ScalarReplAggregates.cpp revision 0488fb649a56b7fc89a5814df5308813f9e5a85d
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/Dominators.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Transforms/Utils/PromoteMemToReg.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/GetElementPtrTypeIterator.h"
40#include "llvm/Support/IRBuilder.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45using namespace llvm;
46
47STATISTIC(NumReplaced,  "Number of allocas broken up");
48STATISTIC(NumPromoted,  "Number of allocas promoted");
49STATISTIC(NumConverted, "Number of aggregates converted to scalar");
50STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
51
52namespace {
53  struct SROA : public FunctionPass {
54    static char ID; // Pass identification, replacement for typeid
55    explicit SROA(signed T = -1) : FunctionPass(ID) {
56      if (T == -1)
57        SRThreshold = 128;
58      else
59        SRThreshold = T;
60    }
61
62    bool runOnFunction(Function &F);
63
64    bool performScalarRepl(Function &F);
65    bool performPromotion(Function &F);
66
67    // getAnalysisUsage - This pass does not require any passes, but we know it
68    // will not alter the CFG, so say so.
69    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
70      AU.addRequired<DominatorTree>();
71      AU.addRequired<DominanceFrontier>();
72      AU.setPreservesCFG();
73    }
74
75  private:
76    TargetData *TD;
77
78    /// DeadInsts - Keep track of instructions we have made dead, so that
79    /// we can remove them after we are done working.
80    SmallVector<Value*, 32> DeadInsts;
81
82    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
83    /// information about the uses.  All these fields are initialized to false
84    /// and set to true when something is learned.
85    struct AllocaInfo {
86      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
87      bool isUnsafe : 1;
88
89      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
90      bool isMemCpySrc : 1;
91
92      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
93      bool isMemCpyDst : 1;
94
95      AllocaInfo()
96        : isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false) {}
97    };
98
99    unsigned SRThreshold;
100
101    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
102
103    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
104
105    void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
106                             AllocaInfo &Info);
107    void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
108                   AllocaInfo &Info);
109    void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
110                         const Type *MemOpType, bool isStore, AllocaInfo &Info);
111    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
112    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
113                                  const Type *&IdxTy);
114
115    void DoScalarReplacement(AllocaInst *AI,
116                             std::vector<AllocaInst*> &WorkList);
117    void DeleteDeadInstructions();
118
119    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
120                              SmallVector<AllocaInst*, 32> &NewElts);
121    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
122                        SmallVector<AllocaInst*, 32> &NewElts);
123    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
124                    SmallVector<AllocaInst*, 32> &NewElts);
125    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
126                                      AllocaInst *AI,
127                                      SmallVector<AllocaInst*, 32> &NewElts);
128    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
129                                       SmallVector<AllocaInst*, 32> &NewElts);
130    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
131                                      SmallVector<AllocaInst*, 32> &NewElts);
132
133    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
134  };
135}
136
137char SROA::ID = 0;
138INITIALIZE_PASS(SROA, "scalarrepl",
139                "Scalar Replacement of Aggregates", false, false);
140
141// Public interface to the ScalarReplAggregates pass
142FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
143  return new SROA(Threshold);
144}
145
146
147//===----------------------------------------------------------------------===//
148// Convert To Scalar Optimization.
149//===----------------------------------------------------------------------===//
150
151namespace {
152/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
153/// optimization, which scans the uses of an alloca and determines if it can
154/// rewrite it in terms of a single new alloca that can be mem2reg'd.
155class ConvertToScalarInfo {
156  /// AllocaSize - The size of the alloca being considered.
157  unsigned AllocaSize;
158  const TargetData &TD;
159
160  /// IsNotTrivial - This is set to true if there is some access to the object
161  /// which means that mem2reg can't promote it.
162  bool IsNotTrivial;
163
164  /// VectorTy - This tracks the type that we should promote the vector to if
165  /// it is possible to turn it into a vector.  This starts out null, and if it
166  /// isn't possible to turn into a vector type, it gets set to VoidTy.
167  const Type *VectorTy;
168
169  /// HadAVector - True if there is at least one vector access to the alloca.
170  /// We don't want to turn random arrays into vectors and use vector element
171  /// insert/extract, but if there are element accesses to something that is
172  /// also declared as a vector, we do want to promote to a vector.
173  bool HadAVector;
174
175public:
176  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
177    : AllocaSize(Size), TD(td) {
178    IsNotTrivial = false;
179    VectorTy = 0;
180    HadAVector = false;
181  }
182
183  AllocaInst *TryConvert(AllocaInst *AI);
184
185private:
186  bool CanConvertToScalar(Value *V, uint64_t Offset);
187  void MergeInType(const Type *In, uint64_t Offset);
188  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
189
190  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
191                                    uint64_t Offset, IRBuilder<> &Builder);
192  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
193                                   uint64_t Offset, IRBuilder<> &Builder);
194};
195} // end anonymous namespace.
196
197
198/// IsVerbotenVectorType - Return true if this is a vector type ScalarRepl isn't
199/// allowed to form.  We do this to avoid MMX types, which is a complete hack,
200/// but is required until the backend is fixed.
201static bool IsVerbotenVectorType(const VectorType *VTy, const Instruction *I) {
202  StringRef Triple(I->getParent()->getParent()->getParent()->getTargetTriple());
203  if (!Triple.startswith("i386") &&
204      !Triple.startswith("x86_64"))
205    return false;
206
207  // Reject all the MMX vector types.
208  switch (VTy->getNumElements()) {
209  default: return false;
210  case 1: return VTy->getElementType()->isIntegerTy(64);
211  case 2: return VTy->getElementType()->isIntegerTy(32);
212  case 4: return VTy->getElementType()->isIntegerTy(16);
213  case 8: return VTy->getElementType()->isIntegerTy(8);
214  }
215}
216
217
218/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
219/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
220/// alloca if possible or null if not.
221AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
222  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
223  // out.
224  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
225    return 0;
226
227  // If we were able to find a vector type that can handle this with
228  // insert/extract elements, and if there was at least one use that had
229  // a vector type, promote this to a vector.  We don't want to promote
230  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
231  // we just get a lot of insert/extracts.  If at least one vector is
232  // involved, then we probably really do have a union of vector/array.
233  const Type *NewTy;
234  if (VectorTy && VectorTy->isVectorTy() && HadAVector &&
235      !IsVerbotenVectorType(cast<VectorType>(VectorTy), AI)) {
236    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
237          << *VectorTy << '\n');
238    NewTy = VectorTy;  // Use the vector type.
239  } else {
240    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
241    // Create and insert the integer alloca.
242    NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
243  }
244  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
245  ConvertUsesToScalar(AI, NewAI, 0);
246  return NewAI;
247}
248
249/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
250/// so far at the offset specified by Offset (which is specified in bytes).
251///
252/// There are two cases we handle here:
253///   1) A union of vector types of the same size and potentially its elements.
254///      Here we turn element accesses into insert/extract element operations.
255///      This promotes a <4 x float> with a store of float to the third element
256///      into a <4 x float> that uses insert element.
257///   2) A fully general blob of memory, which we turn into some (potentially
258///      large) integer type with extract and insert operations where the loads
259///      and stores would mutate the memory.  We mark this by setting VectorTy
260///      to VoidTy.
261void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
262  // If we already decided to turn this into a blob of integer memory, there is
263  // nothing to be done.
264  if (VectorTy && VectorTy->isVoidTy())
265    return;
266
267  // If this could be contributing to a vector, analyze it.
268
269  // If the In type is a vector that is the same size as the alloca, see if it
270  // matches the existing VecTy.
271  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
272    // Remember if we saw a vector type.
273    HadAVector = true;
274
275    if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
276      // If we're storing/loading a vector of the right size, allow it as a
277      // vector.  If this the first vector we see, remember the type so that
278      // we know the element size.  If this is a subsequent access, ignore it
279      // even if it is a differing type but the same size.  Worst case we can
280      // bitcast the resultant vectors.
281      if (VectorTy == 0)
282        VectorTy = VInTy;
283      return;
284    }
285  } else if (In->isFloatTy() || In->isDoubleTy() ||
286             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
287              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
288    // If we're accessing something that could be an element of a vector, see
289    // if the implied vector agrees with what we already have and if Offset is
290    // compatible with it.
291    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
292    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
293        (VectorTy == 0 ||
294         cast<VectorType>(VectorTy)->getElementType()
295               ->getPrimitiveSizeInBits()/8 == EltSize)) {
296      if (VectorTy == 0)
297        VectorTy = VectorType::get(In, AllocaSize/EltSize);
298      return;
299    }
300  }
301
302  // Otherwise, we have a case that we can't handle with an optimized vector
303  // form.  We can still turn this into a large integer.
304  VectorTy = Type::getVoidTy(In->getContext());
305}
306
307/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
308/// its accesses to a single vector type, return true and set VecTy to
309/// the new type.  If we could convert the alloca into a single promotable
310/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
311/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
312/// is the current offset from the base of the alloca being analyzed.
313///
314/// If we see at least one access to the value that is as a vector type, set the
315/// SawVec flag.
316bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
317  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
318    Instruction *User = cast<Instruction>(*UI);
319
320    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
321      // Don't break volatile loads.
322      if (LI->isVolatile())
323        return false;
324      // Don't touch MMX operations.
325      if (LI->getType()->isX86_MMXTy())
326        return false;
327      MergeInType(LI->getType(), Offset);
328      continue;
329    }
330
331    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
332      // Storing the pointer, not into the value?
333      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
334      // Don't touch MMX operations.
335      if (SI->getOperand(0)->getType()->isX86_MMXTy())
336        return false;
337      MergeInType(SI->getOperand(0)->getType(), Offset);
338      continue;
339    }
340
341    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
342      IsNotTrivial = true;  // Can't be mem2reg'd.
343      if (!CanConvertToScalar(BCI, Offset))
344        return false;
345      continue;
346    }
347
348    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
349      // If this is a GEP with a variable indices, we can't handle it.
350      if (!GEP->hasAllConstantIndices())
351        return false;
352
353      // Compute the offset that this GEP adds to the pointer.
354      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
355      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
356                                               &Indices[0], Indices.size());
357      // See if all uses can be converted.
358      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
359        return false;
360      IsNotTrivial = true;  // Can't be mem2reg'd.
361      continue;
362    }
363
364    // If this is a constant sized memset of a constant value (e.g. 0) we can
365    // handle it.
366    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
367      // Store of constant value and constant size.
368      if (!isa<ConstantInt>(MSI->getValue()) ||
369          !isa<ConstantInt>(MSI->getLength()))
370        return false;
371      IsNotTrivial = true;  // Can't be mem2reg'd.
372      continue;
373    }
374
375    // If this is a memcpy or memmove into or out of the whole allocation, we
376    // can handle it like a load or store of the scalar type.
377    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
378      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
379      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
380        return false;
381
382      IsNotTrivial = true;  // Can't be mem2reg'd.
383      continue;
384    }
385
386    // Otherwise, we cannot handle this!
387    return false;
388  }
389
390  return true;
391}
392
393/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
394/// directly.  This happens when we are converting an "integer union" to a
395/// single integer scalar, or when we are converting a "vector union" to a
396/// vector with insert/extractelement instructions.
397///
398/// Offset is an offset from the original alloca, in bits that need to be
399/// shifted to the right.  By the end of this, there should be no uses of Ptr.
400void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
401                                              uint64_t Offset) {
402  while (!Ptr->use_empty()) {
403    Instruction *User = cast<Instruction>(Ptr->use_back());
404
405    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
406      ConvertUsesToScalar(CI, NewAI, Offset);
407      CI->eraseFromParent();
408      continue;
409    }
410
411    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
412      // Compute the offset that this GEP adds to the pointer.
413      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
414      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
415                                               &Indices[0], Indices.size());
416      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
417      GEP->eraseFromParent();
418      continue;
419    }
420
421    IRBuilder<> Builder(User->getParent(), User);
422
423    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
424      // The load is a bit extract from NewAI shifted right by Offset bits.
425      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
426      Value *NewLoadVal
427        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
428      LI->replaceAllUsesWith(NewLoadVal);
429      LI->eraseFromParent();
430      continue;
431    }
432
433    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
434      assert(SI->getOperand(0) != Ptr && "Consistency error!");
435      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
436      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
437                                             Builder);
438      Builder.CreateStore(New, NewAI);
439      SI->eraseFromParent();
440
441      // If the load we just inserted is now dead, then the inserted store
442      // overwrote the entire thing.
443      if (Old->use_empty())
444        Old->eraseFromParent();
445      continue;
446    }
447
448    // If this is a constant sized memset of a constant value (e.g. 0) we can
449    // transform it into a store of the expanded constant value.
450    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
451      assert(MSI->getRawDest() == Ptr && "Consistency error!");
452      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
453      if (NumBytes != 0) {
454        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
455
456        // Compute the value replicated the right number of times.
457        APInt APVal(NumBytes*8, Val);
458
459        // Splat the value if non-zero.
460        if (Val)
461          for (unsigned i = 1; i != NumBytes; ++i)
462            APVal |= APVal << 8;
463
464        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
465        Value *New = ConvertScalar_InsertValue(
466                                    ConstantInt::get(User->getContext(), APVal),
467                                               Old, Offset, Builder);
468        Builder.CreateStore(New, NewAI);
469
470        // If the load we just inserted is now dead, then the memset overwrote
471        // the entire thing.
472        if (Old->use_empty())
473          Old->eraseFromParent();
474      }
475      MSI->eraseFromParent();
476      continue;
477    }
478
479    // If this is a memcpy or memmove into or out of the whole allocation, we
480    // can handle it like a load or store of the scalar type.
481    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
482      assert(Offset == 0 && "must be store to start of alloca");
483
484      // If the source and destination are both to the same alloca, then this is
485      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
486      // as appropriate.
487      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject(0));
488
489      if (MTI->getSource()->getUnderlyingObject(0) != OrigAI) {
490        // Dest must be OrigAI, change this to be a load from the original
491        // pointer (bitcasted), then a store to our new alloca.
492        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
493        Value *SrcPtr = MTI->getSource();
494        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
495
496        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
497        SrcVal->setAlignment(MTI->getAlignment());
498        Builder.CreateStore(SrcVal, NewAI);
499      } else if (MTI->getDest()->getUnderlyingObject(0) != OrigAI) {
500        // Src must be OrigAI, change this to be a load from NewAI then a store
501        // through the original dest pointer (bitcasted).
502        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
503        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
504
505        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
506        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
507        NewStore->setAlignment(MTI->getAlignment());
508      } else {
509        // Noop transfer. Src == Dst
510      }
511
512      MTI->eraseFromParent();
513      continue;
514    }
515
516    llvm_unreachable("Unsupported operation!");
517  }
518}
519
520/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
521/// or vector value FromVal, extracting the bits from the offset specified by
522/// Offset.  This returns the value, which is of type ToType.
523///
524/// This happens when we are converting an "integer union" to a single
525/// integer scalar, or when we are converting a "vector union" to a vector with
526/// insert/extractelement instructions.
527///
528/// Offset is an offset from the original alloca, in bits that need to be
529/// shifted to the right.
530Value *ConvertToScalarInfo::
531ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
532                           uint64_t Offset, IRBuilder<> &Builder) {
533  // If the load is of the whole new alloca, no conversion is needed.
534  if (FromVal->getType() == ToType && Offset == 0)
535    return FromVal;
536
537  // If the result alloca is a vector type, this is either an element
538  // access or a bitcast to another vector type of the same size.
539  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
540    if (ToType->isVectorTy())
541      return Builder.CreateBitCast(FromVal, ToType, "tmp");
542
543    // Otherwise it must be an element access.
544    unsigned Elt = 0;
545    if (Offset) {
546      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
547      Elt = Offset/EltSize;
548      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
549    }
550    // Return the element extracted out of it.
551    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
552                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
553    if (V->getType() != ToType)
554      V = Builder.CreateBitCast(V, ToType, "tmp");
555    return V;
556  }
557
558  // If ToType is a first class aggregate, extract out each of the pieces and
559  // use insertvalue's to form the FCA.
560  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
561    const StructLayout &Layout = *TD.getStructLayout(ST);
562    Value *Res = UndefValue::get(ST);
563    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
564      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
565                                        Offset+Layout.getElementOffsetInBits(i),
566                                              Builder);
567      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
568    }
569    return Res;
570  }
571
572  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
573    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
574    Value *Res = UndefValue::get(AT);
575    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
576      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
577                                              Offset+i*EltSize, Builder);
578      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
579    }
580    return Res;
581  }
582
583  // Otherwise, this must be a union that was converted to an integer value.
584  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
585
586  // If this is a big-endian system and the load is narrower than the
587  // full alloca type, we need to do a shift to get the right bits.
588  int ShAmt = 0;
589  if (TD.isBigEndian()) {
590    // On big-endian machines, the lowest bit is stored at the bit offset
591    // from the pointer given by getTypeStoreSizeInBits.  This matters for
592    // integers with a bitwidth that is not a multiple of 8.
593    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
594            TD.getTypeStoreSizeInBits(ToType) - Offset;
595  } else {
596    ShAmt = Offset;
597  }
598
599  // Note: we support negative bitwidths (with shl) which are not defined.
600  // We do this to support (f.e.) loads off the end of a structure where
601  // only some bits are used.
602  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
603    FromVal = Builder.CreateLShr(FromVal,
604                                 ConstantInt::get(FromVal->getType(),
605                                                           ShAmt), "tmp");
606  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
607    FromVal = Builder.CreateShl(FromVal,
608                                ConstantInt::get(FromVal->getType(),
609                                                          -ShAmt), "tmp");
610
611  // Finally, unconditionally truncate the integer to the right width.
612  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
613  if (LIBitWidth < NTy->getBitWidth())
614    FromVal =
615      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
616                                                    LIBitWidth), "tmp");
617  else if (LIBitWidth > NTy->getBitWidth())
618    FromVal =
619       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
620                                                    LIBitWidth), "tmp");
621
622  // If the result is an integer, this is a trunc or bitcast.
623  if (ToType->isIntegerTy()) {
624    // Should be done.
625  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
626    // Just do a bitcast, we know the sizes match up.
627    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
628  } else {
629    // Otherwise must be a pointer.
630    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
631  }
632  assert(FromVal->getType() == ToType && "Didn't convert right?");
633  return FromVal;
634}
635
636/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
637/// or vector value "Old" at the offset specified by Offset.
638///
639/// This happens when we are converting an "integer union" to a
640/// single integer scalar, or when we are converting a "vector union" to a
641/// vector with insert/extractelement instructions.
642///
643/// Offset is an offset from the original alloca, in bits that need to be
644/// shifted to the right.
645Value *ConvertToScalarInfo::
646ConvertScalar_InsertValue(Value *SV, Value *Old,
647                          uint64_t Offset, IRBuilder<> &Builder) {
648  // Convert the stored type to the actual type, shift it left to insert
649  // then 'or' into place.
650  const Type *AllocaType = Old->getType();
651  LLVMContext &Context = Old->getContext();
652
653  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
654    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
655    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
656
657    // Changing the whole vector with memset or with an access of a different
658    // vector type?
659    if (ValSize == VecSize)
660      return Builder.CreateBitCast(SV, AllocaType, "tmp");
661
662    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
663
664    // Must be an element insertion.
665    unsigned Elt = Offset/EltSize;
666
667    if (SV->getType() != VTy->getElementType())
668      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
669
670    SV = Builder.CreateInsertElement(Old, SV,
671                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
672                                     "tmp");
673    return SV;
674  }
675
676  // If SV is a first-class aggregate value, insert each value recursively.
677  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
678    const StructLayout &Layout = *TD.getStructLayout(ST);
679    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
680      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
681      Old = ConvertScalar_InsertValue(Elt, Old,
682                                      Offset+Layout.getElementOffsetInBits(i),
683                                      Builder);
684    }
685    return Old;
686  }
687
688  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
689    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
690    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
691      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
692      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
693    }
694    return Old;
695  }
696
697  // If SV is a float, convert it to the appropriate integer type.
698  // If it is a pointer, do the same.
699  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
700  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
701  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
702  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
703  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
704    SV = Builder.CreateBitCast(SV,
705                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
706  else if (SV->getType()->isPointerTy())
707    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
708
709  // Zero extend or truncate the value if needed.
710  if (SV->getType() != AllocaType) {
711    if (SV->getType()->getPrimitiveSizeInBits() <
712             AllocaType->getPrimitiveSizeInBits())
713      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
714    else {
715      // Truncation may be needed if storing more than the alloca can hold
716      // (undefined behavior).
717      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
718      SrcWidth = DestWidth;
719      SrcStoreWidth = DestStoreWidth;
720    }
721  }
722
723  // If this is a big-endian system and the store is narrower than the
724  // full alloca type, we need to do a shift to get the right bits.
725  int ShAmt = 0;
726  if (TD.isBigEndian()) {
727    // On big-endian machines, the lowest bit is stored at the bit offset
728    // from the pointer given by getTypeStoreSizeInBits.  This matters for
729    // integers with a bitwidth that is not a multiple of 8.
730    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
731  } else {
732    ShAmt = Offset;
733  }
734
735  // Note: we support negative bitwidths (with shr) which are not defined.
736  // We do this to support (f.e.) stores off the end of a structure where
737  // only some bits in the structure are set.
738  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
739  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
740    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
741                           ShAmt), "tmp");
742    Mask <<= ShAmt;
743  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
744    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
745                            -ShAmt), "tmp");
746    Mask = Mask.lshr(-ShAmt);
747  }
748
749  // Mask out the bits we are about to insert from the old value, and or
750  // in the new bits.
751  if (SrcWidth != DestWidth) {
752    assert(DestWidth > SrcWidth);
753    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
754    SV = Builder.CreateOr(Old, SV, "ins");
755  }
756  return SV;
757}
758
759
760//===----------------------------------------------------------------------===//
761// SRoA Driver
762//===----------------------------------------------------------------------===//
763
764
765bool SROA::runOnFunction(Function &F) {
766  TD = getAnalysisIfAvailable<TargetData>();
767
768  bool Changed = performPromotion(F);
769
770  // FIXME: ScalarRepl currently depends on TargetData more than it
771  // theoretically needs to. It should be refactored in order to support
772  // target-independent IR. Until this is done, just skip the actual
773  // scalar-replacement portion of this pass.
774  if (!TD) return Changed;
775
776  while (1) {
777    bool LocalChange = performScalarRepl(F);
778    if (!LocalChange) break;   // No need to repromote if no scalarrepl
779    Changed = true;
780    LocalChange = performPromotion(F);
781    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
782  }
783
784  return Changed;
785}
786
787
788bool SROA::performPromotion(Function &F) {
789  std::vector<AllocaInst*> Allocas;
790  DominatorTree         &DT = getAnalysis<DominatorTree>();
791  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
792
793  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
794
795  bool Changed = false;
796
797  while (1) {
798    Allocas.clear();
799
800    // Find allocas that are safe to promote, by looking at all instructions in
801    // the entry node
802    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
803      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
804        if (isAllocaPromotable(AI))
805          Allocas.push_back(AI);
806
807    if (Allocas.empty()) break;
808
809    PromoteMemToReg(Allocas, DT, DF);
810    NumPromoted += Allocas.size();
811    Changed = true;
812  }
813
814  return Changed;
815}
816
817
818/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
819/// SROA.  It must be a struct or array type with a small number of elements.
820static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
821  const Type *T = AI->getAllocatedType();
822  // Do not promote any struct into more than 32 separate vars.
823  if (const StructType *ST = dyn_cast<StructType>(T))
824    return ST->getNumElements() <= 32;
825  // Arrays are much less likely to be safe for SROA; only consider
826  // them if they are very small.
827  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
828    return AT->getNumElements() <= 8;
829  return false;
830}
831
832
833// performScalarRepl - This algorithm is a simple worklist driven algorithm,
834// which runs on all of the malloc/alloca instructions in the function, removing
835// them if they are only used by getelementptr instructions.
836//
837bool SROA::performScalarRepl(Function &F) {
838  std::vector<AllocaInst*> WorkList;
839
840  // Scan the entry basic block, adding allocas to the worklist.
841  BasicBlock &BB = F.getEntryBlock();
842  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
843    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
844      WorkList.push_back(A);
845
846  // Process the worklist
847  bool Changed = false;
848  while (!WorkList.empty()) {
849    AllocaInst *AI = WorkList.back();
850    WorkList.pop_back();
851
852    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
853    // with unused elements.
854    if (AI->use_empty()) {
855      AI->eraseFromParent();
856      Changed = true;
857      continue;
858    }
859
860    // If this alloca is impossible for us to promote, reject it early.
861    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
862      continue;
863
864    // Check to see if this allocation is only modified by a memcpy/memmove from
865    // a constant global.  If this is the case, we can change all users to use
866    // the constant global instead.  This is commonly produced by the CFE by
867    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
868    // is only subsequently read.
869    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
870      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
871      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
872      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
873      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
874      TheCopy->eraseFromParent();  // Don't mutate the global.
875      AI->eraseFromParent();
876      ++NumGlobals;
877      Changed = true;
878      continue;
879    }
880
881    // Check to see if we can perform the core SROA transformation.  We cannot
882    // transform the allocation instruction if it is an array allocation
883    // (allocations OF arrays are ok though), and an allocation of a scalar
884    // value cannot be decomposed at all.
885    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
886
887    // Do not promote [0 x %struct].
888    if (AllocaSize == 0) continue;
889
890    // Do not promote any struct whose size is too big.
891    if (AllocaSize > SRThreshold) continue;
892
893    // If the alloca looks like a good candidate for scalar replacement, and if
894    // all its users can be transformed, then split up the aggregate into its
895    // separate elements.
896    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
897      DoScalarReplacement(AI, WorkList);
898      Changed = true;
899      continue;
900    }
901
902    // If we can turn this aggregate value (potentially with casts) into a
903    // simple scalar value that can be mem2reg'd into a register value.
904    // IsNotTrivial tracks whether this is something that mem2reg could have
905    // promoted itself.  If so, we don't want to transform it needlessly.  Note
906    // that we can't just check based on the type: the alloca may be of an i32
907    // but that has pointer arithmetic to set byte 3 of it or something.
908    if (AllocaInst *NewAI =
909          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
910      NewAI->takeName(AI);
911      AI->eraseFromParent();
912      ++NumConverted;
913      Changed = true;
914      continue;
915    }
916
917    // Otherwise, couldn't process this alloca.
918  }
919
920  return Changed;
921}
922
923/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
924/// predicate, do SROA now.
925void SROA::DoScalarReplacement(AllocaInst *AI,
926                               std::vector<AllocaInst*> &WorkList) {
927  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
928  SmallVector<AllocaInst*, 32> ElementAllocas;
929  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
930    ElementAllocas.reserve(ST->getNumContainedTypes());
931    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
932      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
933                                      AI->getAlignment(),
934                                      AI->getName() + "." + Twine(i), AI);
935      ElementAllocas.push_back(NA);
936      WorkList.push_back(NA);  // Add to worklist for recursive processing
937    }
938  } else {
939    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
940    ElementAllocas.reserve(AT->getNumElements());
941    const Type *ElTy = AT->getElementType();
942    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
943      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
944                                      AI->getName() + "." + Twine(i), AI);
945      ElementAllocas.push_back(NA);
946      WorkList.push_back(NA);  // Add to worklist for recursive processing
947    }
948  }
949
950  // Now that we have created the new alloca instructions, rewrite all the
951  // uses of the old alloca.
952  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
953
954  // Now erase any instructions that were made dead while rewriting the alloca.
955  DeleteDeadInstructions();
956  AI->eraseFromParent();
957
958  ++NumReplaced;
959}
960
961/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
962/// recursively including all their operands that become trivially dead.
963void SROA::DeleteDeadInstructions() {
964  while (!DeadInsts.empty()) {
965    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
966
967    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
968      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
969        // Zero out the operand and see if it becomes trivially dead.
970        // (But, don't add allocas to the dead instruction list -- they are
971        // already on the worklist and will be deleted separately.)
972        *OI = 0;
973        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
974          DeadInsts.push_back(U);
975      }
976
977    I->eraseFromParent();
978  }
979}
980
981/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
982/// performing scalar replacement of alloca AI.  The results are flagged in
983/// the Info parameter.  Offset indicates the position within AI that is
984/// referenced by this instruction.
985void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
986                               AllocaInfo &Info) {
987  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
988    Instruction *User = cast<Instruction>(*UI);
989
990    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
991      isSafeForScalarRepl(BC, AI, Offset, Info);
992    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
993      uint64_t GEPOffset = Offset;
994      isSafeGEP(GEPI, AI, GEPOffset, Info);
995      if (!Info.isUnsafe)
996        isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
997    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
998      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
999      if (Length)
1000        isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
1001                        UI.getOperandNo() == 0, Info);
1002      else
1003        MarkUnsafe(Info);
1004    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1005      if (!LI->isVolatile()) {
1006        const Type *LIType = LI->getType();
1007        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
1008                        LIType, false, Info);
1009      } else
1010        MarkUnsafe(Info);
1011    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1012      // Store is ok if storing INTO the pointer, not storing the pointer
1013      if (!SI->isVolatile() && SI->getOperand(0) != I) {
1014        const Type *SIType = SI->getOperand(0)->getType();
1015        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
1016                        SIType, true, Info);
1017      } else
1018        MarkUnsafe(Info);
1019    } else {
1020      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
1021      MarkUnsafe(Info);
1022    }
1023    if (Info.isUnsafe) return;
1024  }
1025}
1026
1027/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1028/// replacement.  It is safe when all the indices are constant, in-bounds
1029/// references, and when the resulting offset corresponds to an element within
1030/// the alloca type.  The results are flagged in the Info parameter.  Upon
1031/// return, Offset is adjusted as specified by the GEP indices.
1032void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
1033                     uint64_t &Offset, AllocaInfo &Info) {
1034  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1035  if (GEPIt == E)
1036    return;
1037
1038  // Walk through the GEP type indices, checking the types that this indexes
1039  // into.
1040  for (; GEPIt != E; ++GEPIt) {
1041    // Ignore struct elements, no extra checking needed for these.
1042    if ((*GEPIt)->isStructTy())
1043      continue;
1044
1045    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1046    if (!IdxVal)
1047      return MarkUnsafe(Info);
1048  }
1049
1050  // Compute the offset due to this GEP and check if the alloca has a
1051  // component element at that offset.
1052  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1053  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1054                                 &Indices[0], Indices.size());
1055  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
1056    MarkUnsafe(Info);
1057}
1058
1059/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1060/// alloca or has an offset and size that corresponds to a component element
1061/// within it.  The offset checked here may have been formed from a GEP with a
1062/// pointer bitcasted to a different type.
1063void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
1064                           const Type *MemOpType, bool isStore,
1065                           AllocaInfo &Info) {
1066  // Check if this is a load/store of the entire alloca.
1067  if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
1068    bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
1069    // This is safe for MemIntrinsics (where MemOpType is 0), integer types
1070    // (which are essentially the same as the MemIntrinsics, especially with
1071    // regard to copying padding between elements), or references using the
1072    // aggregate type of the alloca.
1073    if (!MemOpType || MemOpType->isIntegerTy() || UsesAggregateType) {
1074      if (!UsesAggregateType) {
1075        if (isStore)
1076          Info.isMemCpyDst = true;
1077        else
1078          Info.isMemCpySrc = true;
1079      }
1080      return;
1081    }
1082  }
1083  // Check if the offset/size correspond to a component within the alloca type.
1084  const Type *T = AI->getAllocatedType();
1085  if (TypeHasComponent(T, Offset, MemSize))
1086    return;
1087
1088  return MarkUnsafe(Info);
1089}
1090
1091/// TypeHasComponent - Return true if T has a component type with the
1092/// specified offset and size.  If Size is zero, do not check the size.
1093bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1094  const Type *EltTy;
1095  uint64_t EltSize;
1096  if (const StructType *ST = dyn_cast<StructType>(T)) {
1097    const StructLayout *Layout = TD->getStructLayout(ST);
1098    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1099    EltTy = ST->getContainedType(EltIdx);
1100    EltSize = TD->getTypeAllocSize(EltTy);
1101    Offset -= Layout->getElementOffset(EltIdx);
1102  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1103    EltTy = AT->getElementType();
1104    EltSize = TD->getTypeAllocSize(EltTy);
1105    if (Offset >= AT->getNumElements() * EltSize)
1106      return false;
1107    Offset %= EltSize;
1108  } else {
1109    return false;
1110  }
1111  if (Offset == 0 && (Size == 0 || EltSize == Size))
1112    return true;
1113  // Check if the component spans multiple elements.
1114  if (Offset + Size > EltSize)
1115    return false;
1116  return TypeHasComponent(EltTy, Offset, Size);
1117}
1118
1119/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1120/// the instruction I, which references it, to use the separate elements.
1121/// Offset indicates the position within AI that is referenced by this
1122/// instruction.
1123void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1124                                SmallVector<AllocaInst*, 32> &NewElts) {
1125  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1126    Instruction *User = cast<Instruction>(*UI);
1127
1128    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1129      RewriteBitCast(BC, AI, Offset, NewElts);
1130    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1131      RewriteGEP(GEPI, AI, Offset, NewElts);
1132    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1133      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1134      uint64_t MemSize = Length->getZExtValue();
1135      if (Offset == 0 &&
1136          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1137        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1138      // Otherwise the intrinsic can only touch a single element and the
1139      // address operand will be updated, so nothing else needs to be done.
1140    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1141      const Type *LIType = LI->getType();
1142      if (LIType == AI->getAllocatedType()) {
1143        // Replace:
1144        //   %res = load { i32, i32 }* %alloc
1145        // with:
1146        //   %load.0 = load i32* %alloc.0
1147        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1148        //   %load.1 = load i32* %alloc.1
1149        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1150        // (Also works for arrays instead of structs)
1151        Value *Insert = UndefValue::get(LIType);
1152        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1153          Value *Load = new LoadInst(NewElts[i], "load", LI);
1154          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1155        }
1156        LI->replaceAllUsesWith(Insert);
1157        DeadInsts.push_back(LI);
1158      } else if (LIType->isIntegerTy() &&
1159                 TD->getTypeAllocSize(LIType) ==
1160                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1161        // If this is a load of the entire alloca to an integer, rewrite it.
1162        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1163      }
1164    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1165      Value *Val = SI->getOperand(0);
1166      const Type *SIType = Val->getType();
1167      if (SIType == AI->getAllocatedType()) {
1168        // Replace:
1169        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1170        // with:
1171        //   %val.0 = extractvalue { i32, i32 } %val, 0
1172        //   store i32 %val.0, i32* %alloc.0
1173        //   %val.1 = extractvalue { i32, i32 } %val, 1
1174        //   store i32 %val.1, i32* %alloc.1
1175        // (Also works for arrays instead of structs)
1176        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1177          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1178          new StoreInst(Extract, NewElts[i], SI);
1179        }
1180        DeadInsts.push_back(SI);
1181      } else if (SIType->isIntegerTy() &&
1182                 TD->getTypeAllocSize(SIType) ==
1183                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1184        // If this is a store of the entire alloca from an integer, rewrite it.
1185        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1186      }
1187    }
1188  }
1189}
1190
1191/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1192/// and recursively continue updating all of its uses.
1193void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1194                          SmallVector<AllocaInst*, 32> &NewElts) {
1195  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1196  if (BC->getOperand(0) != AI)
1197    return;
1198
1199  // The bitcast references the original alloca.  Replace its uses with
1200  // references to the first new element alloca.
1201  Instruction *Val = NewElts[0];
1202  if (Val->getType() != BC->getDestTy()) {
1203    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1204    Val->takeName(BC);
1205  }
1206  BC->replaceAllUsesWith(Val);
1207  DeadInsts.push_back(BC);
1208}
1209
1210/// FindElementAndOffset - Return the index of the element containing Offset
1211/// within the specified type, which must be either a struct or an array.
1212/// Sets T to the type of the element and Offset to the offset within that
1213/// element.  IdxTy is set to the type of the index result to be used in a
1214/// GEP instruction.
1215uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1216                                    const Type *&IdxTy) {
1217  uint64_t Idx = 0;
1218  if (const StructType *ST = dyn_cast<StructType>(T)) {
1219    const StructLayout *Layout = TD->getStructLayout(ST);
1220    Idx = Layout->getElementContainingOffset(Offset);
1221    T = ST->getContainedType(Idx);
1222    Offset -= Layout->getElementOffset(Idx);
1223    IdxTy = Type::getInt32Ty(T->getContext());
1224    return Idx;
1225  }
1226  const ArrayType *AT = cast<ArrayType>(T);
1227  T = AT->getElementType();
1228  uint64_t EltSize = TD->getTypeAllocSize(T);
1229  Idx = Offset / EltSize;
1230  Offset -= Idx * EltSize;
1231  IdxTy = Type::getInt64Ty(T->getContext());
1232  return Idx;
1233}
1234
1235/// RewriteGEP - Check if this GEP instruction moves the pointer across
1236/// elements of the alloca that are being split apart, and if so, rewrite
1237/// the GEP to be relative to the new element.
1238void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1239                      SmallVector<AllocaInst*, 32> &NewElts) {
1240  uint64_t OldOffset = Offset;
1241  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1242  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1243                                 &Indices[0], Indices.size());
1244
1245  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1246
1247  const Type *T = AI->getAllocatedType();
1248  const Type *IdxTy;
1249  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1250  if (GEPI->getOperand(0) == AI)
1251    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1252
1253  T = AI->getAllocatedType();
1254  uint64_t EltOffset = Offset;
1255  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1256
1257  // If this GEP does not move the pointer across elements of the alloca
1258  // being split, then it does not needs to be rewritten.
1259  if (Idx == OldIdx)
1260    return;
1261
1262  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1263  SmallVector<Value*, 8> NewArgs;
1264  NewArgs.push_back(Constant::getNullValue(i32Ty));
1265  while (EltOffset != 0) {
1266    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1267    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1268  }
1269  Instruction *Val = NewElts[Idx];
1270  if (NewArgs.size() > 1) {
1271    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1272                                            NewArgs.end(), "", GEPI);
1273    Val->takeName(GEPI);
1274  }
1275  if (Val->getType() != GEPI->getType())
1276    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1277  GEPI->replaceAllUsesWith(Val);
1278  DeadInsts.push_back(GEPI);
1279}
1280
1281/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1282/// Rewrite it to copy or set the elements of the scalarized memory.
1283void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1284                                        AllocaInst *AI,
1285                                        SmallVector<AllocaInst*, 32> &NewElts) {
1286  // If this is a memcpy/memmove, construct the other pointer as the
1287  // appropriate type.  The "Other" pointer is the pointer that goes to memory
1288  // that doesn't have anything to do with the alloca that we are promoting. For
1289  // memset, this Value* stays null.
1290  Value *OtherPtr = 0;
1291  unsigned MemAlignment = MI->getAlignment();
1292  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1293    if (Inst == MTI->getRawDest())
1294      OtherPtr = MTI->getRawSource();
1295    else {
1296      assert(Inst == MTI->getRawSource());
1297      OtherPtr = MTI->getRawDest();
1298    }
1299  }
1300
1301  // If there is an other pointer, we want to convert it to the same pointer
1302  // type as AI has, so we can GEP through it safely.
1303  if (OtherPtr) {
1304    unsigned AddrSpace =
1305      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
1306
1307    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
1308    // optimization, but it's also required to detect the corner case where
1309    // both pointer operands are referencing the same memory, and where
1310    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
1311    // function is only called for mem intrinsics that access the whole
1312    // aggregate, so non-zero GEPs are not an issue here.)
1313    OtherPtr = OtherPtr->stripPointerCasts();
1314
1315    // Copying the alloca to itself is a no-op: just delete it.
1316    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1317      // This code will run twice for a no-op memcpy -- once for each operand.
1318      // Put only one reference to MI on the DeadInsts list.
1319      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1320             E = DeadInsts.end(); I != E; ++I)
1321        if (*I == MI) return;
1322      DeadInsts.push_back(MI);
1323      return;
1324    }
1325
1326    // If the pointer is not the right type, insert a bitcast to the right
1327    // type.
1328    const Type *NewTy =
1329      PointerType::get(AI->getType()->getElementType(), AddrSpace);
1330
1331    if (OtherPtr->getType() != NewTy)
1332      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
1333  }
1334
1335  // Process each element of the aggregate.
1336  Value *TheFn = MI->getCalledValue();
1337  const Type *BytePtrTy = MI->getRawDest()->getType();
1338  bool SROADest = MI->getRawDest() == Inst;
1339
1340  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
1341
1342  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1343    // If this is a memcpy/memmove, emit a GEP of the other element address.
1344    Value *OtherElt = 0;
1345    unsigned OtherEltAlign = MemAlignment;
1346
1347    if (OtherPtr) {
1348      Value *Idx[2] = { Zero,
1349                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
1350      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
1351                                              OtherPtr->getName()+"."+Twine(i),
1352                                                   MI);
1353      uint64_t EltOffset;
1354      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
1355      const Type *OtherTy = OtherPtrTy->getElementType();
1356      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
1357        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1358      } else {
1359        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
1360        EltOffset = TD->getTypeAllocSize(EltTy)*i;
1361      }
1362
1363      // The alignment of the other pointer is the guaranteed alignment of the
1364      // element, which is affected by both the known alignment of the whole
1365      // mem intrinsic and the alignment of the element.  If the alignment of
1366      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
1367      // known alignment is just 4 bytes.
1368      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
1369    }
1370
1371    Value *EltPtr = NewElts[i];
1372    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
1373
1374    // If we got down to a scalar, insert a load or store as appropriate.
1375    if (EltTy->isSingleValueType()) {
1376      if (isa<MemTransferInst>(MI)) {
1377        if (SROADest) {
1378          // From Other to Alloca.
1379          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
1380          new StoreInst(Elt, EltPtr, MI);
1381        } else {
1382          // From Alloca to Other.
1383          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
1384          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
1385        }
1386        continue;
1387      }
1388      assert(isa<MemSetInst>(MI));
1389
1390      // If the stored element is zero (common case), just store a null
1391      // constant.
1392      Constant *StoreVal;
1393      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
1394        if (CI->isZero()) {
1395          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
1396        } else {
1397          // If EltTy is a vector type, get the element type.
1398          const Type *ValTy = EltTy->getScalarType();
1399
1400          // Construct an integer with the right value.
1401          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
1402          APInt OneVal(EltSize, CI->getZExtValue());
1403          APInt TotalVal(OneVal);
1404          // Set each byte.
1405          for (unsigned i = 0; 8*i < EltSize; ++i) {
1406            TotalVal = TotalVal.shl(8);
1407            TotalVal |= OneVal;
1408          }
1409
1410          // Convert the integer value to the appropriate type.
1411          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
1412          if (ValTy->isPointerTy())
1413            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
1414          else if (ValTy->isFloatingPointTy())
1415            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
1416          assert(StoreVal->getType() == ValTy && "Type mismatch!");
1417
1418          // If the requested value was a vector constant, create it.
1419          if (EltTy != ValTy) {
1420            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
1421            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
1422            StoreVal = ConstantVector::get(&Elts[0], NumElts);
1423          }
1424        }
1425        new StoreInst(StoreVal, EltPtr, MI);
1426        continue;
1427      }
1428      // Otherwise, if we're storing a byte variable, use a memset call for
1429      // this element.
1430    }
1431
1432    // Cast the element pointer to BytePtrTy.
1433    if (EltPtr->getType() != BytePtrTy)
1434      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getName(), MI);
1435
1436    // Cast the other pointer (if we have one) to BytePtrTy.
1437    if (OtherElt && OtherElt->getType() != BytePtrTy) {
1438      // Preserve address space of OtherElt
1439      const PointerType* OtherPTy = cast<PointerType>(OtherElt->getType());
1440      const PointerType* PTy = cast<PointerType>(BytePtrTy);
1441      if (OtherPTy->getElementType() != PTy->getElementType()) {
1442        Type *NewOtherPTy = PointerType::get(PTy->getElementType(),
1443                                             OtherPTy->getAddressSpace());
1444        OtherElt = new BitCastInst(OtherElt, NewOtherPTy,
1445                                   OtherElt->getNameStr(), MI);
1446      }
1447    }
1448
1449    unsigned EltSize = TD->getTypeAllocSize(EltTy);
1450
1451    // Finally, insert the meminst for this element.
1452    if (isa<MemTransferInst>(MI)) {
1453      Value *Ops[] = {
1454        SROADest ? EltPtr : OtherElt,  // Dest ptr
1455        SROADest ? OtherElt : EltPtr,  // Src ptr
1456        ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
1457        // Align
1458        ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign),
1459        MI->getVolatileCst()
1460      };
1461      // In case we fold the address space overloaded memcpy of A to B
1462      // with memcpy of B to C, change the function to be a memcpy of A to C.
1463      const Type *Tys[] = { Ops[0]->getType(), Ops[1]->getType(),
1464                            Ops[2]->getType() };
1465      Module *M = MI->getParent()->getParent()->getParent();
1466      TheFn = Intrinsic::getDeclaration(M, MI->getIntrinsicID(), Tys, 3);
1467      CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
1468    } else {
1469      assert(isa<MemSetInst>(MI));
1470      Value *Ops[] = {
1471        EltPtr, MI->getArgOperand(1),  // Dest, Value,
1472        ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
1473        Zero,  // Align
1474        ConstantInt::get(Type::getInt1Ty(MI->getContext()), 0) // isVolatile
1475      };
1476      const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
1477      Module *M = MI->getParent()->getParent()->getParent();
1478      TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
1479      CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
1480    }
1481  }
1482  DeadInsts.push_back(MI);
1483}
1484
1485/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
1486/// overwrites the entire allocation.  Extract out the pieces of the stored
1487/// integer and store them individually.
1488void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
1489                                         SmallVector<AllocaInst*, 32> &NewElts){
1490  // Extract each element out of the integer according to its structure offset
1491  // and store the element value to the individual alloca.
1492  Value *SrcVal = SI->getOperand(0);
1493  const Type *AllocaEltTy = AI->getAllocatedType();
1494  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1495
1496  // Handle tail padding by extending the operand
1497  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
1498    SrcVal = new ZExtInst(SrcVal,
1499                          IntegerType::get(SI->getContext(), AllocaSizeBits),
1500                          "", SI);
1501
1502  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
1503               << '\n');
1504
1505  // There are two forms here: AI could be an array or struct.  Both cases
1506  // have different ways to compute the element offset.
1507  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1508    const StructLayout *Layout = TD->getStructLayout(EltSTy);
1509
1510    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1511      // Get the number of bits to shift SrcVal to get the value.
1512      const Type *FieldTy = EltSTy->getElementType(i);
1513      uint64_t Shift = Layout->getElementOffsetInBits(i);
1514
1515      if (TD->isBigEndian())
1516        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
1517
1518      Value *EltVal = SrcVal;
1519      if (Shift) {
1520        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1521        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1522                                            "sroa.store.elt", SI);
1523      }
1524
1525      // Truncate down to an integer of the right size.
1526      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1527
1528      // Ignore zero sized fields like {}, they obviously contain no data.
1529      if (FieldSizeBits == 0) continue;
1530
1531      if (FieldSizeBits != AllocaSizeBits)
1532        EltVal = new TruncInst(EltVal,
1533                             IntegerType::get(SI->getContext(), FieldSizeBits),
1534                              "", SI);
1535      Value *DestField = NewElts[i];
1536      if (EltVal->getType() == FieldTy) {
1537        // Storing to an integer field of this size, just do it.
1538      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
1539        // Bitcast to the right element type (for fp/vector values).
1540        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
1541      } else {
1542        // Otherwise, bitcast the dest pointer (for aggregates).
1543        DestField = new BitCastInst(DestField,
1544                              PointerType::getUnqual(EltVal->getType()),
1545                                    "", SI);
1546      }
1547      new StoreInst(EltVal, DestField, SI);
1548    }
1549
1550  } else {
1551    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
1552    const Type *ArrayEltTy = ATy->getElementType();
1553    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1554    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
1555
1556    uint64_t Shift;
1557
1558    if (TD->isBigEndian())
1559      Shift = AllocaSizeBits-ElementOffset;
1560    else
1561      Shift = 0;
1562
1563    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1564      // Ignore zero sized fields like {}, they obviously contain no data.
1565      if (ElementSizeBits == 0) continue;
1566
1567      Value *EltVal = SrcVal;
1568      if (Shift) {
1569        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1570        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1571                                            "sroa.store.elt", SI);
1572      }
1573
1574      // Truncate down to an integer of the right size.
1575      if (ElementSizeBits != AllocaSizeBits)
1576        EltVal = new TruncInst(EltVal,
1577                               IntegerType::get(SI->getContext(),
1578                                                ElementSizeBits),"",SI);
1579      Value *DestField = NewElts[i];
1580      if (EltVal->getType() == ArrayEltTy) {
1581        // Storing to an integer field of this size, just do it.
1582      } else if (ArrayEltTy->isFloatingPointTy() ||
1583                 ArrayEltTy->isVectorTy()) {
1584        // Bitcast to the right element type (for fp/vector values).
1585        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1586      } else {
1587        // Otherwise, bitcast the dest pointer (for aggregates).
1588        DestField = new BitCastInst(DestField,
1589                              PointerType::getUnqual(EltVal->getType()),
1590                                    "", SI);
1591      }
1592      new StoreInst(EltVal, DestField, SI);
1593
1594      if (TD->isBigEndian())
1595        Shift -= ElementOffset;
1596      else
1597        Shift += ElementOffset;
1598    }
1599  }
1600
1601  DeadInsts.push_back(SI);
1602}
1603
1604/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
1605/// an integer.  Load the individual pieces to form the aggregate value.
1606void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1607                                        SmallVector<AllocaInst*, 32> &NewElts) {
1608  // Extract each element out of the NewElts according to its structure offset
1609  // and form the result value.
1610  const Type *AllocaEltTy = AI->getAllocatedType();
1611  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1612
1613  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1614               << '\n');
1615
1616  // There are two forms here: AI could be an array or struct.  Both cases
1617  // have different ways to compute the element offset.
1618  const StructLayout *Layout = 0;
1619  uint64_t ArrayEltBitOffset = 0;
1620  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1621    Layout = TD->getStructLayout(EltSTy);
1622  } else {
1623    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1624    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1625  }
1626
1627  Value *ResultVal =
1628    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1629
1630  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1631    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1632    // the pointer to an integer of the same size before doing the load.
1633    Value *SrcField = NewElts[i];
1634    const Type *FieldTy =
1635      cast<PointerType>(SrcField->getType())->getElementType();
1636    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1637
1638    // Ignore zero sized fields like {}, they obviously contain no data.
1639    if (FieldSizeBits == 0) continue;
1640
1641    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1642                                                     FieldSizeBits);
1643    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
1644        !FieldTy->isVectorTy())
1645      SrcField = new BitCastInst(SrcField,
1646                                 PointerType::getUnqual(FieldIntTy),
1647                                 "", LI);
1648    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1649
1650    // If SrcField is a fp or vector of the right size but that isn't an
1651    // integer type, bitcast to an integer so we can shift it.
1652    if (SrcField->getType() != FieldIntTy)
1653      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1654
1655    // Zero extend the field to be the same size as the final alloca so that
1656    // we can shift and insert it.
1657    if (SrcField->getType() != ResultVal->getType())
1658      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1659
1660    // Determine the number of bits to shift SrcField.
1661    uint64_t Shift;
1662    if (Layout) // Struct case.
1663      Shift = Layout->getElementOffsetInBits(i);
1664    else  // Array case.
1665      Shift = i*ArrayEltBitOffset;
1666
1667    if (TD->isBigEndian())
1668      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1669
1670    if (Shift) {
1671      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1672      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1673    }
1674
1675    // Don't create an 'or x, 0' on the first iteration.
1676    if (!isa<Constant>(ResultVal) ||
1677        !cast<Constant>(ResultVal)->isNullValue())
1678      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1679    else
1680      ResultVal = SrcField;
1681  }
1682
1683  // Handle tail padding by truncating the result
1684  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1685    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1686
1687  LI->replaceAllUsesWith(ResultVal);
1688  DeadInsts.push_back(LI);
1689}
1690
1691/// HasPadding - Return true if the specified type has any structure or
1692/// alignment padding, false otherwise.
1693static bool HasPadding(const Type *Ty, const TargetData &TD) {
1694  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
1695    return HasPadding(ATy->getElementType(), TD);
1696
1697  if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
1698    return HasPadding(VTy->getElementType(), TD);
1699
1700  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1701    const StructLayout *SL = TD.getStructLayout(STy);
1702    unsigned PrevFieldBitOffset = 0;
1703    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1704      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1705
1706      // Padding in sub-elements?
1707      if (HasPadding(STy->getElementType(i), TD))
1708        return true;
1709
1710      // Check to see if there is any padding between this element and the
1711      // previous one.
1712      if (i) {
1713        unsigned PrevFieldEnd =
1714        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1715        if (PrevFieldEnd < FieldBitOffset)
1716          return true;
1717      }
1718
1719      PrevFieldBitOffset = FieldBitOffset;
1720    }
1721
1722    //  Check for tail padding.
1723    if (unsigned EltCount = STy->getNumElements()) {
1724      unsigned PrevFieldEnd = PrevFieldBitOffset +
1725                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1726      if (PrevFieldEnd < SL->getSizeInBits())
1727        return true;
1728    }
1729  }
1730
1731  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1732}
1733
1734/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1735/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1736/// or 1 if safe after canonicalization has been performed.
1737bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1738  // Loop over the use list of the alloca.  We can only transform it if all of
1739  // the users are safe to transform.
1740  AllocaInfo Info;
1741
1742  isSafeForScalarRepl(AI, AI, 0, Info);
1743  if (Info.isUnsafe) {
1744    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
1745    return false;
1746  }
1747
1748  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1749  // source and destination, we have to be careful.  In particular, the memcpy
1750  // could be moving around elements that live in structure padding of the LLVM
1751  // types, but may actually be used.  In these cases, we refuse to promote the
1752  // struct.
1753  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1754      HasPadding(AI->getAllocatedType(), *TD))
1755    return false;
1756
1757  return true;
1758}
1759
1760
1761
1762/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1763/// some part of a constant global variable.  This intentionally only accepts
1764/// constant expressions because we don't can't rewrite arbitrary instructions.
1765static bool PointsToConstantGlobal(Value *V) {
1766  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1767    return GV->isConstant();
1768  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1769    if (CE->getOpcode() == Instruction::BitCast ||
1770        CE->getOpcode() == Instruction::GetElementPtr)
1771      return PointsToConstantGlobal(CE->getOperand(0));
1772  return false;
1773}
1774
1775/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1776/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1777/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1778/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1779/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1780/// the alloca, and if the source pointer is a pointer to a constant  global, we
1781/// can optimize this.
1782static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
1783                                           bool isOffset) {
1784  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1785    User *U = cast<Instruction>(*UI);
1786
1787    if (LoadInst *LI = dyn_cast<LoadInst>(U))
1788      // Ignore non-volatile loads, they are always ok.
1789      if (!LI->isVolatile())
1790        continue;
1791
1792    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1793      // If uses of the bitcast are ok, we are ok.
1794      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1795        return false;
1796      continue;
1797    }
1798    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
1799      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1800      // doesn't, it does.
1801      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1802                                         isOffset || !GEP->hasAllZeroIndices()))
1803        return false;
1804      continue;
1805    }
1806
1807    // If this is isn't our memcpy/memmove, reject it as something we can't
1808    // handle.
1809    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
1810    if (MI == 0)
1811      return false;
1812
1813    // If we already have seen a copy, reject the second one.
1814    if (TheCopy) return false;
1815
1816    // If the pointer has been offset from the start of the alloca, we can't
1817    // safely handle this.
1818    if (isOffset) return false;
1819
1820    // If the memintrinsic isn't using the alloca as the dest, reject it.
1821    if (UI.getOperandNo() != 0) return false;
1822
1823    // If the source of the memcpy/move is not a constant global, reject it.
1824    if (!PointsToConstantGlobal(MI->getSource()))
1825      return false;
1826
1827    // Otherwise, the transform is safe.  Remember the copy instruction.
1828    TheCopy = MI;
1829  }
1830  return true;
1831}
1832
1833/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1834/// modified by a copy from a constant global.  If we can prove this, we can
1835/// replace any uses of the alloca with uses of the global directly.
1836MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1837  MemTransferInst *TheCopy = 0;
1838  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1839    return TheCopy;
1840  return 0;
1841}
1842