SCCP.cpp revision ecd94c804a563f2a86572dcf1d2e81f397e19daa
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#define DEBUG_TYPE "sccp" 25#include "llvm/Transforms/Scalar.h" 26#include "llvm/Transforms/IPO.h" 27#include "llvm/Constants.h" 28#include "llvm/DerivedTypes.h" 29#include "llvm/Instructions.h" 30#include "llvm/Pass.h" 31#include "llvm/Analysis/ConstantFolding.h" 32#include "llvm/Transforms/Utils/Local.h" 33#include "llvm/Support/CallSite.h" 34#include "llvm/Support/Compiler.h" 35#include "llvm/Support/Debug.h" 36#include "llvm/Support/InstVisitor.h" 37#include "llvm/ADT/DenseMap.h" 38#include "llvm/ADT/SmallSet.h" 39#include "llvm/ADT/SmallVector.h" 40#include "llvm/ADT/Statistic.h" 41#include "llvm/ADT/STLExtras.h" 42#include <algorithm> 43using namespace llvm; 44 45STATISTIC(NumInstRemoved, "Number of instructions removed"); 46STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 47 48STATISTIC(IPNumInstRemoved, "Number ofinstructions removed by IPSCCP"); 49STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP"); 50STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 51STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 52 53namespace { 54/// LatticeVal class - This class represents the different lattice values that 55/// an LLVM value may occupy. It is a simple class with value semantics. 56/// 57class VISIBILITY_HIDDEN LatticeVal { 58 enum { 59 /// undefined - This LLVM Value has no known value yet. 60 undefined, 61 62 /// constant - This LLVM Value has a specific constant value. 63 constant, 64 65 /// forcedconstant - This LLVM Value was thought to be undef until 66 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 67 /// with another (different) constant, it goes to overdefined, instead of 68 /// asserting. 69 forcedconstant, 70 71 /// overdefined - This instruction is not known to be constant, and we know 72 /// it has a value. 73 overdefined 74 } LatticeValue; // The current lattice position 75 76 Constant *ConstantVal; // If Constant value, the current value 77public: 78 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} 79 80 // markOverdefined - Return true if this is a new status to be in... 81 inline bool markOverdefined() { 82 if (LatticeValue != overdefined) { 83 LatticeValue = overdefined; 84 return true; 85 } 86 return false; 87 } 88 89 // markConstant - Return true if this is a new status for us. 90 inline bool markConstant(Constant *V) { 91 if (LatticeValue != constant) { 92 if (LatticeValue == undefined) { 93 LatticeValue = constant; 94 assert(V && "Marking constant with NULL"); 95 ConstantVal = V; 96 } else { 97 assert(LatticeValue == forcedconstant && 98 "Cannot move from overdefined to constant!"); 99 // Stay at forcedconstant if the constant is the same. 100 if (V == ConstantVal) return false; 101 102 // Otherwise, we go to overdefined. Assumptions made based on the 103 // forced value are possibly wrong. Assuming this is another constant 104 // could expose a contradiction. 105 LatticeValue = overdefined; 106 } 107 return true; 108 } else { 109 assert(ConstantVal == V && "Marking constant with different value"); 110 } 111 return false; 112 } 113 114 inline void markForcedConstant(Constant *V) { 115 assert(LatticeValue == undefined && "Can't force a defined value!"); 116 LatticeValue = forcedconstant; 117 ConstantVal = V; 118 } 119 120 inline bool isUndefined() const { return LatticeValue == undefined; } 121 inline bool isConstant() const { 122 return LatticeValue == constant || LatticeValue == forcedconstant; 123 } 124 inline bool isOverdefined() const { return LatticeValue == overdefined; } 125 126 inline Constant *getConstant() const { 127 assert(isConstant() && "Cannot get the constant of a non-constant!"); 128 return ConstantVal; 129 } 130}; 131 132} // end anonymous namespace 133 134 135//===----------------------------------------------------------------------===// 136// 137/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 138/// Constant Propagation. 139/// 140class SCCPSolver : public InstVisitor<SCCPSolver> { 141 SmallSet<BasicBlock*, 16> BBExecutable;// The basic blocks that are executable 142 std::map<Value*, LatticeVal> ValueState; // The state each value is in. 143 144 /// GlobalValue - If we are tracking any values for the contents of a global 145 /// variable, we keep a mapping from the constant accessor to the element of 146 /// the global, to the currently known value. If the value becomes 147 /// overdefined, it's entry is simply removed from this map. 148 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 149 150 /// TrackedFunctionRetVals - If we are tracking arguments into and the return 151 /// value out of a function, it will have an entry in this map, indicating 152 /// what the known return value for the function is. 153 DenseMap<Function*, LatticeVal> TrackedFunctionRetVals; 154 155 // The reason for two worklists is that overdefined is the lowest state 156 // on the lattice, and moving things to overdefined as fast as possible 157 // makes SCCP converge much faster. 158 // By having a separate worklist, we accomplish this because everything 159 // possibly overdefined will become overdefined at the soonest possible 160 // point. 161 std::vector<Value*> OverdefinedInstWorkList; 162 std::vector<Value*> InstWorkList; 163 164 165 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list 166 167 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 168 /// overdefined, despite the fact that the PHI node is overdefined. 169 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 170 171 /// KnownFeasibleEdges - Entries in this set are edges which have already had 172 /// PHI nodes retriggered. 173 typedef std::pair<BasicBlock*,BasicBlock*> Edge; 174 std::set<Edge> KnownFeasibleEdges; 175public: 176 177 /// MarkBlockExecutable - This method can be used by clients to mark all of 178 /// the blocks that are known to be intrinsically live in the processed unit. 179 void MarkBlockExecutable(BasicBlock *BB) { 180 DOUT << "Marking Block Executable: " << BB->getName() << "\n"; 181 BBExecutable.insert(BB); // Basic block is executable! 182 BBWorkList.push_back(BB); // Add the block to the work list! 183 } 184 185 /// TrackValueOfGlobalVariable - Clients can use this method to 186 /// inform the SCCPSolver that it should track loads and stores to the 187 /// specified global variable if it can. This is only legal to call if 188 /// performing Interprocedural SCCP. 189 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 190 const Type *ElTy = GV->getType()->getElementType(); 191 if (ElTy->isFirstClassType()) { 192 LatticeVal &IV = TrackedGlobals[GV]; 193 if (!isa<UndefValue>(GV->getInitializer())) 194 IV.markConstant(GV->getInitializer()); 195 } 196 } 197 198 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 199 /// and out of the specified function (which cannot have its address taken), 200 /// this method must be called. 201 void AddTrackedFunction(Function *F) { 202 assert(F->hasInternalLinkage() && "Can only track internal functions!"); 203 // Add an entry, F -> undef. 204 TrackedFunctionRetVals[F]; 205 } 206 207 /// Solve - Solve for constants and executable blocks. 208 /// 209 void Solve(); 210 211 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 212 /// that branches on undef values cannot reach any of their successors. 213 /// However, this is not a safe assumption. After we solve dataflow, this 214 /// method should be use to handle this. If this returns true, the solver 215 /// should be rerun. 216 bool ResolvedUndefsIn(Function &F); 217 218 /// getExecutableBlocks - Once we have solved for constants, return the set of 219 /// blocks that is known to be executable. 220 SmallSet<BasicBlock*, 16> &getExecutableBlocks() { 221 return BBExecutable; 222 } 223 224 /// getValueMapping - Once we have solved for constants, return the mapping of 225 /// LLVM values to LatticeVals. 226 std::map<Value*, LatticeVal> &getValueMapping() { 227 return ValueState; 228 } 229 230 /// getTrackedFunctionRetVals - Get the inferred return value map. 231 /// 232 const DenseMap<Function*, LatticeVal> &getTrackedFunctionRetVals() { 233 return TrackedFunctionRetVals; 234 } 235 236 /// getTrackedGlobals - Get and return the set of inferred initializers for 237 /// global variables. 238 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 239 return TrackedGlobals; 240 } 241 242 inline void markOverdefined(Value *V) { 243 markOverdefined(ValueState[V], V); 244 } 245 246private: 247 // markConstant - Make a value be marked as "constant". If the value 248 // is not already a constant, add it to the instruction work list so that 249 // the users of the instruction are updated later. 250 // 251 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { 252 if (IV.markConstant(C)) { 253 DOUT << "markConstant: " << *C << ": " << *V; 254 InstWorkList.push_back(V); 255 } 256 } 257 258 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) { 259 IV.markForcedConstant(C); 260 DOUT << "markForcedConstant: " << *C << ": " << *V; 261 InstWorkList.push_back(V); 262 } 263 264 inline void markConstant(Value *V, Constant *C) { 265 markConstant(ValueState[V], V, C); 266 } 267 268 // markOverdefined - Make a value be marked as "overdefined". If the 269 // value is not already overdefined, add it to the overdefined instruction 270 // work list so that the users of the instruction are updated later. 271 272 inline void markOverdefined(LatticeVal &IV, Value *V) { 273 if (IV.markOverdefined()) { 274 DEBUG(DOUT << "markOverdefined: "; 275 if (Function *F = dyn_cast<Function>(V)) 276 DOUT << "Function '" << F->getName() << "'\n"; 277 else 278 DOUT << *V); 279 // Only instructions go on the work list 280 OverdefinedInstWorkList.push_back(V); 281 } 282 } 283 284 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { 285 if (IV.isOverdefined() || MergeWithV.isUndefined()) 286 return; // Noop. 287 if (MergeWithV.isOverdefined()) 288 markOverdefined(IV, V); 289 else if (IV.isUndefined()) 290 markConstant(IV, V, MergeWithV.getConstant()); 291 else if (IV.getConstant() != MergeWithV.getConstant()) 292 markOverdefined(IV, V); 293 } 294 295 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) { 296 return mergeInValue(ValueState[V], V, MergeWithV); 297 } 298 299 300 // getValueState - Return the LatticeVal object that corresponds to the value. 301 // This function is necessary because not all values should start out in the 302 // underdefined state... Argument's should be overdefined, and 303 // constants should be marked as constants. If a value is not known to be an 304 // Instruction object, then use this accessor to get its value from the map. 305 // 306 inline LatticeVal &getValueState(Value *V) { 307 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V); 308 if (I != ValueState.end()) return I->second; // Common case, in the map 309 310 if (Constant *C = dyn_cast<Constant>(V)) { 311 if (isa<UndefValue>(V)) { 312 // Nothing to do, remain undefined. 313 } else { 314 LatticeVal &LV = ValueState[C]; 315 LV.markConstant(C); // Constants are constant 316 return LV; 317 } 318 } 319 // All others are underdefined by default... 320 return ValueState[V]; 321 } 322 323 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 324 // work list if it is not already executable... 325 // 326 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 327 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 328 return; // This edge is already known to be executable! 329 330 if (BBExecutable.count(Dest)) { 331 DOUT << "Marking Edge Executable: " << Source->getName() 332 << " -> " << Dest->getName() << "\n"; 333 334 // The destination is already executable, but we just made an edge 335 // feasible that wasn't before. Revisit the PHI nodes in the block 336 // because they have potentially new operands. 337 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 338 visitPHINode(*cast<PHINode>(I)); 339 340 } else { 341 MarkBlockExecutable(Dest); 342 } 343 } 344 345 // getFeasibleSuccessors - Return a vector of booleans to indicate which 346 // successors are reachable from a given terminator instruction. 347 // 348 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); 349 350 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 351 // block to the 'To' basic block is currently feasible... 352 // 353 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 354 355 // OperandChangedState - This method is invoked on all of the users of an 356 // instruction that was just changed state somehow.... Based on this 357 // information, we need to update the specified user of this instruction. 358 // 359 void OperandChangedState(User *U) { 360 // Only instructions use other variable values! 361 Instruction &I = cast<Instruction>(*U); 362 if (BBExecutable.count(I.getParent())) // Inst is executable? 363 visit(I); 364 } 365 366private: 367 friend class InstVisitor<SCCPSolver>; 368 369 // visit implementations - Something changed in this instruction... Either an 370 // operand made a transition, or the instruction is newly executable. Change 371 // the value type of I to reflect these changes if appropriate. 372 // 373 void visitPHINode(PHINode &I); 374 375 // Terminators 376 void visitReturnInst(ReturnInst &I); 377 void visitTerminatorInst(TerminatorInst &TI); 378 379 void visitCastInst(CastInst &I); 380 void visitSelectInst(SelectInst &I); 381 void visitBinaryOperator(Instruction &I); 382 void visitCmpInst(CmpInst &I); 383 void visitExtractElementInst(ExtractElementInst &I); 384 void visitInsertElementInst(InsertElementInst &I); 385 void visitShuffleVectorInst(ShuffleVectorInst &I); 386 387 // Instructions that cannot be folded away... 388 void visitStoreInst (Instruction &I); 389 void visitLoadInst (LoadInst &I); 390 void visitGetElementPtrInst(GetElementPtrInst &I); 391 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); } 392 void visitInvokeInst (InvokeInst &II) { 393 visitCallSite(CallSite::get(&II)); 394 visitTerminatorInst(II); 395 } 396 void visitCallSite (CallSite CS); 397 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 398 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 399 void visitAllocationInst(Instruction &I) { markOverdefined(&I); } 400 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 401 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 402 void visitFreeInst (Instruction &I) { /*returns void*/ } 403 404 void visitInstruction(Instruction &I) { 405 // If a new instruction is added to LLVM that we don't handle... 406 cerr << "SCCP: Don't know how to handle: " << I; 407 markOverdefined(&I); // Just in case 408 } 409}; 410 411// getFeasibleSuccessors - Return a vector of booleans to indicate which 412// successors are reachable from a given terminator instruction. 413// 414void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 415 SmallVector<bool, 16> &Succs) { 416 Succs.resize(TI.getNumSuccessors()); 417 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 418 if (BI->isUnconditional()) { 419 Succs[0] = true; 420 } else { 421 LatticeVal &BCValue = getValueState(BI->getCondition()); 422 if (BCValue.isOverdefined() || 423 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) { 424 // Overdefined condition variables, and branches on unfoldable constant 425 // conditions, mean the branch could go either way. 426 Succs[0] = Succs[1] = true; 427 } else if (BCValue.isConstant()) { 428 // Constant condition variables mean the branch can only go a single way 429 Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true; 430 } 431 } 432 } else if (isa<InvokeInst>(&TI)) { 433 // Invoke instructions successors are always executable. 434 Succs[0] = Succs[1] = true; 435 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 436 LatticeVal &SCValue = getValueState(SI->getCondition()); 437 if (SCValue.isOverdefined() || // Overdefined condition? 438 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 439 // All destinations are executable! 440 Succs.assign(TI.getNumSuccessors(), true); 441 } else if (SCValue.isConstant()) { 442 Constant *CPV = SCValue.getConstant(); 443 // Make sure to skip the "default value" which isn't a value 444 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { 445 if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... 446 Succs[i] = true; 447 return; 448 } 449 } 450 451 // Constant value not equal to any of the branches... must execute 452 // default branch then... 453 Succs[0] = true; 454 } 455 } else { 456 assert(0 && "SCCP: Don't know how to handle this terminator!"); 457 } 458} 459 460 461// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 462// block to the 'To' basic block is currently feasible... 463// 464bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 465 assert(BBExecutable.count(To) && "Dest should always be alive!"); 466 467 // Make sure the source basic block is executable!! 468 if (!BBExecutable.count(From)) return false; 469 470 // Check to make sure this edge itself is actually feasible now... 471 TerminatorInst *TI = From->getTerminator(); 472 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 473 if (BI->isUnconditional()) 474 return true; 475 else { 476 LatticeVal &BCValue = getValueState(BI->getCondition()); 477 if (BCValue.isOverdefined()) { 478 // Overdefined condition variables mean the branch could go either way. 479 return true; 480 } else if (BCValue.isConstant()) { 481 // Not branching on an evaluatable constant? 482 if (!isa<ConstantInt>(BCValue.getConstant())) return true; 483 484 // Constant condition variables mean the branch can only go a single way 485 return BI->getSuccessor(BCValue.getConstant() == 486 ConstantInt::getFalse()) == To; 487 } 488 return false; 489 } 490 } else if (isa<InvokeInst>(TI)) { 491 // Invoke instructions successors are always executable. 492 return true; 493 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 494 LatticeVal &SCValue = getValueState(SI->getCondition()); 495 if (SCValue.isOverdefined()) { // Overdefined condition? 496 // All destinations are executable! 497 return true; 498 } else if (SCValue.isConstant()) { 499 Constant *CPV = SCValue.getConstant(); 500 if (!isa<ConstantInt>(CPV)) 501 return true; // not a foldable constant? 502 503 // Make sure to skip the "default value" which isn't a value 504 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 505 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 506 return SI->getSuccessor(i) == To; 507 508 // Constant value not equal to any of the branches... must execute 509 // default branch then... 510 return SI->getDefaultDest() == To; 511 } 512 return false; 513 } else { 514 cerr << "Unknown terminator instruction: " << *TI; 515 abort(); 516 } 517} 518 519// visit Implementations - Something changed in this instruction... Either an 520// operand made a transition, or the instruction is newly executable. Change 521// the value type of I to reflect these changes if appropriate. This method 522// makes sure to do the following actions: 523// 524// 1. If a phi node merges two constants in, and has conflicting value coming 525// from different branches, or if the PHI node merges in an overdefined 526// value, then the PHI node becomes overdefined. 527// 2. If a phi node merges only constants in, and they all agree on value, the 528// PHI node becomes a constant value equal to that. 529// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 530// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 531// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 532// 6. If a conditional branch has a value that is constant, make the selected 533// destination executable 534// 7. If a conditional branch has a value that is overdefined, make all 535// successors executable. 536// 537void SCCPSolver::visitPHINode(PHINode &PN) { 538 LatticeVal &PNIV = getValueState(&PN); 539 if (PNIV.isOverdefined()) { 540 // There may be instructions using this PHI node that are not overdefined 541 // themselves. If so, make sure that they know that the PHI node operand 542 // changed. 543 std::multimap<PHINode*, Instruction*>::iterator I, E; 544 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 545 if (I != E) { 546 SmallVector<Instruction*, 16> Users; 547 for (; I != E; ++I) Users.push_back(I->second); 548 while (!Users.empty()) { 549 visit(Users.back()); 550 Users.pop_back(); 551 } 552 } 553 return; // Quick exit 554 } 555 556 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 557 // and slow us down a lot. Just mark them overdefined. 558 if (PN.getNumIncomingValues() > 64) { 559 markOverdefined(PNIV, &PN); 560 return; 561 } 562 563 // Look at all of the executable operands of the PHI node. If any of them 564 // are overdefined, the PHI becomes overdefined as well. If they are all 565 // constant, and they agree with each other, the PHI becomes the identical 566 // constant. If they are constant and don't agree, the PHI is overdefined. 567 // If there are no executable operands, the PHI remains undefined. 568 // 569 Constant *OperandVal = 0; 570 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 571 LatticeVal &IV = getValueState(PN.getIncomingValue(i)); 572 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 573 574 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 575 if (IV.isOverdefined()) { // PHI node becomes overdefined! 576 markOverdefined(PNIV, &PN); 577 return; 578 } 579 580 if (OperandVal == 0) { // Grab the first value... 581 OperandVal = IV.getConstant(); 582 } else { // Another value is being merged in! 583 // There is already a reachable operand. If we conflict with it, 584 // then the PHI node becomes overdefined. If we agree with it, we 585 // can continue on. 586 587 // Check to see if there are two different constants merging... 588 if (IV.getConstant() != OperandVal) { 589 // Yes there is. This means the PHI node is not constant. 590 // You must be overdefined poor PHI. 591 // 592 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined 593 return; // I'm done analyzing you 594 } 595 } 596 } 597 } 598 599 // If we exited the loop, this means that the PHI node only has constant 600 // arguments that agree with each other(and OperandVal is the constant) or 601 // OperandVal is null because there are no defined incoming arguments. If 602 // this is the case, the PHI remains undefined. 603 // 604 if (OperandVal) 605 markConstant(PNIV, &PN, OperandVal); // Acquire operand value 606} 607 608void SCCPSolver::visitReturnInst(ReturnInst &I) { 609 if (I.getNumOperands() == 0) return; // Ret void 610 611 // If we are tracking the return value of this function, merge it in. 612 Function *F = I.getParent()->getParent(); 613 if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) { 614 DenseMap<Function*, LatticeVal>::iterator TFRVI = 615 TrackedFunctionRetVals.find(F); 616 if (TFRVI != TrackedFunctionRetVals.end() && 617 !TFRVI->second.isOverdefined()) { 618 LatticeVal &IV = getValueState(I.getOperand(0)); 619 mergeInValue(TFRVI->second, F, IV); 620 } 621 } 622} 623 624 625void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 626 SmallVector<bool, 16> SuccFeasible; 627 getFeasibleSuccessors(TI, SuccFeasible); 628 629 BasicBlock *BB = TI.getParent(); 630 631 // Mark all feasible successors executable... 632 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 633 if (SuccFeasible[i]) 634 markEdgeExecutable(BB, TI.getSuccessor(i)); 635} 636 637void SCCPSolver::visitCastInst(CastInst &I) { 638 Value *V = I.getOperand(0); 639 LatticeVal &VState = getValueState(V); 640 if (VState.isOverdefined()) // Inherit overdefinedness of operand 641 markOverdefined(&I); 642 else if (VState.isConstant()) // Propagate constant value 643 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 644 VState.getConstant(), I.getType())); 645} 646 647void SCCPSolver::visitSelectInst(SelectInst &I) { 648 LatticeVal &CondValue = getValueState(I.getCondition()); 649 if (CondValue.isUndefined()) 650 return; 651 if (CondValue.isConstant()) { 652 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){ 653 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue() 654 : I.getFalseValue())); 655 return; 656 } 657 } 658 659 // Otherwise, the condition is overdefined or a constant we can't evaluate. 660 // See if we can produce something better than overdefined based on the T/F 661 // value. 662 LatticeVal &TVal = getValueState(I.getTrueValue()); 663 LatticeVal &FVal = getValueState(I.getFalseValue()); 664 665 // select ?, C, C -> C. 666 if (TVal.isConstant() && FVal.isConstant() && 667 TVal.getConstant() == FVal.getConstant()) { 668 markConstant(&I, FVal.getConstant()); 669 return; 670 } 671 672 if (TVal.isUndefined()) { // select ?, undef, X -> X. 673 mergeInValue(&I, FVal); 674 } else if (FVal.isUndefined()) { // select ?, X, undef -> X. 675 mergeInValue(&I, TVal); 676 } else { 677 markOverdefined(&I); 678 } 679} 680 681// Handle BinaryOperators and Shift Instructions... 682void SCCPSolver::visitBinaryOperator(Instruction &I) { 683 LatticeVal &IV = ValueState[&I]; 684 if (IV.isOverdefined()) return; 685 686 LatticeVal &V1State = getValueState(I.getOperand(0)); 687 LatticeVal &V2State = getValueState(I.getOperand(1)); 688 689 if (V1State.isOverdefined() || V2State.isOverdefined()) { 690 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 691 // operand is overdefined. 692 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 693 LatticeVal *NonOverdefVal = 0; 694 if (!V1State.isOverdefined()) { 695 NonOverdefVal = &V1State; 696 } else if (!V2State.isOverdefined()) { 697 NonOverdefVal = &V2State; 698 } 699 700 if (NonOverdefVal) { 701 if (NonOverdefVal->isUndefined()) { 702 // Could annihilate value. 703 if (I.getOpcode() == Instruction::And) 704 markConstant(IV, &I, Constant::getNullValue(I.getType())); 705 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType())) 706 markConstant(IV, &I, ConstantVector::getAllOnesValue(PT)); 707 else 708 markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType())); 709 return; 710 } else { 711 if (I.getOpcode() == Instruction::And) { 712 if (NonOverdefVal->getConstant()->isNullValue()) { 713 markConstant(IV, &I, NonOverdefVal->getConstant()); 714 return; // X and 0 = 0 715 } 716 } else { 717 if (ConstantInt *CI = 718 dyn_cast<ConstantInt>(NonOverdefVal->getConstant())) 719 if (CI->isAllOnesValue()) { 720 markConstant(IV, &I, NonOverdefVal->getConstant()); 721 return; // X or -1 = -1 722 } 723 } 724 } 725 } 726 } 727 728 729 // If both operands are PHI nodes, it is possible that this instruction has 730 // a constant value, despite the fact that the PHI node doesn't. Check for 731 // this condition now. 732 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 733 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 734 if (PN1->getParent() == PN2->getParent()) { 735 // Since the two PHI nodes are in the same basic block, they must have 736 // entries for the same predecessors. Walk the predecessor list, and 737 // if all of the incoming values are constants, and the result of 738 // evaluating this expression with all incoming value pairs is the 739 // same, then this expression is a constant even though the PHI node 740 // is not a constant! 741 LatticeVal Result; 742 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 743 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 744 BasicBlock *InBlock = PN1->getIncomingBlock(i); 745 LatticeVal &In2 = 746 getValueState(PN2->getIncomingValueForBlock(InBlock)); 747 748 if (In1.isOverdefined() || In2.isOverdefined()) { 749 Result.markOverdefined(); 750 break; // Cannot fold this operation over the PHI nodes! 751 } else if (In1.isConstant() && In2.isConstant()) { 752 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), 753 In2.getConstant()); 754 if (Result.isUndefined()) 755 Result.markConstant(V); 756 else if (Result.isConstant() && Result.getConstant() != V) { 757 Result.markOverdefined(); 758 break; 759 } 760 } 761 } 762 763 // If we found a constant value here, then we know the instruction is 764 // constant despite the fact that the PHI nodes are overdefined. 765 if (Result.isConstant()) { 766 markConstant(IV, &I, Result.getConstant()); 767 // Remember that this instruction is virtually using the PHI node 768 // operands. 769 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 770 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 771 return; 772 } else if (Result.isUndefined()) { 773 return; 774 } 775 776 // Okay, this really is overdefined now. Since we might have 777 // speculatively thought that this was not overdefined before, and 778 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 779 // make sure to clean out any entries that we put there, for 780 // efficiency. 781 std::multimap<PHINode*, Instruction*>::iterator It, E; 782 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 783 while (It != E) { 784 if (It->second == &I) { 785 UsersOfOverdefinedPHIs.erase(It++); 786 } else 787 ++It; 788 } 789 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 790 while (It != E) { 791 if (It->second == &I) { 792 UsersOfOverdefinedPHIs.erase(It++); 793 } else 794 ++It; 795 } 796 } 797 798 markOverdefined(IV, &I); 799 } else if (V1State.isConstant() && V2State.isConstant()) { 800 markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 801 V2State.getConstant())); 802 } 803} 804 805// Handle ICmpInst instruction... 806void SCCPSolver::visitCmpInst(CmpInst &I) { 807 LatticeVal &IV = ValueState[&I]; 808 if (IV.isOverdefined()) return; 809 810 LatticeVal &V1State = getValueState(I.getOperand(0)); 811 LatticeVal &V2State = getValueState(I.getOperand(1)); 812 813 if (V1State.isOverdefined() || V2State.isOverdefined()) { 814 // If both operands are PHI nodes, it is possible that this instruction has 815 // a constant value, despite the fact that the PHI node doesn't. Check for 816 // this condition now. 817 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 818 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 819 if (PN1->getParent() == PN2->getParent()) { 820 // Since the two PHI nodes are in the same basic block, they must have 821 // entries for the same predecessors. Walk the predecessor list, and 822 // if all of the incoming values are constants, and the result of 823 // evaluating this expression with all incoming value pairs is the 824 // same, then this expression is a constant even though the PHI node 825 // is not a constant! 826 LatticeVal Result; 827 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 828 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 829 BasicBlock *InBlock = PN1->getIncomingBlock(i); 830 LatticeVal &In2 = 831 getValueState(PN2->getIncomingValueForBlock(InBlock)); 832 833 if (In1.isOverdefined() || In2.isOverdefined()) { 834 Result.markOverdefined(); 835 break; // Cannot fold this operation over the PHI nodes! 836 } else if (In1.isConstant() && In2.isConstant()) { 837 Constant *V = ConstantExpr::getCompare(I.getPredicate(), 838 In1.getConstant(), 839 In2.getConstant()); 840 if (Result.isUndefined()) 841 Result.markConstant(V); 842 else if (Result.isConstant() && Result.getConstant() != V) { 843 Result.markOverdefined(); 844 break; 845 } 846 } 847 } 848 849 // If we found a constant value here, then we know the instruction is 850 // constant despite the fact that the PHI nodes are overdefined. 851 if (Result.isConstant()) { 852 markConstant(IV, &I, Result.getConstant()); 853 // Remember that this instruction is virtually using the PHI node 854 // operands. 855 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 856 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 857 return; 858 } else if (Result.isUndefined()) { 859 return; 860 } 861 862 // Okay, this really is overdefined now. Since we might have 863 // speculatively thought that this was not overdefined before, and 864 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 865 // make sure to clean out any entries that we put there, for 866 // efficiency. 867 std::multimap<PHINode*, Instruction*>::iterator It, E; 868 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 869 while (It != E) { 870 if (It->second == &I) { 871 UsersOfOverdefinedPHIs.erase(It++); 872 } else 873 ++It; 874 } 875 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 876 while (It != E) { 877 if (It->second == &I) { 878 UsersOfOverdefinedPHIs.erase(It++); 879 } else 880 ++It; 881 } 882 } 883 884 markOverdefined(IV, &I); 885 } else if (V1State.isConstant() && V2State.isConstant()) { 886 markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 887 V1State.getConstant(), 888 V2State.getConstant())); 889 } 890} 891 892void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 893 // FIXME : SCCP does not handle vectors properly. 894 markOverdefined(&I); 895 return; 896 897#if 0 898 LatticeVal &ValState = getValueState(I.getOperand(0)); 899 LatticeVal &IdxState = getValueState(I.getOperand(1)); 900 901 if (ValState.isOverdefined() || IdxState.isOverdefined()) 902 markOverdefined(&I); 903 else if(ValState.isConstant() && IdxState.isConstant()) 904 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 905 IdxState.getConstant())); 906#endif 907} 908 909void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 910 // FIXME : SCCP does not handle vectors properly. 911 markOverdefined(&I); 912 return; 913#if 0 914 LatticeVal &ValState = getValueState(I.getOperand(0)); 915 LatticeVal &EltState = getValueState(I.getOperand(1)); 916 LatticeVal &IdxState = getValueState(I.getOperand(2)); 917 918 if (ValState.isOverdefined() || EltState.isOverdefined() || 919 IdxState.isOverdefined()) 920 markOverdefined(&I); 921 else if(ValState.isConstant() && EltState.isConstant() && 922 IdxState.isConstant()) 923 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 924 EltState.getConstant(), 925 IdxState.getConstant())); 926 else if (ValState.isUndefined() && EltState.isConstant() && 927 IdxState.isConstant()) 928 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 929 EltState.getConstant(), 930 IdxState.getConstant())); 931#endif 932} 933 934void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 935 // FIXME : SCCP does not handle vectors properly. 936 markOverdefined(&I); 937 return; 938#if 0 939 LatticeVal &V1State = getValueState(I.getOperand(0)); 940 LatticeVal &V2State = getValueState(I.getOperand(1)); 941 LatticeVal &MaskState = getValueState(I.getOperand(2)); 942 943 if (MaskState.isUndefined() || 944 (V1State.isUndefined() && V2State.isUndefined())) 945 return; // Undefined output if mask or both inputs undefined. 946 947 if (V1State.isOverdefined() || V2State.isOverdefined() || 948 MaskState.isOverdefined()) { 949 markOverdefined(&I); 950 } else { 951 // A mix of constant/undef inputs. 952 Constant *V1 = V1State.isConstant() ? 953 V1State.getConstant() : UndefValue::get(I.getType()); 954 Constant *V2 = V2State.isConstant() ? 955 V2State.getConstant() : UndefValue::get(I.getType()); 956 Constant *Mask = MaskState.isConstant() ? 957 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 958 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 959 } 960#endif 961} 962 963// Handle getelementptr instructions... if all operands are constants then we 964// can turn this into a getelementptr ConstantExpr. 965// 966void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 967 LatticeVal &IV = ValueState[&I]; 968 if (IV.isOverdefined()) return; 969 970 SmallVector<Constant*, 8> Operands; 971 Operands.reserve(I.getNumOperands()); 972 973 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 974 LatticeVal &State = getValueState(I.getOperand(i)); 975 if (State.isUndefined()) 976 return; // Operands are not resolved yet... 977 else if (State.isOverdefined()) { 978 markOverdefined(IV, &I); 979 return; 980 } 981 assert(State.isConstant() && "Unknown state!"); 982 Operands.push_back(State.getConstant()); 983 } 984 985 Constant *Ptr = Operands[0]; 986 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 987 988 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0], 989 Operands.size())); 990} 991 992void SCCPSolver::visitStoreInst(Instruction &SI) { 993 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 994 return; 995 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 996 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 997 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 998 999 // Get the value we are storing into the global. 1000 LatticeVal &PtrVal = getValueState(SI.getOperand(0)); 1001 1002 mergeInValue(I->second, GV, PtrVal); 1003 if (I->second.isOverdefined()) 1004 TrackedGlobals.erase(I); // No need to keep tracking this! 1005} 1006 1007 1008// Handle load instructions. If the operand is a constant pointer to a constant 1009// global, we can replace the load with the loaded constant value! 1010void SCCPSolver::visitLoadInst(LoadInst &I) { 1011 LatticeVal &IV = ValueState[&I]; 1012 if (IV.isOverdefined()) return; 1013 1014 LatticeVal &PtrVal = getValueState(I.getOperand(0)); 1015 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1016 if (PtrVal.isConstant() && !I.isVolatile()) { 1017 Value *Ptr = PtrVal.getConstant(); 1018 if (isa<ConstantPointerNull>(Ptr)) { 1019 // load null -> null 1020 markConstant(IV, &I, Constant::getNullValue(I.getType())); 1021 return; 1022 } 1023 1024 // Transform load (constant global) into the value loaded. 1025 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1026 if (GV->isConstant()) { 1027 if (!GV->isDeclaration()) { 1028 markConstant(IV, &I, GV->getInitializer()); 1029 return; 1030 } 1031 } else if (!TrackedGlobals.empty()) { 1032 // If we are tracking this global, merge in the known value for it. 1033 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1034 TrackedGlobals.find(GV); 1035 if (It != TrackedGlobals.end()) { 1036 mergeInValue(IV, &I, It->second); 1037 return; 1038 } 1039 } 1040 } 1041 1042 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 1043 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 1044 if (CE->getOpcode() == Instruction::GetElementPtr) 1045 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 1046 if (GV->isConstant() && !GV->isDeclaration()) 1047 if (Constant *V = 1048 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) { 1049 markConstant(IV, &I, V); 1050 return; 1051 } 1052 } 1053 1054 // Otherwise we cannot say for certain what value this load will produce. 1055 // Bail out. 1056 markOverdefined(IV, &I); 1057} 1058 1059void SCCPSolver::visitCallSite(CallSite CS) { 1060 Function *F = CS.getCalledFunction(); 1061 1062 // If we are tracking this function, we must make sure to bind arguments as 1063 // appropriate. 1064 DenseMap<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end(); 1065 if (F && F->hasInternalLinkage()) 1066 TFRVI = TrackedFunctionRetVals.find(F); 1067 1068 if (TFRVI != TrackedFunctionRetVals.end()) { 1069 // If this is the first call to the function hit, mark its entry block 1070 // executable. 1071 if (!BBExecutable.count(F->begin())) 1072 MarkBlockExecutable(F->begin()); 1073 1074 CallSite::arg_iterator CAI = CS.arg_begin(); 1075 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1076 AI != E; ++AI, ++CAI) { 1077 LatticeVal &IV = ValueState[AI]; 1078 if (!IV.isOverdefined()) 1079 mergeInValue(IV, AI, getValueState(*CAI)); 1080 } 1081 } 1082 Instruction *I = CS.getInstruction(); 1083 if (I->getType() == Type::VoidTy) return; 1084 1085 LatticeVal &IV = ValueState[I]; 1086 if (IV.isOverdefined()) return; 1087 1088 // Propagate the return value of the function to the value of the instruction. 1089 if (TFRVI != TrackedFunctionRetVals.end()) { 1090 mergeInValue(IV, I, TFRVI->second); 1091 return; 1092 } 1093 1094 if (F == 0 || !F->isDeclaration() || !canConstantFoldCallTo(F)) { 1095 markOverdefined(IV, I); 1096 return; 1097 } 1098 1099 SmallVector<Constant*, 8> Operands; 1100 Operands.reserve(I->getNumOperands()-1); 1101 1102 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1103 AI != E; ++AI) { 1104 LatticeVal &State = getValueState(*AI); 1105 if (State.isUndefined()) 1106 return; // Operands are not resolved yet... 1107 else if (State.isOverdefined()) { 1108 markOverdefined(IV, I); 1109 return; 1110 } 1111 assert(State.isConstant() && "Unknown state!"); 1112 Operands.push_back(State.getConstant()); 1113 } 1114 1115 if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size())) 1116 markConstant(IV, I, C); 1117 else 1118 markOverdefined(IV, I); 1119} 1120 1121 1122void SCCPSolver::Solve() { 1123 // Process the work lists until they are empty! 1124 while (!BBWorkList.empty() || !InstWorkList.empty() || 1125 !OverdefinedInstWorkList.empty()) { 1126 // Process the instruction work list... 1127 while (!OverdefinedInstWorkList.empty()) { 1128 Value *I = OverdefinedInstWorkList.back(); 1129 OverdefinedInstWorkList.pop_back(); 1130 1131 DOUT << "\nPopped off OI-WL: " << *I; 1132 1133 // "I" got into the work list because it either made the transition from 1134 // bottom to constant 1135 // 1136 // Anything on this worklist that is overdefined need not be visited 1137 // since all of its users will have already been marked as overdefined 1138 // Update all of the users of this instruction's value... 1139 // 1140 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1141 UI != E; ++UI) 1142 OperandChangedState(*UI); 1143 } 1144 // Process the instruction work list... 1145 while (!InstWorkList.empty()) { 1146 Value *I = InstWorkList.back(); 1147 InstWorkList.pop_back(); 1148 1149 DOUT << "\nPopped off I-WL: " << *I; 1150 1151 // "I" got into the work list because it either made the transition from 1152 // bottom to constant 1153 // 1154 // Anything on this worklist that is overdefined need not be visited 1155 // since all of its users will have already been marked as overdefined. 1156 // Update all of the users of this instruction's value... 1157 // 1158 if (!getValueState(I).isOverdefined()) 1159 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1160 UI != E; ++UI) 1161 OperandChangedState(*UI); 1162 } 1163 1164 // Process the basic block work list... 1165 while (!BBWorkList.empty()) { 1166 BasicBlock *BB = BBWorkList.back(); 1167 BBWorkList.pop_back(); 1168 1169 DOUT << "\nPopped off BBWL: " << *BB; 1170 1171 // Notify all instructions in this basic block that they are newly 1172 // executable. 1173 visit(BB); 1174 } 1175 } 1176} 1177 1178/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1179/// that branches on undef values cannot reach any of their successors. 1180/// However, this is not a safe assumption. After we solve dataflow, this 1181/// method should be use to handle this. If this returns true, the solver 1182/// should be rerun. 1183/// 1184/// This method handles this by finding an unresolved branch and marking it one 1185/// of the edges from the block as being feasible, even though the condition 1186/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1187/// CFG and only slightly pessimizes the analysis results (by marking one, 1188/// potentially infeasible, edge feasible). This cannot usefully modify the 1189/// constraints on the condition of the branch, as that would impact other users 1190/// of the value. 1191/// 1192/// This scan also checks for values that use undefs, whose results are actually 1193/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1194/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1195/// even if X isn't defined. 1196bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1197 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1198 if (!BBExecutable.count(BB)) 1199 continue; 1200 1201 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1202 // Look for instructions which produce undef values. 1203 if (I->getType() == Type::VoidTy) continue; 1204 1205 LatticeVal &LV = getValueState(I); 1206 if (!LV.isUndefined()) continue; 1207 1208 // Get the lattice values of the first two operands for use below. 1209 LatticeVal &Op0LV = getValueState(I->getOperand(0)); 1210 LatticeVal Op1LV; 1211 if (I->getNumOperands() == 2) { 1212 // If this is a two-operand instruction, and if both operands are 1213 // undefs, the result stays undef. 1214 Op1LV = getValueState(I->getOperand(1)); 1215 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1216 continue; 1217 } 1218 1219 // If this is an instructions whose result is defined even if the input is 1220 // not fully defined, propagate the information. 1221 const Type *ITy = I->getType(); 1222 switch (I->getOpcode()) { 1223 default: break; // Leave the instruction as an undef. 1224 case Instruction::ZExt: 1225 // After a zero extend, we know the top part is zero. SExt doesn't have 1226 // to be handled here, because we don't know whether the top part is 1's 1227 // or 0's. 1228 assert(Op0LV.isUndefined()); 1229 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1230 return true; 1231 case Instruction::Mul: 1232 case Instruction::And: 1233 // undef * X -> 0. X could be zero. 1234 // undef & X -> 0. X could be zero. 1235 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1236 return true; 1237 1238 case Instruction::Or: 1239 // undef | X -> -1. X could be -1. 1240 if (const VectorType *PTy = dyn_cast<VectorType>(ITy)) 1241 markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy)); 1242 else 1243 markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy)); 1244 return true; 1245 1246 case Instruction::SDiv: 1247 case Instruction::UDiv: 1248 case Instruction::SRem: 1249 case Instruction::URem: 1250 // X / undef -> undef. No change. 1251 // X % undef -> undef. No change. 1252 if (Op1LV.isUndefined()) break; 1253 1254 // undef / X -> 0. X could be maxint. 1255 // undef % X -> 0. X could be 1. 1256 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1257 return true; 1258 1259 case Instruction::AShr: 1260 // undef >>s X -> undef. No change. 1261 if (Op0LV.isUndefined()) break; 1262 1263 // X >>s undef -> X. X could be 0, X could have the high-bit known set. 1264 if (Op0LV.isConstant()) 1265 markForcedConstant(LV, I, Op0LV.getConstant()); 1266 else 1267 markOverdefined(LV, I); 1268 return true; 1269 case Instruction::LShr: 1270 case Instruction::Shl: 1271 // undef >> X -> undef. No change. 1272 // undef << X -> undef. No change. 1273 if (Op0LV.isUndefined()) break; 1274 1275 // X >> undef -> 0. X could be 0. 1276 // X << undef -> 0. X could be 0. 1277 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1278 return true; 1279 case Instruction::Select: 1280 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1281 if (Op0LV.isUndefined()) { 1282 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1283 Op1LV = getValueState(I->getOperand(2)); 1284 } else if (Op1LV.isUndefined()) { 1285 // c ? undef : undef -> undef. No change. 1286 Op1LV = getValueState(I->getOperand(2)); 1287 if (Op1LV.isUndefined()) 1288 break; 1289 // Otherwise, c ? undef : x -> x. 1290 } else { 1291 // Leave Op1LV as Operand(1)'s LatticeValue. 1292 } 1293 1294 if (Op1LV.isConstant()) 1295 markForcedConstant(LV, I, Op1LV.getConstant()); 1296 else 1297 markOverdefined(LV, I); 1298 return true; 1299 } 1300 } 1301 1302 TerminatorInst *TI = BB->getTerminator(); 1303 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1304 if (!BI->isConditional()) continue; 1305 if (!getValueState(BI->getCondition()).isUndefined()) 1306 continue; 1307 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1308 if (!getValueState(SI->getCondition()).isUndefined()) 1309 continue; 1310 } else { 1311 continue; 1312 } 1313 1314 // If the edge to the first successor isn't thought to be feasible yet, mark 1315 // it so now. 1316 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(0)))) 1317 continue; 1318 1319 // Otherwise, it isn't already thought to be feasible. Mark it as such now 1320 // and return. This will make other blocks reachable, which will allow new 1321 // values to be discovered and existing ones to be moved in the lattice. 1322 markEdgeExecutable(BB, TI->getSuccessor(0)); 1323 return true; 1324 } 1325 1326 return false; 1327} 1328 1329 1330namespace { 1331 //===--------------------------------------------------------------------===// 1332 // 1333 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1334 /// Sparse Conditional Constant Propagator. 1335 /// 1336 struct VISIBILITY_HIDDEN SCCP : public FunctionPass { 1337 static char ID; // Pass identification, replacement for typeid 1338 SCCP() : FunctionPass((intptr_t)&ID) {} 1339 1340 // runOnFunction - Run the Sparse Conditional Constant Propagation 1341 // algorithm, and return true if the function was modified. 1342 // 1343 bool runOnFunction(Function &F); 1344 1345 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1346 AU.setPreservesCFG(); 1347 } 1348 }; 1349 1350 char SCCP::ID = 0; 1351 RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); 1352} // end anonymous namespace 1353 1354 1355// createSCCPPass - This is the public interface to this file... 1356FunctionPass *llvm::createSCCPPass() { 1357 return new SCCP(); 1358} 1359 1360 1361// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1362// and return true if the function was modified. 1363// 1364bool SCCP::runOnFunction(Function &F) { 1365 DOUT << "SCCP on function '" << F.getName() << "'\n"; 1366 SCCPSolver Solver; 1367 1368 // Mark the first block of the function as being executable. 1369 Solver.MarkBlockExecutable(F.begin()); 1370 1371 // Mark all arguments to the function as being overdefined. 1372 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1373 Solver.markOverdefined(AI); 1374 1375 // Solve for constants. 1376 bool ResolvedUndefs = true; 1377 while (ResolvedUndefs) { 1378 Solver.Solve(); 1379 DOUT << "RESOLVING UNDEFs\n"; 1380 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1381 } 1382 1383 bool MadeChanges = false; 1384 1385 // If we decided that there are basic blocks that are dead in this function, 1386 // delete their contents now. Note that we cannot actually delete the blocks, 1387 // as we cannot modify the CFG of the function. 1388 // 1389 SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks(); 1390 SmallVector<Instruction*, 32> Insts; 1391 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1392 1393 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1394 if (!ExecutableBBs.count(BB)) { 1395 DOUT << " BasicBlock Dead:" << *BB; 1396 ++NumDeadBlocks; 1397 1398 // Delete the instructions backwards, as it has a reduced likelihood of 1399 // having to update as many def-use and use-def chains. 1400 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); 1401 I != E; ++I) 1402 Insts.push_back(I); 1403 while (!Insts.empty()) { 1404 Instruction *I = Insts.back(); 1405 Insts.pop_back(); 1406 if (!I->use_empty()) 1407 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1408 BB->getInstList().erase(I); 1409 MadeChanges = true; 1410 ++NumInstRemoved; 1411 } 1412 } else { 1413 // Iterate over all of the instructions in a function, replacing them with 1414 // constants if we have found them to be of constant values. 1415 // 1416 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1417 Instruction *Inst = BI++; 1418 if (Inst->getType() != Type::VoidTy) { 1419 LatticeVal &IV = Values[Inst]; 1420 if (IV.isConstant() || IV.isUndefined() && 1421 !isa<TerminatorInst>(Inst)) { 1422 Constant *Const = IV.isConstant() 1423 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1424 DOUT << " Constant: " << *Const << " = " << *Inst; 1425 1426 // Replaces all of the uses of a variable with uses of the constant. 1427 Inst->replaceAllUsesWith(Const); 1428 1429 // Delete the instruction. 1430 BB->getInstList().erase(Inst); 1431 1432 // Hey, we just changed something! 1433 MadeChanges = true; 1434 ++NumInstRemoved; 1435 } 1436 } 1437 } 1438 } 1439 1440 return MadeChanges; 1441} 1442 1443namespace { 1444 //===--------------------------------------------------------------------===// 1445 // 1446 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1447 /// Constant Propagation. 1448 /// 1449 struct VISIBILITY_HIDDEN IPSCCP : public ModulePass { 1450 static char ID; 1451 IPSCCP() : ModulePass((intptr_t)&ID) {} 1452 bool runOnModule(Module &M); 1453 }; 1454 1455 char IPSCCP::ID = 0; 1456 RegisterPass<IPSCCP> 1457 Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); 1458} // end anonymous namespace 1459 1460// createIPSCCPPass - This is the public interface to this file... 1461ModulePass *llvm::createIPSCCPPass() { 1462 return new IPSCCP(); 1463} 1464 1465 1466static bool AddressIsTaken(GlobalValue *GV) { 1467 // Delete any dead constantexpr klingons. 1468 GV->removeDeadConstantUsers(); 1469 1470 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 1471 UI != E; ++UI) 1472 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 1473 if (SI->getOperand(0) == GV || SI->isVolatile()) 1474 return true; // Storing addr of GV. 1475 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { 1476 // Make sure we are calling the function, not passing the address. 1477 CallSite CS = CallSite::get(cast<Instruction>(*UI)); 1478 for (CallSite::arg_iterator AI = CS.arg_begin(), 1479 E = CS.arg_end(); AI != E; ++AI) 1480 if (*AI == GV) 1481 return true; 1482 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1483 if (LI->isVolatile()) 1484 return true; 1485 } else { 1486 return true; 1487 } 1488 return false; 1489} 1490 1491bool IPSCCP::runOnModule(Module &M) { 1492 SCCPSolver Solver; 1493 1494 // Loop over all functions, marking arguments to those with their addresses 1495 // taken or that are external as overdefined. 1496 // 1497 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1498 if (!F->hasInternalLinkage() || AddressIsTaken(F)) { 1499 if (!F->isDeclaration()) 1500 Solver.MarkBlockExecutable(F->begin()); 1501 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1502 AI != E; ++AI) 1503 Solver.markOverdefined(AI); 1504 } else { 1505 Solver.AddTrackedFunction(F); 1506 } 1507 1508 // Loop over global variables. We inform the solver about any internal global 1509 // variables that do not have their 'addresses taken'. If they don't have 1510 // their addresses taken, we can propagate constants through them. 1511 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1512 G != E; ++G) 1513 if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G)) 1514 Solver.TrackValueOfGlobalVariable(G); 1515 1516 // Solve for constants. 1517 bool ResolvedUndefs = true; 1518 while (ResolvedUndefs) { 1519 Solver.Solve(); 1520 1521 DOUT << "RESOLVING UNDEFS\n"; 1522 ResolvedUndefs = false; 1523 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1524 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1525 } 1526 1527 bool MadeChanges = false; 1528 1529 // Iterate over all of the instructions in the module, replacing them with 1530 // constants if we have found them to be of constant values. 1531 // 1532 SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks(); 1533 SmallVector<Instruction*, 32> Insts; 1534 SmallVector<BasicBlock*, 32> BlocksToErase; 1535 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1536 1537 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1538 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1539 AI != E; ++AI) 1540 if (!AI->use_empty()) { 1541 LatticeVal &IV = Values[AI]; 1542 if (IV.isConstant() || IV.isUndefined()) { 1543 Constant *CST = IV.isConstant() ? 1544 IV.getConstant() : UndefValue::get(AI->getType()); 1545 DOUT << "*** Arg " << *AI << " = " << *CST <<"\n"; 1546 1547 // Replaces all of the uses of a variable with uses of the 1548 // constant. 1549 AI->replaceAllUsesWith(CST); 1550 ++IPNumArgsElimed; 1551 } 1552 } 1553 1554 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1555 if (!ExecutableBBs.count(BB)) { 1556 DOUT << " BasicBlock Dead:" << *BB; 1557 ++IPNumDeadBlocks; 1558 1559 // Delete the instructions backwards, as it has a reduced likelihood of 1560 // having to update as many def-use and use-def chains. 1561 TerminatorInst *TI = BB->getTerminator(); 1562 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) 1563 Insts.push_back(I); 1564 1565 while (!Insts.empty()) { 1566 Instruction *I = Insts.back(); 1567 Insts.pop_back(); 1568 if (!I->use_empty()) 1569 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1570 BB->getInstList().erase(I); 1571 MadeChanges = true; 1572 ++IPNumInstRemoved; 1573 } 1574 1575 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1576 BasicBlock *Succ = TI->getSuccessor(i); 1577 if (Succ->begin() != Succ->end() && isa<PHINode>(Succ->begin())) 1578 TI->getSuccessor(i)->removePredecessor(BB); 1579 } 1580 if (!TI->use_empty()) 1581 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1582 BB->getInstList().erase(TI); 1583 1584 if (&*BB != &F->front()) 1585 BlocksToErase.push_back(BB); 1586 else 1587 new UnreachableInst(BB); 1588 1589 } else { 1590 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1591 Instruction *Inst = BI++; 1592 if (Inst->getType() != Type::VoidTy) { 1593 LatticeVal &IV = Values[Inst]; 1594 if (IV.isConstant() || IV.isUndefined() && 1595 !isa<TerminatorInst>(Inst)) { 1596 Constant *Const = IV.isConstant() 1597 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1598 DOUT << " Constant: " << *Const << " = " << *Inst; 1599 1600 // Replaces all of the uses of a variable with uses of the 1601 // constant. 1602 Inst->replaceAllUsesWith(Const); 1603 1604 // Delete the instruction. 1605 if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst)) 1606 BB->getInstList().erase(Inst); 1607 1608 // Hey, we just changed something! 1609 MadeChanges = true; 1610 ++IPNumInstRemoved; 1611 } 1612 } 1613 } 1614 } 1615 1616 // Now that all instructions in the function are constant folded, erase dead 1617 // blocks, because we can now use ConstantFoldTerminator to get rid of 1618 // in-edges. 1619 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1620 // If there are any PHI nodes in this successor, drop entries for BB now. 1621 BasicBlock *DeadBB = BlocksToErase[i]; 1622 while (!DeadBB->use_empty()) { 1623 Instruction *I = cast<Instruction>(DeadBB->use_back()); 1624 bool Folded = ConstantFoldTerminator(I->getParent()); 1625 if (!Folded) { 1626 // The constant folder may not have been able to fold the terminator 1627 // if this is a branch or switch on undef. Fold it manually as a 1628 // branch to the first successor. 1629 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1630 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1631 "Branch should be foldable!"); 1632 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1633 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1634 } else { 1635 assert(0 && "Didn't fold away reference to block!"); 1636 } 1637 1638 // Make this an uncond branch to the first successor. 1639 TerminatorInst *TI = I->getParent()->getTerminator(); 1640 new BranchInst(TI->getSuccessor(0), TI); 1641 1642 // Remove entries in successor phi nodes to remove edges. 1643 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1644 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1645 1646 // Remove the old terminator. 1647 TI->eraseFromParent(); 1648 } 1649 } 1650 1651 // Finally, delete the basic block. 1652 F->getBasicBlockList().erase(DeadBB); 1653 } 1654 BlocksToErase.clear(); 1655 } 1656 1657 // If we inferred constant or undef return values for a function, we replaced 1658 // all call uses with the inferred value. This means we don't need to bother 1659 // actually returning anything from the function. Replace all return 1660 // instructions with return undef. 1661 const DenseMap<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals(); 1662 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1663 E = RV.end(); I != E; ++I) 1664 if (!I->second.isOverdefined() && 1665 I->first->getReturnType() != Type::VoidTy) { 1666 Function *F = I->first; 1667 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1668 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1669 if (!isa<UndefValue>(RI->getOperand(0))) 1670 RI->setOperand(0, UndefValue::get(F->getReturnType())); 1671 } 1672 1673 // If we infered constant or undef values for globals variables, we can delete 1674 // the global and any stores that remain to it. 1675 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1676 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1677 E = TG.end(); I != E; ++I) { 1678 GlobalVariable *GV = I->first; 1679 assert(!I->second.isOverdefined() && 1680 "Overdefined values should have been taken out of the map!"); 1681 DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n"; 1682 while (!GV->use_empty()) { 1683 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1684 SI->eraseFromParent(); 1685 } 1686 M.getGlobalList().erase(GV); 1687 ++IPNumGlobalConst; 1688 } 1689 1690 return MadeChanges; 1691} 1692