]; 923 if (IV.isOverdefined()) return; 924 925 LatticeVal &V1State = getValueState(I.getOperand(0)); 926 LatticeVal &V2State = getValueState(I.getOperand(1)); 927 928 if (V1State.isOverdefined() || V2State.isOverdefined()) { 929 // If both operands are PHI nodes, it is possible that this instruction has 930 // a constant value, despite the fact that the PHI node doesn't. Check for 931 // this condition now. 932 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 933 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 934 if (PN1->getParent() == PN2->getParent()) { 935 // Since the two PHI nodes are in the same basic block, they must have 936 // entries for the same predecessors. Walk the predecessor list, and 937 // if all of the incoming values are constants, and the result of 938 // evaluating this expression with all incoming value pairs is the 939 // same, then this expression is a constant even though the PHI node 940 // is not a constant! 941 LatticeVal Result; 942 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 943 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 944 BasicBlock *InBlock = PN1->getIncomingBlock(i); 945 LatticeVal &In2 = 946 getValueState(PN2->getIncomingValueForBlock(InBlock)); 947 948 if (In1.isOverdefined() || In2.isOverdefined()) { 949 Result.markOverdefined(); 950 break; // Cannot fold this operation over the PHI nodes! 951 } else if (In1.isConstant() && In2.isConstant()) { 952 Constant *V = Context->getConstantExprCompare(I.getPredicate(), 953 In1.getConstant(), 954 In2.getConstant()); 955 if (Result.isUndefined()) 956 Result.markConstant(V); 957 else if (Result.isConstant() && Result.getConstant() != V) { 958 Result.markOverdefined(); 959 break; 960 } 961 } 962 } 963 964 // If we found a constant value here, then we know the instruction is 965 // constant despite the fact that the PHI nodes are overdefined. 966 if (Result.isConstant()) { 967 markConstant(IV, &I, Result.getConstant()); 968 // Remember that this instruction is virtually using the PHI node 969 // operands. 970 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 971 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 972 return; 973 } else if (Result.isUndefined()) { 974 return; 975 } 976 977 // Okay, this really is overdefined now. Since we might have 978 // speculatively thought that this was not overdefined before, and 979 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 980 // make sure to clean out any entries that we put there, for 981 // efficiency. 982 std::multimap<PHINode*, Instruction*>::iterator It, E; 983 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 984 while (It != E) { 985 if (It->second == &I) { 986 UsersOfOverdefinedPHIs.erase(It++); 987 } else 988 ++It; 989 } 990 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 991 while (It != E) { 992 if (It->second == &I) { 993 UsersOfOverdefinedPHIs.erase(It++); 994 } else 995 ++It; 996 } 997 } 998 999 markOverdefined(IV, &I); 1000 } else if (V1State.isConstant() && V2State.isConstant()) { 1001 markConstant(IV, &I, Context->getConstantExprCompare(I.getPredicate(), 1002 V1State.getConstant(), 1003 V2State.getConstant())); 1004 } 1005} 1006 1007void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 1008 // FIXME : SCCP does not handle vectors properly. 1009 markOverdefined(&I); 1010 return; 1011 1012#if 0 1013 LatticeVal &ValState = getValueState(I.getOperand(0)); 1014 LatticeVal &IdxState = getValueState(I.getOperand(1)); 1015 1016 if (ValState.isOverdefined() || IdxState.isOverdefined()) 1017 markOverdefined(&I); 1018 else if(ValState.isConstant() && IdxState.isConstant()) 1019 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 1020 IdxState.getConstant())); 1021#endif 1022} 1023 1024void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 1025 // FIXME : SCCP does not handle vectors properly. 1026 markOverdefined(&I); 1027 return; 1028#if 0 1029 LatticeVal &ValState = getValueState(I.getOperand(0)); 1030 LatticeVal &EltState = getValueState(I.getOperand(1)); 1031 LatticeVal &IdxState = getValueState(I.getOperand(2)); 1032 1033 if (ValState.isOverdefined() || EltState.isOverdefined() || 1034 IdxState.isOverdefined()) 1035 markOverdefined(&I); 1036 else if(ValState.isConstant() && EltState.isConstant() && 1037 IdxState.isConstant()) 1038 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 1039 EltState.getConstant(), 1040 IdxState.getConstant())); 1041 else if (ValState.isUndefined() && EltState.isConstant() && 1042 IdxState.isConstant()) 1043 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 1044 EltState.getConstant(), 1045 IdxState.getConstant())); 1046#endif 1047} 1048 1049void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 1050 // FIXME : SCCP does not handle vectors properly. 1051 markOverdefined(&I); 1052 return; 1053#if 0 1054 LatticeVal &V1State = getValueState(I.getOperand(0)); 1055 LatticeVal &V2State = getValueState(I.getOperand(1)); 1056 LatticeVal &MaskState = getValueState(I.getOperand(2)); 1057 1058 if (MaskState.isUndefined() || 1059 (V1State.isUndefined() && V2State.isUndefined())) 1060 return; // Undefined output if mask or both inputs undefined. 1061 1062 if (V1State.isOverdefined() || V2State.isOverdefined() || 1063 MaskState.isOverdefined()) { 1064 markOverdefined(&I); 1065 } else { 1066 // A mix of constant/undef inputs. 1067 Constant *V1 = V1State.isConstant() ? 1068 V1State.getConstant() : UndefValue::get(I.getType()); 1069 Constant *V2 = V2State.isConstant() ? 1070 V2State.getConstant() : UndefValue::get(I.getType()); 1071 Constant *Mask = MaskState.isConstant() ? 1072 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 1073 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 1074 } 1075#endif 1076} 1077 1078// Handle getelementptr instructions... if all operands are constants then we 1079// can turn this into a getelementptr ConstantExpr. 1080// 1081void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1082 LatticeVal &IV = ValueState[&I]; 1083 if (IV.isOverdefined()) return; 1084 1085 SmallVector<Constant*, 8> Operands; 1086 Operands.reserve(I.getNumOperands()); 1087 1088 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1089 LatticeVal &State = getValueState(I.getOperand(i)); 1090 if (State.isUndefined()) 1091 return; // Operands are not resolved yet... 1092 else if (State.isOverdefined()) { 1093 markOverdefined(IV, &I); 1094 return; 1095 } 1096 assert(State.isConstant() && "Unknown state!"); 1097 Operands.push_back(State.getConstant()); 1098 } 1099 1100 Constant *Ptr = Operands[0]; 1101 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 1102 1103 markConstant(IV, &I, Context->getConstantExprGetElementPtr(Ptr, &Operands[0], 1104 Operands.size())); 1105} 1106 1107void SCCPSolver::visitStoreInst(Instruction &SI) { 1108 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1109 return; 1110 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1111 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1112 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1113 1114 // Get the value we are storing into the global. 1115 LatticeVal &PtrVal = getValueState(SI.getOperand(0)); 1116 1117 mergeInValue(I->second, GV, PtrVal); 1118 if (I->second.isOverdefined()) 1119 TrackedGlobals.erase(I); // No need to keep tracking this! 1120} 1121 1122 1123// Handle load instructions. If the operand is a constant pointer to a constant 1124// global, we can replace the load with the loaded constant value! 1125void SCCPSolver::visitLoadInst(LoadInst &I) { 1126 LatticeVal &IV = ValueState[&I]; 1127 if (IV.isOverdefined()) return; 1128 1129 LatticeVal &PtrVal = getValueState(I.getOperand(0)); 1130 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1131 if (PtrVal.isConstant() && !I.isVolatile()) { 1132 Value *Ptr = PtrVal.getConstant(); 1133 // TODO: Consider a target hook for valid address spaces for this xform. 1134 if (isa<ConstantPointerNull>(Ptr) && 1135 cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) { 1136 // load null -> null 1137 markConstant(IV, &I, Context->getNullValue(I.getType())); 1138 return; 1139 } 1140 1141 // Transform load (constant global) into the value loaded. 1142 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1143 if (GV->isConstant()) { 1144 if (GV->hasDefinitiveInitializer()) { 1145 markConstant(IV, &I, GV->getInitializer()); 1146 return; 1147 } 1148 } else if (!TrackedGlobals.empty()) { 1149 // If we are tracking this global, merge in the known value for it. 1150 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1151 TrackedGlobals.find(GV); 1152 if (It != TrackedGlobals.end()) { 1153 mergeInValue(IV, &I, It->second); 1154 return; 1155 } 1156 } 1157 } 1158 1159 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 1160 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 1161 if (CE->getOpcode() == Instruction::GetElementPtr) 1162 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 1163 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1164 if (Constant *V = 1165 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE, 1166 *Context)) { 1167 markConstant(IV, &I, V); 1168 return; 1169 } 1170 } 1171 1172 // Otherwise we cannot say for certain what value this load will produce. 1173 // Bail out. 1174 markOverdefined(IV, &I); 1175} 1176 1177void SCCPSolver::visitCallSite(CallSite CS) { 1178 Function *F = CS.getCalledFunction(); 1179 Instruction *I = CS.getInstruction(); 1180 1181 // The common case is that we aren't tracking the callee, either because we 1182 // are not doing interprocedural analysis or the callee is indirect, or is 1183 // external. Handle these cases first. 1184 if (F == 0 || !F->hasLocalLinkage()) { 1185CallOverdefined: 1186 // Void return and not tracking callee, just bail. 1187 if (I->getType() == Type::VoidTy) return; 1188 1189 // Otherwise, if we have a single return value case, and if the function is 1190 // a declaration, maybe we can constant fold it. 1191 if (!isa<StructType>(I->getType()) && F && F->isDeclaration() && 1192 canConstantFoldCallTo(F)) { 1193 1194 SmallVector<Constant*, 8> Operands; 1195 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1196 AI != E; ++AI) { 1197 LatticeVal &State = getValueState(*AI); 1198 if (State.isUndefined()) 1199 return; // Operands are not resolved yet. 1200 else if (State.isOverdefined()) { 1201 markOverdefined(I); 1202 return; 1203 } 1204 assert(State.isConstant() && "Unknown state!"); 1205 Operands.push_back(State.getConstant()); 1206 } 1207 1208 // If we can constant fold this, mark the result of the call as a 1209 // constant. 1210 if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) { 1211 markConstant(I, C); 1212 return; 1213 } 1214 } 1215 1216 // Otherwise, we don't know anything about this call, mark it overdefined. 1217 markOverdefined(I); 1218 return; 1219 } 1220 1221 // If this is a single/zero retval case, see if we're tracking the function. 1222 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1223 if (TFRVI != TrackedRetVals.end()) { 1224 // If so, propagate the return value of the callee into this call result. 1225 mergeInValue(I, TFRVI->second); 1226 } else if (isa<StructType>(I->getType())) { 1227 // Check to see if we're tracking this callee, if not, handle it in the 1228 // common path above. 1229 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 1230 TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0)); 1231 if (TMRVI == TrackedMultipleRetVals.end()) 1232 goto CallOverdefined; 1233 1234 // If we are tracking this callee, propagate the return values of the call 1235 // into this call site. We do this by walking all the uses. Single-index 1236 // ExtractValueInst uses can be tracked; anything more complicated is 1237 // currently handled conservatively. 1238 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1239 UI != E; ++UI) { 1240 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) { 1241 if (EVI->getNumIndices() == 1) { 1242 mergeInValue(EVI, 1243 TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]); 1244 continue; 1245 } 1246 } 1247 // The aggregate value is used in a way not handled here. Assume nothing. 1248 markOverdefined(*UI); 1249 } 1250 } else { 1251 // Otherwise we're not tracking this callee, so handle it in the 1252 // common path above. 1253 goto CallOverdefined; 1254 } 1255 1256 // Finally, if this is the first call to the function hit, mark its entry 1257 // block executable. 1258 if (!BBExecutable.count(F->begin())) 1259 MarkBlockExecutable(F->begin()); 1260 1261 // Propagate information from this call site into the callee. 1262 CallSite::arg_iterator CAI = CS.arg_begin(); 1263 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1264 AI != E; ++AI, ++CAI) { 1265 LatticeVal &IV = ValueState[AI]; 1266 if (!IV.isOverdefined()) 1267 mergeInValue(IV, AI, getValueState(*CAI)); 1268 } 1269} 1270 1271 1272void SCCPSolver::Solve() { 1273 // Process the work lists until they are empty! 1274 while (!BBWorkList.empty() || !InstWorkList.empty() || 1275 !OverdefinedInstWorkList.empty()) { 1276 // Process the instruction work list... 1277 while (!OverdefinedInstWorkList.empty()) { 1278 Value *I = OverdefinedInstWorkList.back(); 1279 OverdefinedInstWorkList.pop_back(); 1280 1281 DOUT << "\nPopped off OI-WL: " << *I; 1282 1283 // "I" got into the work list because it either made the transition from 1284 // bottom to constant 1285 // 1286 // Anything on this worklist that is overdefined need not be visited 1287 // since all of its users will have already been marked as overdefined 1288 // Update all of the users of this instruction's value... 1289 // 1290 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1291 UI != E; ++UI) 1292 OperandChangedState(*UI); 1293 } 1294 // Process the instruction work list... 1295 while (!InstWorkList.empty()) { 1296 Value *I = InstWorkList.back(); 1297 InstWorkList.pop_back(); 1298 1299 DOUT << "\nPopped off I-WL: " << *I; 1300 1301 // "I" got into the work list because it either made the transition from 1302 // bottom to constant 1303 // 1304 // Anything on this worklist that is overdefined need not be visited 1305 // since all of its users will have already been marked as overdefined. 1306 // Update all of the users of this instruction's value... 1307 // 1308 if (!getValueState(I).isOverdefined()) 1309 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1310 UI != E; ++UI) 1311 OperandChangedState(*UI); 1312 } 1313 1314 // Process the basic block work list... 1315 while (!BBWorkList.empty()) { 1316 BasicBlock *BB = BBWorkList.back(); 1317 BBWorkList.pop_back(); 1318 1319 DOUT << "\nPopped off BBWL: " << *BB; 1320 1321 // Notify all instructions in this basic block that they are newly 1322 // executable. 1323 visit(BB); 1324 } 1325 } 1326} 1327 1328/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1329/// that branches on undef values cannot reach any of their successors. 1330/// However, this is not a safe assumption. After we solve dataflow, this 1331/// method should be use to handle this. If this returns true, the solver 1332/// should be rerun. 1333/// 1334/// This method handles this by finding an unresolved branch and marking it one 1335/// of the edges from the block as being feasible, even though the condition 1336/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1337/// CFG and only slightly pessimizes the analysis results (by marking one, 1338/// potentially infeasible, edge feasible). This cannot usefully modify the 1339/// constraints on the condition of the branch, as that would impact other users 1340/// of the value. 1341/// 1342/// This scan also checks for values that use undefs, whose results are actually 1343/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1344/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1345/// even if X isn't defined. 1346bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1347 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1348 if (!BBExecutable.count(BB)) 1349 continue; 1350 1351 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1352 // Look for instructions which produce undef values. 1353 if (I->getType() == Type::VoidTy) continue; 1354 1355 LatticeVal &LV = getValueState(I); 1356 if (!LV.isUndefined()) continue; 1357 1358 // Get the lattice values of the first two operands for use below. 1359 LatticeVal &Op0LV = getValueState(I->getOperand(0)); 1360 LatticeVal Op1LV; 1361 if (I->getNumOperands() == 2) { 1362 // If this is a two-operand instruction, and if both operands are 1363 // undefs, the result stays undef. 1364 Op1LV = getValueState(I->getOperand(1)); 1365 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1366 continue; 1367 } 1368 1369 // If this is an instructions whose result is defined even if the input is 1370 // not fully defined, propagate the information. 1371 const Type *ITy = I->getType(); 1372 switch (I->getOpcode()) { 1373 default: break; // Leave the instruction as an undef. 1374 case Instruction::ZExt: 1375 // After a zero extend, we know the top part is zero. SExt doesn't have 1376 // to be handled here, because we don't know whether the top part is 1's 1377 // or 0's. 1378 assert(Op0LV.isUndefined()); 1379 markForcedConstant(LV, I, Context->getNullValue(ITy)); 1380 return true; 1381 case Instruction::Mul: 1382 case Instruction::And: 1383 // undef * X -> 0. X could be zero. 1384 // undef & X -> 0. X could be zero. 1385 markForcedConstant(LV, I, Context->getNullValue(ITy)); 1386 return true; 1387 1388 case Instruction::Or: 1389 // undef | X -> -1. X could be -1. 1390 if (const VectorType *PTy = dyn_cast<VectorType>(ITy)) 1391 markForcedConstant(LV, I, 1392 Context->getAllOnesValue(PTy)); 1393 else 1394 markForcedConstant(LV, I, Context->getAllOnesValue(ITy)); 1395 return true; 1396 1397 case Instruction::SDiv: 1398 case Instruction::UDiv: 1399 case Instruction::SRem: 1400 case Instruction::URem: 1401 // X / undef -> undef. No change. 1402 // X % undef -> undef. No change. 1403 if (Op1LV.isUndefined()) break; 1404 1405 // undef / X -> 0. X could be maxint. 1406 // undef % X -> 0. X could be 1. 1407 markForcedConstant(LV, I, Context->getNullValue(ITy)); 1408 return true; 1409 1410 case Instruction::AShr: 1411 // undef >>s X -> undef. No change. 1412 if (Op0LV.isUndefined()) break; 1413 1414 // X >>s undef -> X. X could be 0, X could have the high-bit known set. 1415 if (Op0LV.isConstant()) 1416 markForcedConstant(LV, I, Op0LV.getConstant()); 1417 else 1418 markOverdefined(LV, I); 1419 return true; 1420 case Instruction::LShr: 1421 case Instruction::Shl: 1422 // undef >> X -> undef. No change. 1423 // undef << X -> undef. No change. 1424 if (Op0LV.isUndefined()) break; 1425 1426 // X >> undef -> 0. X could be 0. 1427 // X << undef -> 0. X could be 0. 1428 markForcedConstant(LV, I, Context->getNullValue(ITy)); 1429 return true; 1430 case Instruction::Select: 1431 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1432 if (Op0LV.isUndefined()) { 1433 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1434 Op1LV = getValueState(I->getOperand(2)); 1435 } else if (Op1LV.isUndefined()) { 1436 // c ? undef : undef -> undef. No change. 1437 Op1LV = getValueState(I->getOperand(2)); 1438 if (Op1LV.isUndefined()) 1439 break; 1440 // Otherwise, c ? undef : x -> x. 1441 } else { 1442 // Leave Op1LV as Operand(1)'s LatticeValue. 1443 } 1444 1445 if (Op1LV.isConstant()) 1446 markForcedConstant(LV, I, Op1LV.getConstant()); 1447 else 1448 markOverdefined(LV, I); 1449 return true; 1450 case Instruction::Call: 1451 // If a call has an undef result, it is because it is constant foldable 1452 // but one of the inputs was undef. Just force the result to 1453 // overdefined. 1454 markOverdefined(LV, I); 1455 return true; 1456 } 1457 } 1458 1459 TerminatorInst *TI = BB->getTerminator(); 1460 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1461 if (!BI->isConditional()) continue; 1462 if (!getValueState(BI->getCondition()).isUndefined()) 1463 continue; 1464 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1465 if (SI->getNumSuccessors()<2) // no cases 1466 continue; 1467 if (!getValueState(SI->getCondition()).isUndefined()) 1468 continue; 1469 } else { 1470 continue; 1471 } 1472 1473 // If the edge to the second successor isn't thought to be feasible yet, 1474 // mark it so now. We pick the second one so that this goes to some 1475 // enumerated value in a switch instead of going to the default destination. 1476 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1)))) 1477 continue; 1478 1479 // Otherwise, it isn't already thought to be feasible. Mark it as such now 1480 // and return. This will make other blocks reachable, which will allow new 1481 // values to be discovered and existing ones to be moved in the lattice. 1482 markEdgeExecutable(BB, TI->getSuccessor(1)); 1483 1484 // This must be a conditional branch of switch on undef. At this point, 1485 // force the old terminator to branch to the first successor. This is 1486 // required because we are now influencing the dataflow of the function with 1487 // the assumption that this edge is taken. If we leave the branch condition 1488 // as undef, then further analysis could think the undef went another way 1489 // leading to an inconsistent set of conclusions. 1490 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1491 BI->setCondition(Context->getFalse()); 1492 } else { 1493 SwitchInst *SI = cast<SwitchInst>(TI); 1494 SI->setCondition(SI->getCaseValue(1)); 1495 } 1496 1497 return true; 1498 } 1499 1500 return false; 1501} 1502 1503 1504namespace { 1505 //===--------------------------------------------------------------------===// 1506 // 1507 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1508 /// Sparse Conditional Constant Propagator. 1509 /// 1510 struct VISIBILITY_HIDDEN SCCP : public FunctionPass { 1511 static char ID; // Pass identification, replacement for typeid 1512 SCCP() : FunctionPass(&ID) {} 1513 1514 // runOnFunction - Run the Sparse Conditional Constant Propagation 1515 // algorithm, and return true if the function was modified. 1516 // 1517 bool runOnFunction(Function &F); 1518 1519 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1520 AU.setPreservesCFG(); 1521 } 1522 }; 1523} // end anonymous namespace 1524 1525char SCCP::ID = 0; 1526static RegisterPass<SCCP> 1527X("sccp", "Sparse Conditional Constant Propagation"); 1528 1529// createSCCPPass - This is the public interface to this file... 1530FunctionPass *llvm::createSCCPPass() { 1531 return new SCCP(); 1532} 1533 1534 1535// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1536// and return true if the function was modified. 1537// 1538bool SCCP::runOnFunction(Function &F) { 1539 DOUT << "SCCP on function '" << F.getNameStart() << "'\n"; 1540 SCCPSolver Solver; 1541 Solver.setContext(&F.getContext()); 1542 1543 // Mark the first block of the function as being executable. 1544 Solver.MarkBlockExecutable(F.begin()); 1545 1546 // Mark all arguments to the function as being overdefined. 1547 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1548 Solver.markOverdefined(AI); 1549 1550 // Solve for constants. 1551 bool ResolvedUndefs = true; 1552 while (ResolvedUndefs) { 1553 Solver.Solve(); 1554 DOUT << "RESOLVING UNDEFs\n"; 1555 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1556 } 1557 1558 bool MadeChanges = false; 1559 1560 // If we decided that there are basic blocks that are dead in this function, 1561 // delete their contents now. Note that we cannot actually delete the blocks, 1562 // as we cannot modify the CFG of the function. 1563 // 1564 SmallVector<Instruction*, 512> Insts; 1565 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1566 1567 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1568 if (!Solver.isBlockExecutable(BB)) { 1569 DOUT << " BasicBlock Dead:" << *BB; 1570 ++NumDeadBlocks; 1571 1572 // Delete the instructions backwards, as it has a reduced likelihood of 1573 // having to update as many def-use and use-def chains. 1574 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); 1575 I != E; ++I) 1576 Insts.push_back(I); 1577 while (!Insts.empty()) { 1578 Instruction *I = Insts.back(); 1579 Insts.pop_back(); 1580 if (!I->use_empty()) 1581 I->replaceAllUsesWith(F.getContext().getUndef(I->getType())); 1582 BB->getInstList().erase(I); 1583 MadeChanges = true; 1584 ++NumInstRemoved; 1585 } 1586 } else { 1587 // Iterate over all of the instructions in a function, replacing them with 1588 // constants if we have found them to be of constant values. 1589 // 1590 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1591 Instruction *Inst = BI++; 1592 if (Inst->getType() == Type::VoidTy || 1593 isa<TerminatorInst>(Inst)) 1594 continue; 1595 1596 LatticeVal &IV = Values[Inst]; 1597 if (!IV.isConstant() && !IV.isUndefined()) 1598 continue; 1599 1600 Constant *Const = IV.isConstant() 1601 ? IV.getConstant() : F.getContext().getUndef(Inst->getType()); 1602 DOUT << " Constant: " << *Const << " = " << *Inst; 1603 1604 // Replaces all of the uses of a variable with uses of the constant. 1605 Inst->replaceAllUsesWith(Const); 1606 1607 // Delete the instruction. 1608 Inst->eraseFromParent(); 1609 1610 // Hey, we just changed something! 1611 MadeChanges = true; 1612 ++NumInstRemoved; 1613 } 1614 } 1615 1616 return MadeChanges; 1617} 1618 1619namespace { 1620 //===--------------------------------------------------------------------===// 1621 // 1622 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1623 /// Constant Propagation. 1624 /// 1625 struct VISIBILITY_HIDDEN IPSCCP : public ModulePass { 1626 static char ID; 1627 IPSCCP() : ModulePass(&ID) {} 1628 bool runOnModule(Module &M); 1629 }; 1630} // end anonymous namespace 1631 1632char IPSCCP::ID = 0; 1633static RegisterPass<IPSCCP> 1634Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); 1635 1636// createIPSCCPPass - This is the public interface to this file... 1637ModulePass *llvm::createIPSCCPPass() { 1638 return new IPSCCP(); 1639} 1640 1641 1642static bool AddressIsTaken(GlobalValue *GV) { 1643 // Delete any dead constantexpr klingons. 1644 GV->removeDeadConstantUsers(); 1645 1646 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 1647 UI != E; ++UI) 1648 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 1649 if (SI->getOperand(0) == GV || SI->isVolatile()) 1650 return true; // Storing addr of GV. 1651 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { 1652 // Make sure we are calling the function, not passing the address. 1653 CallSite CS = CallSite::get(cast<Instruction>(*UI)); 1654 if (CS.hasArgument(GV)) 1655 return true; 1656 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1657 if (LI->isVolatile()) 1658 return true; 1659 } else { 1660 return true; 1661 } 1662 return false; 1663} 1664 1665bool IPSCCP::runOnModule(Module &M) { 1666 LLVMContext *Context = &M.getContext(); 1667 1668 SCCPSolver Solver; 1669 Solver.setContext(Context); 1670 1671 // Loop over all functions, marking arguments to those with their addresses 1672 // taken or that are external as overdefined. 1673 // 1674 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1675 if (!F->hasLocalLinkage() || AddressIsTaken(F)) { 1676 if (!F->isDeclaration()) 1677 Solver.MarkBlockExecutable(F->begin()); 1678 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1679 AI != E; ++AI) 1680 Solver.markOverdefined(AI); 1681 } else { 1682 Solver.AddTrackedFunction(F); 1683 } 1684 1685 // Loop over global variables. We inform the solver about any internal global 1686 // variables that do not have their 'addresses taken'. If they don't have 1687 // their addresses taken, we can propagate constants through them. 1688 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1689 G != E; ++G) 1690 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) 1691 Solver.TrackValueOfGlobalVariable(G); 1692 1693 // Solve for constants. 1694 bool ResolvedUndefs = true; 1695 while (ResolvedUndefs) { 1696 Solver.Solve(); 1697 1698 DOUT << "RESOLVING UNDEFS\n"; 1699 ResolvedUndefs = false; 1700 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1701 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1702 } 1703 1704 bool MadeChanges = false; 1705 1706 // Iterate over all of the instructions in the module, replacing them with 1707 // constants if we have found them to be of constant values. 1708 // 1709 SmallVector<Instruction*, 512> Insts; 1710 SmallVector<BasicBlock*, 512> BlocksToErase; 1711 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1712 1713 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1714 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1715 AI != E; ++AI) 1716 if (!AI->use_empty()) { 1717 LatticeVal &IV = Values[AI]; 1718 if (IV.isConstant() || IV.isUndefined()) { 1719 Constant *CST = IV.isConstant() ? 1720 IV.getConstant() : Context->getUndef(AI->getType()); 1721 DOUT << "*** Arg " << *AI << " = " << *CST <<"\n"; 1722 1723 // Replaces all of the uses of a variable with uses of the 1724 // constant. 1725 AI->replaceAllUsesWith(CST); 1726 ++IPNumArgsElimed; 1727 } 1728 } 1729 1730 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1731 if (!Solver.isBlockExecutable(BB)) { 1732 DOUT << " BasicBlock Dead:" << *BB; 1733 ++IPNumDeadBlocks; 1734 1735 // Delete the instructions backwards, as it has a reduced likelihood of 1736 // having to update as many def-use and use-def chains. 1737 TerminatorInst *TI = BB->getTerminator(); 1738 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) 1739 Insts.push_back(I); 1740 1741 while (!Insts.empty()) { 1742 Instruction *I = Insts.back(); 1743 Insts.pop_back(); 1744 if (!I->use_empty()) 1745 I->replaceAllUsesWith(Context->getUndef(I->getType())); 1746 BB->getInstList().erase(I); 1747 MadeChanges = true; 1748 ++IPNumInstRemoved; 1749 } 1750 1751 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1752 BasicBlock *Succ = TI->getSuccessor(i); 1753 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1754 TI->getSuccessor(i)->removePredecessor(BB); 1755 } 1756 if (!TI->use_empty()) 1757 TI->replaceAllUsesWith(Context->getUndef(TI->getType())); 1758 BB->getInstList().erase(TI); 1759 1760 if (&*BB != &F->front()) 1761 BlocksToErase.push_back(BB); 1762 else 1763 new UnreachableInst(BB); 1764 1765 } else { 1766 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1767 Instruction *Inst = BI++; 1768 if (Inst->getType() == Type::VoidTy) 1769 continue; 1770 1771 LatticeVal &IV = Values[Inst]; 1772 if (!IV.isConstant() && !IV.isUndefined()) 1773 continue; 1774 1775 Constant *Const = IV.isConstant() 1776 ? IV.getConstant() : Context->getUndef(Inst->getType()); 1777 DOUT << " Constant: " << *Const << " = " << *Inst; 1778 1779 // Replaces all of the uses of a variable with uses of the 1780 // constant. 1781 Inst->replaceAllUsesWith(Const); 1782 1783 // Delete the instruction. 1784 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1785 Inst->eraseFromParent(); 1786 1787 // Hey, we just changed something! 1788 MadeChanges = true; 1789 ++IPNumInstRemoved; 1790 } 1791 } 1792 1793 // Now that all instructions in the function are constant folded, erase dead 1794 // blocks, because we can now use ConstantFoldTerminator to get rid of 1795 // in-edges. 1796 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1797 // If there are any PHI nodes in this successor, drop entries for BB now. 1798 BasicBlock *DeadBB = BlocksToErase[i]; 1799 while (!DeadBB->use_empty()) { 1800 Instruction *I = cast<Instruction>(DeadBB->use_back()); 1801 bool Folded = ConstantFoldTerminator(I->getParent()); 1802 if (!Folded) { 1803 // The constant folder may not have been able to fold the terminator 1804 // if this is a branch or switch on undef. Fold it manually as a 1805 // branch to the first successor. 1806#ifndef NDEBUG 1807 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1808 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1809 "Branch should be foldable!"); 1810 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1811 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1812 } else { 1813 llvm_unreachable("Didn't fold away reference to block!"); 1814 } 1815#endif 1816 1817 // Make this an uncond branch to the first successor. 1818 TerminatorInst *TI = I->getParent()->getTerminator(); 1819 BranchInst::Create(TI->getSuccessor(0), TI); 1820 1821 // Remove entries in successor phi nodes to remove edges. 1822 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1823 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1824 1825 // Remove the old terminator. 1826 TI->eraseFromParent(); 1827 } 1828 } 1829 1830 // Finally, delete the basic block. 1831 F->getBasicBlockList().erase(DeadBB); 1832 } 1833 BlocksToErase.clear(); 1834 } 1835 1836 // If we inferred constant or undef return values for a function, we replaced 1837 // all call uses with the inferred value. This means we don't need to bother 1838 // actually returning anything from the function. Replace all return 1839 // instructions with return undef. 1840 // TODO: Process multiple value ret instructions also. 1841 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1842 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1843 E = RV.end(); I != E; ++I) 1844 if (!I->second.isOverdefined() && 1845 I->first->getReturnType() != Type::VoidTy) { 1846 Function *F = I->first; 1847 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1848 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1849 if (!isa<UndefValue>(RI->getOperand(0))) 1850 RI->setOperand(0, Context->getUndef(F->getReturnType())); 1851 } 1852 1853 // If we infered constant or undef values for globals variables, we can delete 1854 // the global and any stores that remain to it. 1855 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1856 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1857 E = TG.end(); I != E; ++I) { 1858 GlobalVariable *GV = I->first; 1859 assert(!I->second.isOverdefined() && 1860 "Overdefined values should have been taken out of the map!"); 1861 DOUT << "Found that GV '" << GV->getNameStart() << "' is constant!\n"; 1862 while (!GV->use_empty()) { 1863 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1864 SI->eraseFromParent(); 1865 } 1866 M.getGlobalList().erase(GV); 1867 ++IPNumGlobalConst; 1868 } 1869 1870 return MadeChanges; 1871} 1872