ScalarReplAggregates.cpp revision 081c34b725980f995be9080eaec24cd3dfaaf065
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/Dominators.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Transforms/Utils/PromoteMemToReg.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/GetElementPtrTypeIterator.h"
40#include "llvm/Support/IRBuilder.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45using namespace llvm;
46
47STATISTIC(NumReplaced,  "Number of allocas broken up");
48STATISTIC(NumPromoted,  "Number of allocas promoted");
49STATISTIC(NumConverted, "Number of aggregates converted to scalar");
50STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
51
52namespace {
53  struct SROA : public FunctionPass {
54    static char ID; // Pass identification, replacement for typeid
55    explicit SROA(signed T = -1) : FunctionPass(ID) {
56      initializeSROAPass(*PassRegistry::getPassRegistry());
57      if (T == -1)
58        SRThreshold = 128;
59      else
60        SRThreshold = T;
61    }
62
63    bool runOnFunction(Function &F);
64
65    bool performScalarRepl(Function &F);
66    bool performPromotion(Function &F);
67
68    // getAnalysisUsage - This pass does not require any passes, but we know it
69    // will not alter the CFG, so say so.
70    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71      AU.addRequired<DominatorTree>();
72      AU.addRequired<DominanceFrontier>();
73      AU.setPreservesCFG();
74    }
75
76  private:
77    TargetData *TD;
78
79    /// DeadInsts - Keep track of instructions we have made dead, so that
80    /// we can remove them after we are done working.
81    SmallVector<Value*, 32> DeadInsts;
82
83    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
84    /// information about the uses.  All these fields are initialized to false
85    /// and set to true when something is learned.
86    struct AllocaInfo {
87      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
88      bool isUnsafe : 1;
89
90      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
91      bool isMemCpySrc : 1;
92
93      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
94      bool isMemCpyDst : 1;
95
96      AllocaInfo()
97        : isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false) {}
98    };
99
100    unsigned SRThreshold;
101
102    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
103
104    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
105
106    void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
107                             AllocaInfo &Info);
108    void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
109                   AllocaInfo &Info);
110    void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
111                         const Type *MemOpType, bool isStore, AllocaInfo &Info);
112    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
113    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
114                                  const Type *&IdxTy);
115
116    void DoScalarReplacement(AllocaInst *AI,
117                             std::vector<AllocaInst*> &WorkList);
118    void DeleteDeadInstructions();
119
120    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
121                              SmallVector<AllocaInst*, 32> &NewElts);
122    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
123                        SmallVector<AllocaInst*, 32> &NewElts);
124    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
125                    SmallVector<AllocaInst*, 32> &NewElts);
126    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
127                                      AllocaInst *AI,
128                                      SmallVector<AllocaInst*, 32> &NewElts);
129    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
130                                       SmallVector<AllocaInst*, 32> &NewElts);
131    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
132                                      SmallVector<AllocaInst*, 32> &NewElts);
133
134    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
135  };
136}
137
138char SROA::ID = 0;
139INITIALIZE_PASS_BEGIN(SROA, "scalarrepl",
140                "Scalar Replacement of Aggregates", false, false)
141INITIALIZE_PASS_DEPENDENCY(DominatorTree)
142INITIALIZE_PASS_DEPENDENCY(DominanceFrontier)
143INITIALIZE_PASS_END(SROA, "scalarrepl",
144                "Scalar Replacement of Aggregates", false, false)
145
146// Public interface to the ScalarReplAggregates pass
147FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
148  return new SROA(Threshold);
149}
150
151
152//===----------------------------------------------------------------------===//
153// Convert To Scalar Optimization.
154//===----------------------------------------------------------------------===//
155
156namespace {
157/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
158/// optimization, which scans the uses of an alloca and determines if it can
159/// rewrite it in terms of a single new alloca that can be mem2reg'd.
160class ConvertToScalarInfo {
161  /// AllocaSize - The size of the alloca being considered.
162  unsigned AllocaSize;
163  const TargetData &TD;
164
165  /// IsNotTrivial - This is set to true if there is some access to the object
166  /// which means that mem2reg can't promote it.
167  bool IsNotTrivial;
168
169  /// VectorTy - This tracks the type that we should promote the vector to if
170  /// it is possible to turn it into a vector.  This starts out null, and if it
171  /// isn't possible to turn into a vector type, it gets set to VoidTy.
172  const Type *VectorTy;
173
174  /// HadAVector - True if there is at least one vector access to the alloca.
175  /// We don't want to turn random arrays into vectors and use vector element
176  /// insert/extract, but if there are element accesses to something that is
177  /// also declared as a vector, we do want to promote to a vector.
178  bool HadAVector;
179
180public:
181  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
182    : AllocaSize(Size), TD(td) {
183    IsNotTrivial = false;
184    VectorTy = 0;
185    HadAVector = false;
186  }
187
188  AllocaInst *TryConvert(AllocaInst *AI);
189
190private:
191  bool CanConvertToScalar(Value *V, uint64_t Offset);
192  void MergeInType(const Type *In, uint64_t Offset);
193  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
194
195  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
196                                    uint64_t Offset, IRBuilder<> &Builder);
197  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
198                                   uint64_t Offset, IRBuilder<> &Builder);
199};
200} // end anonymous namespace.
201
202
203/// IsVerbotenVectorType - Return true if this is a vector type ScalarRepl isn't
204/// allowed to form.  We do this to avoid MMX types, which is a complete hack,
205/// but is required until the backend is fixed.
206static bool IsVerbotenVectorType(const VectorType *VTy, const Instruction *I) {
207  StringRef Triple(I->getParent()->getParent()->getParent()->getTargetTriple());
208  if (!Triple.startswith("i386") &&
209      !Triple.startswith("x86_64"))
210    return false;
211
212  // Reject all the MMX vector types.
213  switch (VTy->getNumElements()) {
214  default: return false;
215  case 1: return VTy->getElementType()->isIntegerTy(64);
216  case 2: return VTy->getElementType()->isIntegerTy(32);
217  case 4: return VTy->getElementType()->isIntegerTy(16);
218  case 8: return VTy->getElementType()->isIntegerTy(8);
219  }
220}
221
222
223/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
224/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
225/// alloca if possible or null if not.
226AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
227  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
228  // out.
229  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
230    return 0;
231
232  // If we were able to find a vector type that can handle this with
233  // insert/extract elements, and if there was at least one use that had
234  // a vector type, promote this to a vector.  We don't want to promote
235  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
236  // we just get a lot of insert/extracts.  If at least one vector is
237  // involved, then we probably really do have a union of vector/array.
238  const Type *NewTy;
239  if (VectorTy && VectorTy->isVectorTy() && HadAVector &&
240      !IsVerbotenVectorType(cast<VectorType>(VectorTy), AI)) {
241    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
242          << *VectorTy << '\n');
243    NewTy = VectorTy;  // Use the vector type.
244  } else {
245    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
246    // Create and insert the integer alloca.
247    NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
248  }
249  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
250  ConvertUsesToScalar(AI, NewAI, 0);
251  return NewAI;
252}
253
254/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
255/// so far at the offset specified by Offset (which is specified in bytes).
256///
257/// There are two cases we handle here:
258///   1) A union of vector types of the same size and potentially its elements.
259///      Here we turn element accesses into insert/extract element operations.
260///      This promotes a <4 x float> with a store of float to the third element
261///      into a <4 x float> that uses insert element.
262///   2) A fully general blob of memory, which we turn into some (potentially
263///      large) integer type with extract and insert operations where the loads
264///      and stores would mutate the memory.  We mark this by setting VectorTy
265///      to VoidTy.
266void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
267  // If we already decided to turn this into a blob of integer memory, there is
268  // nothing to be done.
269  if (VectorTy && VectorTy->isVoidTy())
270    return;
271
272  // If this could be contributing to a vector, analyze it.
273
274  // If the In type is a vector that is the same size as the alloca, see if it
275  // matches the existing VecTy.
276  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
277    // Remember if we saw a vector type.
278    HadAVector = true;
279
280    if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
281      // If we're storing/loading a vector of the right size, allow it as a
282      // vector.  If this the first vector we see, remember the type so that
283      // we know the element size.  If this is a subsequent access, ignore it
284      // even if it is a differing type but the same size.  Worst case we can
285      // bitcast the resultant vectors.
286      if (VectorTy == 0)
287        VectorTy = VInTy;
288      return;
289    }
290  } else if (In->isFloatTy() || In->isDoubleTy() ||
291             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
292              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
293    // If we're accessing something that could be an element of a vector, see
294    // if the implied vector agrees with what we already have and if Offset is
295    // compatible with it.
296    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
297    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
298        (VectorTy == 0 ||
299         cast<VectorType>(VectorTy)->getElementType()
300               ->getPrimitiveSizeInBits()/8 == EltSize)) {
301      if (VectorTy == 0)
302        VectorTy = VectorType::get(In, AllocaSize/EltSize);
303      return;
304    }
305  }
306
307  // Otherwise, we have a case that we can't handle with an optimized vector
308  // form.  We can still turn this into a large integer.
309  VectorTy = Type::getVoidTy(In->getContext());
310}
311
312/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
313/// its accesses to a single vector type, return true and set VecTy to
314/// the new type.  If we could convert the alloca into a single promotable
315/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
316/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
317/// is the current offset from the base of the alloca being analyzed.
318///
319/// If we see at least one access to the value that is as a vector type, set the
320/// SawVec flag.
321bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
322  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
323    Instruction *User = cast<Instruction>(*UI);
324
325    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
326      // Don't break volatile loads.
327      if (LI->isVolatile())
328        return false;
329      // Don't touch MMX operations.
330      if (LI->getType()->isX86_MMXTy())
331        return false;
332      MergeInType(LI->getType(), Offset);
333      continue;
334    }
335
336    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
337      // Storing the pointer, not into the value?
338      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
339      // Don't touch MMX operations.
340      if (SI->getOperand(0)->getType()->isX86_MMXTy())
341        return false;
342      MergeInType(SI->getOperand(0)->getType(), Offset);
343      continue;
344    }
345
346    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
347      IsNotTrivial = true;  // Can't be mem2reg'd.
348      if (!CanConvertToScalar(BCI, Offset))
349        return false;
350      continue;
351    }
352
353    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
354      // If this is a GEP with a variable indices, we can't handle it.
355      if (!GEP->hasAllConstantIndices())
356        return false;
357
358      // Compute the offset that this GEP adds to the pointer.
359      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
360      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
361                                               &Indices[0], Indices.size());
362      // See if all uses can be converted.
363      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
364        return false;
365      IsNotTrivial = true;  // Can't be mem2reg'd.
366      continue;
367    }
368
369    // If this is a constant sized memset of a constant value (e.g. 0) we can
370    // handle it.
371    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
372      // Store of constant value and constant size.
373      if (!isa<ConstantInt>(MSI->getValue()) ||
374          !isa<ConstantInt>(MSI->getLength()))
375        return false;
376      IsNotTrivial = true;  // Can't be mem2reg'd.
377      continue;
378    }
379
380    // If this is a memcpy or memmove into or out of the whole allocation, we
381    // can handle it like a load or store of the scalar type.
382    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
383      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
384      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
385        return false;
386
387      IsNotTrivial = true;  // Can't be mem2reg'd.
388      continue;
389    }
390
391    // Otherwise, we cannot handle this!
392    return false;
393  }
394
395  return true;
396}
397
398/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
399/// directly.  This happens when we are converting an "integer union" to a
400/// single integer scalar, or when we are converting a "vector union" to a
401/// vector with insert/extractelement instructions.
402///
403/// Offset is an offset from the original alloca, in bits that need to be
404/// shifted to the right.  By the end of this, there should be no uses of Ptr.
405void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
406                                              uint64_t Offset) {
407  while (!Ptr->use_empty()) {
408    Instruction *User = cast<Instruction>(Ptr->use_back());
409
410    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
411      ConvertUsesToScalar(CI, NewAI, Offset);
412      CI->eraseFromParent();
413      continue;
414    }
415
416    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
417      // Compute the offset that this GEP adds to the pointer.
418      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
419      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
420                                               &Indices[0], Indices.size());
421      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
422      GEP->eraseFromParent();
423      continue;
424    }
425
426    IRBuilder<> Builder(User->getParent(), User);
427
428    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
429      // The load is a bit extract from NewAI shifted right by Offset bits.
430      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
431      Value *NewLoadVal
432        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
433      LI->replaceAllUsesWith(NewLoadVal);
434      LI->eraseFromParent();
435      continue;
436    }
437
438    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
439      assert(SI->getOperand(0) != Ptr && "Consistency error!");
440      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
441      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
442                                             Builder);
443      Builder.CreateStore(New, NewAI);
444      SI->eraseFromParent();
445
446      // If the load we just inserted is now dead, then the inserted store
447      // overwrote the entire thing.
448      if (Old->use_empty())
449        Old->eraseFromParent();
450      continue;
451    }
452
453    // If this is a constant sized memset of a constant value (e.g. 0) we can
454    // transform it into a store of the expanded constant value.
455    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
456      assert(MSI->getRawDest() == Ptr && "Consistency error!");
457      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
458      if (NumBytes != 0) {
459        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
460
461        // Compute the value replicated the right number of times.
462        APInt APVal(NumBytes*8, Val);
463
464        // Splat the value if non-zero.
465        if (Val)
466          for (unsigned i = 1; i != NumBytes; ++i)
467            APVal |= APVal << 8;
468
469        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
470        Value *New = ConvertScalar_InsertValue(
471                                    ConstantInt::get(User->getContext(), APVal),
472                                               Old, Offset, Builder);
473        Builder.CreateStore(New, NewAI);
474
475        // If the load we just inserted is now dead, then the memset overwrote
476        // the entire thing.
477        if (Old->use_empty())
478          Old->eraseFromParent();
479      }
480      MSI->eraseFromParent();
481      continue;
482    }
483
484    // If this is a memcpy or memmove into or out of the whole allocation, we
485    // can handle it like a load or store of the scalar type.
486    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
487      assert(Offset == 0 && "must be store to start of alloca");
488
489      // If the source and destination are both to the same alloca, then this is
490      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
491      // as appropriate.
492      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject(0));
493
494      if (MTI->getSource()->getUnderlyingObject(0) != OrigAI) {
495        // Dest must be OrigAI, change this to be a load from the original
496        // pointer (bitcasted), then a store to our new alloca.
497        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
498        Value *SrcPtr = MTI->getSource();
499        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
500
501        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
502        SrcVal->setAlignment(MTI->getAlignment());
503        Builder.CreateStore(SrcVal, NewAI);
504      } else if (MTI->getDest()->getUnderlyingObject(0) != OrigAI) {
505        // Src must be OrigAI, change this to be a load from NewAI then a store
506        // through the original dest pointer (bitcasted).
507        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
508        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
509
510        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
511        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
512        NewStore->setAlignment(MTI->getAlignment());
513      } else {
514        // Noop transfer. Src == Dst
515      }
516
517      MTI->eraseFromParent();
518      continue;
519    }
520
521    llvm_unreachable("Unsupported operation!");
522  }
523}
524
525/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
526/// or vector value FromVal, extracting the bits from the offset specified by
527/// Offset.  This returns the value, which is of type ToType.
528///
529/// This happens when we are converting an "integer union" to a single
530/// integer scalar, or when we are converting a "vector union" to a vector with
531/// insert/extractelement instructions.
532///
533/// Offset is an offset from the original alloca, in bits that need to be
534/// shifted to the right.
535Value *ConvertToScalarInfo::
536ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
537                           uint64_t Offset, IRBuilder<> &Builder) {
538  // If the load is of the whole new alloca, no conversion is needed.
539  if (FromVal->getType() == ToType && Offset == 0)
540    return FromVal;
541
542  // If the result alloca is a vector type, this is either an element
543  // access or a bitcast to another vector type of the same size.
544  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
545    if (ToType->isVectorTy())
546      return Builder.CreateBitCast(FromVal, ToType, "tmp");
547
548    // Otherwise it must be an element access.
549    unsigned Elt = 0;
550    if (Offset) {
551      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
552      Elt = Offset/EltSize;
553      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
554    }
555    // Return the element extracted out of it.
556    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
557                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
558    if (V->getType() != ToType)
559      V = Builder.CreateBitCast(V, ToType, "tmp");
560    return V;
561  }
562
563  // If ToType is a first class aggregate, extract out each of the pieces and
564  // use insertvalue's to form the FCA.
565  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
566    const StructLayout &Layout = *TD.getStructLayout(ST);
567    Value *Res = UndefValue::get(ST);
568    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
569      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
570                                        Offset+Layout.getElementOffsetInBits(i),
571                                              Builder);
572      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
573    }
574    return Res;
575  }
576
577  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
578    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
579    Value *Res = UndefValue::get(AT);
580    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
581      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
582                                              Offset+i*EltSize, Builder);
583      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
584    }
585    return Res;
586  }
587
588  // Otherwise, this must be a union that was converted to an integer value.
589  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
590
591  // If this is a big-endian system and the load is narrower than the
592  // full alloca type, we need to do a shift to get the right bits.
593  int ShAmt = 0;
594  if (TD.isBigEndian()) {
595    // On big-endian machines, the lowest bit is stored at the bit offset
596    // from the pointer given by getTypeStoreSizeInBits.  This matters for
597    // integers with a bitwidth that is not a multiple of 8.
598    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
599            TD.getTypeStoreSizeInBits(ToType) - Offset;
600  } else {
601    ShAmt = Offset;
602  }
603
604  // Note: we support negative bitwidths (with shl) which are not defined.
605  // We do this to support (f.e.) loads off the end of a structure where
606  // only some bits are used.
607  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
608    FromVal = Builder.CreateLShr(FromVal,
609                                 ConstantInt::get(FromVal->getType(),
610                                                           ShAmt), "tmp");
611  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
612    FromVal = Builder.CreateShl(FromVal,
613                                ConstantInt::get(FromVal->getType(),
614                                                          -ShAmt), "tmp");
615
616  // Finally, unconditionally truncate the integer to the right width.
617  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
618  if (LIBitWidth < NTy->getBitWidth())
619    FromVal =
620      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
621                                                    LIBitWidth), "tmp");
622  else if (LIBitWidth > NTy->getBitWidth())
623    FromVal =
624       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
625                                                    LIBitWidth), "tmp");
626
627  // If the result is an integer, this is a trunc or bitcast.
628  if (ToType->isIntegerTy()) {
629    // Should be done.
630  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
631    // Just do a bitcast, we know the sizes match up.
632    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
633  } else {
634    // Otherwise must be a pointer.
635    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
636  }
637  assert(FromVal->getType() == ToType && "Didn't convert right?");
638  return FromVal;
639}
640
641/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
642/// or vector value "Old" at the offset specified by Offset.
643///
644/// This happens when we are converting an "integer union" to a
645/// single integer scalar, or when we are converting a "vector union" to a
646/// vector with insert/extractelement instructions.
647///
648/// Offset is an offset from the original alloca, in bits that need to be
649/// shifted to the right.
650Value *ConvertToScalarInfo::
651ConvertScalar_InsertValue(Value *SV, Value *Old,
652                          uint64_t Offset, IRBuilder<> &Builder) {
653  // Convert the stored type to the actual type, shift it left to insert
654  // then 'or' into place.
655  const Type *AllocaType = Old->getType();
656  LLVMContext &Context = Old->getContext();
657
658  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
659    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
660    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
661
662    // Changing the whole vector with memset or with an access of a different
663    // vector type?
664    if (ValSize == VecSize)
665      return Builder.CreateBitCast(SV, AllocaType, "tmp");
666
667    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
668
669    // Must be an element insertion.
670    unsigned Elt = Offset/EltSize;
671
672    if (SV->getType() != VTy->getElementType())
673      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
674
675    SV = Builder.CreateInsertElement(Old, SV,
676                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
677                                     "tmp");
678    return SV;
679  }
680
681  // If SV is a first-class aggregate value, insert each value recursively.
682  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
683    const StructLayout &Layout = *TD.getStructLayout(ST);
684    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
685      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
686      Old = ConvertScalar_InsertValue(Elt, Old,
687                                      Offset+Layout.getElementOffsetInBits(i),
688                                      Builder);
689    }
690    return Old;
691  }
692
693  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
694    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
695    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
696      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
697      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
698    }
699    return Old;
700  }
701
702  // If SV is a float, convert it to the appropriate integer type.
703  // If it is a pointer, do the same.
704  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
705  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
706  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
707  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
708  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
709    SV = Builder.CreateBitCast(SV,
710                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
711  else if (SV->getType()->isPointerTy())
712    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
713
714  // Zero extend or truncate the value if needed.
715  if (SV->getType() != AllocaType) {
716    if (SV->getType()->getPrimitiveSizeInBits() <
717             AllocaType->getPrimitiveSizeInBits())
718      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
719    else {
720      // Truncation may be needed if storing more than the alloca can hold
721      // (undefined behavior).
722      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
723      SrcWidth = DestWidth;
724      SrcStoreWidth = DestStoreWidth;
725    }
726  }
727
728  // If this is a big-endian system and the store is narrower than the
729  // full alloca type, we need to do a shift to get the right bits.
730  int ShAmt = 0;
731  if (TD.isBigEndian()) {
732    // On big-endian machines, the lowest bit is stored at the bit offset
733    // from the pointer given by getTypeStoreSizeInBits.  This matters for
734    // integers with a bitwidth that is not a multiple of 8.
735    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
736  } else {
737    ShAmt = Offset;
738  }
739
740  // Note: we support negative bitwidths (with shr) which are not defined.
741  // We do this to support (f.e.) stores off the end of a structure where
742  // only some bits in the structure are set.
743  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
744  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
745    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
746                           ShAmt), "tmp");
747    Mask <<= ShAmt;
748  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
749    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
750                            -ShAmt), "tmp");
751    Mask = Mask.lshr(-ShAmt);
752  }
753
754  // Mask out the bits we are about to insert from the old value, and or
755  // in the new bits.
756  if (SrcWidth != DestWidth) {
757    assert(DestWidth > SrcWidth);
758    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
759    SV = Builder.CreateOr(Old, SV, "ins");
760  }
761  return SV;
762}
763
764
765//===----------------------------------------------------------------------===//
766// SRoA Driver
767//===----------------------------------------------------------------------===//
768
769
770bool SROA::runOnFunction(Function &F) {
771  TD = getAnalysisIfAvailable<TargetData>();
772
773  bool Changed = performPromotion(F);
774
775  // FIXME: ScalarRepl currently depends on TargetData more than it
776  // theoretically needs to. It should be refactored in order to support
777  // target-independent IR. Until this is done, just skip the actual
778  // scalar-replacement portion of this pass.
779  if (!TD) return Changed;
780
781  while (1) {
782    bool LocalChange = performScalarRepl(F);
783    if (!LocalChange) break;   // No need to repromote if no scalarrepl
784    Changed = true;
785    LocalChange = performPromotion(F);
786    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
787  }
788
789  return Changed;
790}
791
792
793bool SROA::performPromotion(Function &F) {
794  std::vector<AllocaInst*> Allocas;
795  DominatorTree         &DT = getAnalysis<DominatorTree>();
796  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
797
798  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
799
800  bool Changed = false;
801
802  while (1) {
803    Allocas.clear();
804
805    // Find allocas that are safe to promote, by looking at all instructions in
806    // the entry node
807    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
808      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
809        if (isAllocaPromotable(AI))
810          Allocas.push_back(AI);
811
812    if (Allocas.empty()) break;
813
814    PromoteMemToReg(Allocas, DT, DF);
815    NumPromoted += Allocas.size();
816    Changed = true;
817  }
818
819  return Changed;
820}
821
822
823/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
824/// SROA.  It must be a struct or array type with a small number of elements.
825static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
826  const Type *T = AI->getAllocatedType();
827  // Do not promote any struct into more than 32 separate vars.
828  if (const StructType *ST = dyn_cast<StructType>(T))
829    return ST->getNumElements() <= 32;
830  // Arrays are much less likely to be safe for SROA; only consider
831  // them if they are very small.
832  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
833    return AT->getNumElements() <= 8;
834  return false;
835}
836
837
838// performScalarRepl - This algorithm is a simple worklist driven algorithm,
839// which runs on all of the malloc/alloca instructions in the function, removing
840// them if they are only used by getelementptr instructions.
841//
842bool SROA::performScalarRepl(Function &F) {
843  std::vector<AllocaInst*> WorkList;
844
845  // Scan the entry basic block, adding allocas to the worklist.
846  BasicBlock &BB = F.getEntryBlock();
847  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
848    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
849      WorkList.push_back(A);
850
851  // Process the worklist
852  bool Changed = false;
853  while (!WorkList.empty()) {
854    AllocaInst *AI = WorkList.back();
855    WorkList.pop_back();
856
857    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
858    // with unused elements.
859    if (AI->use_empty()) {
860      AI->eraseFromParent();
861      Changed = true;
862      continue;
863    }
864
865    // If this alloca is impossible for us to promote, reject it early.
866    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
867      continue;
868
869    // Check to see if this allocation is only modified by a memcpy/memmove from
870    // a constant global.  If this is the case, we can change all users to use
871    // the constant global instead.  This is commonly produced by the CFE by
872    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
873    // is only subsequently read.
874    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
875      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
876      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
877      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
878      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
879      TheCopy->eraseFromParent();  // Don't mutate the global.
880      AI->eraseFromParent();
881      ++NumGlobals;
882      Changed = true;
883      continue;
884    }
885
886    // Check to see if we can perform the core SROA transformation.  We cannot
887    // transform the allocation instruction if it is an array allocation
888    // (allocations OF arrays are ok though), and an allocation of a scalar
889    // value cannot be decomposed at all.
890    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
891
892    // Do not promote [0 x %struct].
893    if (AllocaSize == 0) continue;
894
895    // Do not promote any struct whose size is too big.
896    if (AllocaSize > SRThreshold) continue;
897
898    // If the alloca looks like a good candidate for scalar replacement, and if
899    // all its users can be transformed, then split up the aggregate into its
900    // separate elements.
901    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
902      DoScalarReplacement(AI, WorkList);
903      Changed = true;
904      continue;
905    }
906
907    // If we can turn this aggregate value (potentially with casts) into a
908    // simple scalar value that can be mem2reg'd into a register value.
909    // IsNotTrivial tracks whether this is something that mem2reg could have
910    // promoted itself.  If so, we don't want to transform it needlessly.  Note
911    // that we can't just check based on the type: the alloca may be of an i32
912    // but that has pointer arithmetic to set byte 3 of it or something.
913    if (AllocaInst *NewAI =
914          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
915      NewAI->takeName(AI);
916      AI->eraseFromParent();
917      ++NumConverted;
918      Changed = true;
919      continue;
920    }
921
922    // Otherwise, couldn't process this alloca.
923  }
924
925  return Changed;
926}
927
928/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
929/// predicate, do SROA now.
930void SROA::DoScalarReplacement(AllocaInst *AI,
931                               std::vector<AllocaInst*> &WorkList) {
932  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
933  SmallVector<AllocaInst*, 32> ElementAllocas;
934  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
935    ElementAllocas.reserve(ST->getNumContainedTypes());
936    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
937      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
938                                      AI->getAlignment(),
939                                      AI->getName() + "." + Twine(i), AI);
940      ElementAllocas.push_back(NA);
941      WorkList.push_back(NA);  // Add to worklist for recursive processing
942    }
943  } else {
944    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
945    ElementAllocas.reserve(AT->getNumElements());
946    const Type *ElTy = AT->getElementType();
947    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
948      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
949                                      AI->getName() + "." + Twine(i), AI);
950      ElementAllocas.push_back(NA);
951      WorkList.push_back(NA);  // Add to worklist for recursive processing
952    }
953  }
954
955  // Now that we have created the new alloca instructions, rewrite all the
956  // uses of the old alloca.
957  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
958
959  // Now erase any instructions that were made dead while rewriting the alloca.
960  DeleteDeadInstructions();
961  AI->eraseFromParent();
962
963  ++NumReplaced;
964}
965
966/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
967/// recursively including all their operands that become trivially dead.
968void SROA::DeleteDeadInstructions() {
969  while (!DeadInsts.empty()) {
970    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
971
972    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
973      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
974        // Zero out the operand and see if it becomes trivially dead.
975        // (But, don't add allocas to the dead instruction list -- they are
976        // already on the worklist and will be deleted separately.)
977        *OI = 0;
978        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
979          DeadInsts.push_back(U);
980      }
981
982    I->eraseFromParent();
983  }
984}
985
986/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
987/// performing scalar replacement of alloca AI.  The results are flagged in
988/// the Info parameter.  Offset indicates the position within AI that is
989/// referenced by this instruction.
990void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
991                               AllocaInfo &Info) {
992  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
993    Instruction *User = cast<Instruction>(*UI);
994
995    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
996      isSafeForScalarRepl(BC, AI, Offset, Info);
997    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
998      uint64_t GEPOffset = Offset;
999      isSafeGEP(GEPI, AI, GEPOffset, Info);
1000      if (!Info.isUnsafe)
1001        isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
1002    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1003      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1004      if (Length)
1005        isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
1006                        UI.getOperandNo() == 0, Info);
1007      else
1008        MarkUnsafe(Info);
1009    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1010      if (!LI->isVolatile()) {
1011        const Type *LIType = LI->getType();
1012        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
1013                        LIType, false, Info);
1014      } else
1015        MarkUnsafe(Info);
1016    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1017      // Store is ok if storing INTO the pointer, not storing the pointer
1018      if (!SI->isVolatile() && SI->getOperand(0) != I) {
1019        const Type *SIType = SI->getOperand(0)->getType();
1020        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
1021                        SIType, true, Info);
1022      } else
1023        MarkUnsafe(Info);
1024    } else {
1025      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
1026      MarkUnsafe(Info);
1027    }
1028    if (Info.isUnsafe) return;
1029  }
1030}
1031
1032/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1033/// replacement.  It is safe when all the indices are constant, in-bounds
1034/// references, and when the resulting offset corresponds to an element within
1035/// the alloca type.  The results are flagged in the Info parameter.  Upon
1036/// return, Offset is adjusted as specified by the GEP indices.
1037void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
1038                     uint64_t &Offset, AllocaInfo &Info) {
1039  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1040  if (GEPIt == E)
1041    return;
1042
1043  // Walk through the GEP type indices, checking the types that this indexes
1044  // into.
1045  for (; GEPIt != E; ++GEPIt) {
1046    // Ignore struct elements, no extra checking needed for these.
1047    if ((*GEPIt)->isStructTy())
1048      continue;
1049
1050    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1051    if (!IdxVal)
1052      return MarkUnsafe(Info);
1053  }
1054
1055  // Compute the offset due to this GEP and check if the alloca has a
1056  // component element at that offset.
1057  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1058  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1059                                 &Indices[0], Indices.size());
1060  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
1061    MarkUnsafe(Info);
1062}
1063
1064/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1065/// alloca or has an offset and size that corresponds to a component element
1066/// within it.  The offset checked here may have been formed from a GEP with a
1067/// pointer bitcasted to a different type.
1068void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
1069                           const Type *MemOpType, bool isStore,
1070                           AllocaInfo &Info) {
1071  // Check if this is a load/store of the entire alloca.
1072  if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
1073    bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
1074    // This is safe for MemIntrinsics (where MemOpType is 0), integer types
1075    // (which are essentially the same as the MemIntrinsics, especially with
1076    // regard to copying padding between elements), or references using the
1077    // aggregate type of the alloca.
1078    if (!MemOpType || MemOpType->isIntegerTy() || UsesAggregateType) {
1079      if (!UsesAggregateType) {
1080        if (isStore)
1081          Info.isMemCpyDst = true;
1082        else
1083          Info.isMemCpySrc = true;
1084      }
1085      return;
1086    }
1087  }
1088  // Check if the offset/size correspond to a component within the alloca type.
1089  const Type *T = AI->getAllocatedType();
1090  if (TypeHasComponent(T, Offset, MemSize))
1091    return;
1092
1093  return MarkUnsafe(Info);
1094}
1095
1096/// TypeHasComponent - Return true if T has a component type with the
1097/// specified offset and size.  If Size is zero, do not check the size.
1098bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1099  const Type *EltTy;
1100  uint64_t EltSize;
1101  if (const StructType *ST = dyn_cast<StructType>(T)) {
1102    const StructLayout *Layout = TD->getStructLayout(ST);
1103    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1104    EltTy = ST->getContainedType(EltIdx);
1105    EltSize = TD->getTypeAllocSize(EltTy);
1106    Offset -= Layout->getElementOffset(EltIdx);
1107  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1108    EltTy = AT->getElementType();
1109    EltSize = TD->getTypeAllocSize(EltTy);
1110    if (Offset >= AT->getNumElements() * EltSize)
1111      return false;
1112    Offset %= EltSize;
1113  } else {
1114    return false;
1115  }
1116  if (Offset == 0 && (Size == 0 || EltSize == Size))
1117    return true;
1118  // Check if the component spans multiple elements.
1119  if (Offset + Size > EltSize)
1120    return false;
1121  return TypeHasComponent(EltTy, Offset, Size);
1122}
1123
1124/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1125/// the instruction I, which references it, to use the separate elements.
1126/// Offset indicates the position within AI that is referenced by this
1127/// instruction.
1128void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1129                                SmallVector<AllocaInst*, 32> &NewElts) {
1130  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1131    Instruction *User = cast<Instruction>(*UI);
1132
1133    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1134      RewriteBitCast(BC, AI, Offset, NewElts);
1135    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1136      RewriteGEP(GEPI, AI, Offset, NewElts);
1137    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1138      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1139      uint64_t MemSize = Length->getZExtValue();
1140      if (Offset == 0 &&
1141          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1142        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1143      // Otherwise the intrinsic can only touch a single element and the
1144      // address operand will be updated, so nothing else needs to be done.
1145    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1146      const Type *LIType = LI->getType();
1147      if (LIType == AI->getAllocatedType()) {
1148        // Replace:
1149        //   %res = load { i32, i32 }* %alloc
1150        // with:
1151        //   %load.0 = load i32* %alloc.0
1152        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1153        //   %load.1 = load i32* %alloc.1
1154        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1155        // (Also works for arrays instead of structs)
1156        Value *Insert = UndefValue::get(LIType);
1157        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1158          Value *Load = new LoadInst(NewElts[i], "load", LI);
1159          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1160        }
1161        LI->replaceAllUsesWith(Insert);
1162        DeadInsts.push_back(LI);
1163      } else if (LIType->isIntegerTy() &&
1164                 TD->getTypeAllocSize(LIType) ==
1165                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1166        // If this is a load of the entire alloca to an integer, rewrite it.
1167        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1168      }
1169    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1170      Value *Val = SI->getOperand(0);
1171      const Type *SIType = Val->getType();
1172      if (SIType == AI->getAllocatedType()) {
1173        // Replace:
1174        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1175        // with:
1176        //   %val.0 = extractvalue { i32, i32 } %val, 0
1177        //   store i32 %val.0, i32* %alloc.0
1178        //   %val.1 = extractvalue { i32, i32 } %val, 1
1179        //   store i32 %val.1, i32* %alloc.1
1180        // (Also works for arrays instead of structs)
1181        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1182          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1183          new StoreInst(Extract, NewElts[i], SI);
1184        }
1185        DeadInsts.push_back(SI);
1186      } else if (SIType->isIntegerTy() &&
1187                 TD->getTypeAllocSize(SIType) ==
1188                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1189        // If this is a store of the entire alloca from an integer, rewrite it.
1190        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1191      }
1192    }
1193  }
1194}
1195
1196/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1197/// and recursively continue updating all of its uses.
1198void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1199                          SmallVector<AllocaInst*, 32> &NewElts) {
1200  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1201  if (BC->getOperand(0) != AI)
1202    return;
1203
1204  // The bitcast references the original alloca.  Replace its uses with
1205  // references to the first new element alloca.
1206  Instruction *Val = NewElts[0];
1207  if (Val->getType() != BC->getDestTy()) {
1208    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1209    Val->takeName(BC);
1210  }
1211  BC->replaceAllUsesWith(Val);
1212  DeadInsts.push_back(BC);
1213}
1214
1215/// FindElementAndOffset - Return the index of the element containing Offset
1216/// within the specified type, which must be either a struct or an array.
1217/// Sets T to the type of the element and Offset to the offset within that
1218/// element.  IdxTy is set to the type of the index result to be used in a
1219/// GEP instruction.
1220uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1221                                    const Type *&IdxTy) {
1222  uint64_t Idx = 0;
1223  if (const StructType *ST = dyn_cast<StructType>(T)) {
1224    const StructLayout *Layout = TD->getStructLayout(ST);
1225    Idx = Layout->getElementContainingOffset(Offset);
1226    T = ST->getContainedType(Idx);
1227    Offset -= Layout->getElementOffset(Idx);
1228    IdxTy = Type::getInt32Ty(T->getContext());
1229    return Idx;
1230  }
1231  const ArrayType *AT = cast<ArrayType>(T);
1232  T = AT->getElementType();
1233  uint64_t EltSize = TD->getTypeAllocSize(T);
1234  Idx = Offset / EltSize;
1235  Offset -= Idx * EltSize;
1236  IdxTy = Type::getInt64Ty(T->getContext());
1237  return Idx;
1238}
1239
1240/// RewriteGEP - Check if this GEP instruction moves the pointer across
1241/// elements of the alloca that are being split apart, and if so, rewrite
1242/// the GEP to be relative to the new element.
1243void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1244                      SmallVector<AllocaInst*, 32> &NewElts) {
1245  uint64_t OldOffset = Offset;
1246  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1247  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1248                                 &Indices[0], Indices.size());
1249
1250  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1251
1252  const Type *T = AI->getAllocatedType();
1253  const Type *IdxTy;
1254  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1255  if (GEPI->getOperand(0) == AI)
1256    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1257
1258  T = AI->getAllocatedType();
1259  uint64_t EltOffset = Offset;
1260  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1261
1262  // If this GEP does not move the pointer across elements of the alloca
1263  // being split, then it does not needs to be rewritten.
1264  if (Idx == OldIdx)
1265    return;
1266
1267  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1268  SmallVector<Value*, 8> NewArgs;
1269  NewArgs.push_back(Constant::getNullValue(i32Ty));
1270  while (EltOffset != 0) {
1271    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1272    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1273  }
1274  Instruction *Val = NewElts[Idx];
1275  if (NewArgs.size() > 1) {
1276    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1277                                            NewArgs.end(), "", GEPI);
1278    Val->takeName(GEPI);
1279  }
1280  if (Val->getType() != GEPI->getType())
1281    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1282  GEPI->replaceAllUsesWith(Val);
1283  DeadInsts.push_back(GEPI);
1284}
1285
1286/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1287/// Rewrite it to copy or set the elements of the scalarized memory.
1288void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1289                                        AllocaInst *AI,
1290                                        SmallVector<AllocaInst*, 32> &NewElts) {
1291  // If this is a memcpy/memmove, construct the other pointer as the
1292  // appropriate type.  The "Other" pointer is the pointer that goes to memory
1293  // that doesn't have anything to do with the alloca that we are promoting. For
1294  // memset, this Value* stays null.
1295  Value *OtherPtr = 0;
1296  unsigned MemAlignment = MI->getAlignment();
1297  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1298    if (Inst == MTI->getRawDest())
1299      OtherPtr = MTI->getRawSource();
1300    else {
1301      assert(Inst == MTI->getRawSource());
1302      OtherPtr = MTI->getRawDest();
1303    }
1304  }
1305
1306  // If there is an other pointer, we want to convert it to the same pointer
1307  // type as AI has, so we can GEP through it safely.
1308  if (OtherPtr) {
1309    unsigned AddrSpace =
1310      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
1311
1312    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
1313    // optimization, but it's also required to detect the corner case where
1314    // both pointer operands are referencing the same memory, and where
1315    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
1316    // function is only called for mem intrinsics that access the whole
1317    // aggregate, so non-zero GEPs are not an issue here.)
1318    OtherPtr = OtherPtr->stripPointerCasts();
1319
1320    // Copying the alloca to itself is a no-op: just delete it.
1321    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1322      // This code will run twice for a no-op memcpy -- once for each operand.
1323      // Put only one reference to MI on the DeadInsts list.
1324      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1325             E = DeadInsts.end(); I != E; ++I)
1326        if (*I == MI) return;
1327      DeadInsts.push_back(MI);
1328      return;
1329    }
1330
1331    // If the pointer is not the right type, insert a bitcast to the right
1332    // type.
1333    const Type *NewTy =
1334      PointerType::get(AI->getType()->getElementType(), AddrSpace);
1335
1336    if (OtherPtr->getType() != NewTy)
1337      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
1338  }
1339
1340  // Process each element of the aggregate.
1341  Value *TheFn = MI->getCalledValue();
1342  const Type *BytePtrTy = MI->getRawDest()->getType();
1343  bool SROADest = MI->getRawDest() == Inst;
1344
1345  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
1346
1347  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1348    // If this is a memcpy/memmove, emit a GEP of the other element address.
1349    Value *OtherElt = 0;
1350    unsigned OtherEltAlign = MemAlignment;
1351
1352    if (OtherPtr) {
1353      Value *Idx[2] = { Zero,
1354                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
1355      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
1356                                              OtherPtr->getName()+"."+Twine(i),
1357                                                   MI);
1358      uint64_t EltOffset;
1359      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
1360      const Type *OtherTy = OtherPtrTy->getElementType();
1361      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
1362        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1363      } else {
1364        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
1365        EltOffset = TD->getTypeAllocSize(EltTy)*i;
1366      }
1367
1368      // The alignment of the other pointer is the guaranteed alignment of the
1369      // element, which is affected by both the known alignment of the whole
1370      // mem intrinsic and the alignment of the element.  If the alignment of
1371      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
1372      // known alignment is just 4 bytes.
1373      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
1374    }
1375
1376    Value *EltPtr = NewElts[i];
1377    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
1378
1379    // If we got down to a scalar, insert a load or store as appropriate.
1380    if (EltTy->isSingleValueType()) {
1381      if (isa<MemTransferInst>(MI)) {
1382        if (SROADest) {
1383          // From Other to Alloca.
1384          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
1385          new StoreInst(Elt, EltPtr, MI);
1386        } else {
1387          // From Alloca to Other.
1388          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
1389          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
1390        }
1391        continue;
1392      }
1393      assert(isa<MemSetInst>(MI));
1394
1395      // If the stored element is zero (common case), just store a null
1396      // constant.
1397      Constant *StoreVal;
1398      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
1399        if (CI->isZero()) {
1400          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
1401        } else {
1402          // If EltTy is a vector type, get the element type.
1403          const Type *ValTy = EltTy->getScalarType();
1404
1405          // Construct an integer with the right value.
1406          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
1407          APInt OneVal(EltSize, CI->getZExtValue());
1408          APInt TotalVal(OneVal);
1409          // Set each byte.
1410          for (unsigned i = 0; 8*i < EltSize; ++i) {
1411            TotalVal = TotalVal.shl(8);
1412            TotalVal |= OneVal;
1413          }
1414
1415          // Convert the integer value to the appropriate type.
1416          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
1417          if (ValTy->isPointerTy())
1418            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
1419          else if (ValTy->isFloatingPointTy())
1420            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
1421          assert(StoreVal->getType() == ValTy && "Type mismatch!");
1422
1423          // If the requested value was a vector constant, create it.
1424          if (EltTy != ValTy) {
1425            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
1426            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
1427            StoreVal = ConstantVector::get(&Elts[0], NumElts);
1428          }
1429        }
1430        new StoreInst(StoreVal, EltPtr, MI);
1431        continue;
1432      }
1433      // Otherwise, if we're storing a byte variable, use a memset call for
1434      // this element.
1435    }
1436
1437    // Cast the element pointer to BytePtrTy.
1438    if (EltPtr->getType() != BytePtrTy)
1439      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getName(), MI);
1440
1441    // Cast the other pointer (if we have one) to BytePtrTy.
1442    if (OtherElt && OtherElt->getType() != BytePtrTy) {
1443      // Preserve address space of OtherElt
1444      const PointerType* OtherPTy = cast<PointerType>(OtherElt->getType());
1445      const PointerType* PTy = cast<PointerType>(BytePtrTy);
1446      if (OtherPTy->getElementType() != PTy->getElementType()) {
1447        Type *NewOtherPTy = PointerType::get(PTy->getElementType(),
1448                                             OtherPTy->getAddressSpace());
1449        OtherElt = new BitCastInst(OtherElt, NewOtherPTy,
1450                                   OtherElt->getName(), MI);
1451      }
1452    }
1453
1454    unsigned EltSize = TD->getTypeAllocSize(EltTy);
1455
1456    // Finally, insert the meminst for this element.
1457    if (isa<MemTransferInst>(MI)) {
1458      Value *Ops[] = {
1459        SROADest ? EltPtr : OtherElt,  // Dest ptr
1460        SROADest ? OtherElt : EltPtr,  // Src ptr
1461        ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
1462        // Align
1463        ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign),
1464        MI->getVolatileCst()
1465      };
1466      // In case we fold the address space overloaded memcpy of A to B
1467      // with memcpy of B to C, change the function to be a memcpy of A to C.
1468      const Type *Tys[] = { Ops[0]->getType(), Ops[1]->getType(),
1469                            Ops[2]->getType() };
1470      Module *M = MI->getParent()->getParent()->getParent();
1471      TheFn = Intrinsic::getDeclaration(M, MI->getIntrinsicID(), Tys, 3);
1472      CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
1473    } else {
1474      assert(isa<MemSetInst>(MI));
1475      Value *Ops[] = {
1476        EltPtr, MI->getArgOperand(1),  // Dest, Value,
1477        ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
1478        Zero,  // Align
1479        ConstantInt::get(Type::getInt1Ty(MI->getContext()), 0) // isVolatile
1480      };
1481      const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
1482      Module *M = MI->getParent()->getParent()->getParent();
1483      TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
1484      CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
1485    }
1486  }
1487  DeadInsts.push_back(MI);
1488}
1489
1490/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
1491/// overwrites the entire allocation.  Extract out the pieces of the stored
1492/// integer and store them individually.
1493void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
1494                                         SmallVector<AllocaInst*, 32> &NewElts){
1495  // Extract each element out of the integer according to its structure offset
1496  // and store the element value to the individual alloca.
1497  Value *SrcVal = SI->getOperand(0);
1498  const Type *AllocaEltTy = AI->getAllocatedType();
1499  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1500
1501  // Handle tail padding by extending the operand
1502  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
1503    SrcVal = new ZExtInst(SrcVal,
1504                          IntegerType::get(SI->getContext(), AllocaSizeBits),
1505                          "", SI);
1506
1507  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
1508               << '\n');
1509
1510  // There are two forms here: AI could be an array or struct.  Both cases
1511  // have different ways to compute the element offset.
1512  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1513    const StructLayout *Layout = TD->getStructLayout(EltSTy);
1514
1515    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1516      // Get the number of bits to shift SrcVal to get the value.
1517      const Type *FieldTy = EltSTy->getElementType(i);
1518      uint64_t Shift = Layout->getElementOffsetInBits(i);
1519
1520      if (TD->isBigEndian())
1521        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
1522
1523      Value *EltVal = SrcVal;
1524      if (Shift) {
1525        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1526        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1527                                            "sroa.store.elt", SI);
1528      }
1529
1530      // Truncate down to an integer of the right size.
1531      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1532
1533      // Ignore zero sized fields like {}, they obviously contain no data.
1534      if (FieldSizeBits == 0) continue;
1535
1536      if (FieldSizeBits != AllocaSizeBits)
1537        EltVal = new TruncInst(EltVal,
1538                             IntegerType::get(SI->getContext(), FieldSizeBits),
1539                              "", SI);
1540      Value *DestField = NewElts[i];
1541      if (EltVal->getType() == FieldTy) {
1542        // Storing to an integer field of this size, just do it.
1543      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
1544        // Bitcast to the right element type (for fp/vector values).
1545        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
1546      } else {
1547        // Otherwise, bitcast the dest pointer (for aggregates).
1548        DestField = new BitCastInst(DestField,
1549                              PointerType::getUnqual(EltVal->getType()),
1550                                    "", SI);
1551      }
1552      new StoreInst(EltVal, DestField, SI);
1553    }
1554
1555  } else {
1556    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
1557    const Type *ArrayEltTy = ATy->getElementType();
1558    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1559    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
1560
1561    uint64_t Shift;
1562
1563    if (TD->isBigEndian())
1564      Shift = AllocaSizeBits-ElementOffset;
1565    else
1566      Shift = 0;
1567
1568    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1569      // Ignore zero sized fields like {}, they obviously contain no data.
1570      if (ElementSizeBits == 0) continue;
1571
1572      Value *EltVal = SrcVal;
1573      if (Shift) {
1574        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1575        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1576                                            "sroa.store.elt", SI);
1577      }
1578
1579      // Truncate down to an integer of the right size.
1580      if (ElementSizeBits != AllocaSizeBits)
1581        EltVal = new TruncInst(EltVal,
1582                               IntegerType::get(SI->getContext(),
1583                                                ElementSizeBits),"",SI);
1584      Value *DestField = NewElts[i];
1585      if (EltVal->getType() == ArrayEltTy) {
1586        // Storing to an integer field of this size, just do it.
1587      } else if (ArrayEltTy->isFloatingPointTy() ||
1588                 ArrayEltTy->isVectorTy()) {
1589        // Bitcast to the right element type (for fp/vector values).
1590        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1591      } else {
1592        // Otherwise, bitcast the dest pointer (for aggregates).
1593        DestField = new BitCastInst(DestField,
1594                              PointerType::getUnqual(EltVal->getType()),
1595                                    "", SI);
1596      }
1597      new StoreInst(EltVal, DestField, SI);
1598
1599      if (TD->isBigEndian())
1600        Shift -= ElementOffset;
1601      else
1602        Shift += ElementOffset;
1603    }
1604  }
1605
1606  DeadInsts.push_back(SI);
1607}
1608
1609/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
1610/// an integer.  Load the individual pieces to form the aggregate value.
1611void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1612                                        SmallVector<AllocaInst*, 32> &NewElts) {
1613  // Extract each element out of the NewElts according to its structure offset
1614  // and form the result value.
1615  const Type *AllocaEltTy = AI->getAllocatedType();
1616  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1617
1618  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1619               << '\n');
1620
1621  // There are two forms here: AI could be an array or struct.  Both cases
1622  // have different ways to compute the element offset.
1623  const StructLayout *Layout = 0;
1624  uint64_t ArrayEltBitOffset = 0;
1625  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1626    Layout = TD->getStructLayout(EltSTy);
1627  } else {
1628    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1629    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1630  }
1631
1632  Value *ResultVal =
1633    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1634
1635  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1636    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1637    // the pointer to an integer of the same size before doing the load.
1638    Value *SrcField = NewElts[i];
1639    const Type *FieldTy =
1640      cast<PointerType>(SrcField->getType())->getElementType();
1641    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1642
1643    // Ignore zero sized fields like {}, they obviously contain no data.
1644    if (FieldSizeBits == 0) continue;
1645
1646    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1647                                                     FieldSizeBits);
1648    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
1649        !FieldTy->isVectorTy())
1650      SrcField = new BitCastInst(SrcField,
1651                                 PointerType::getUnqual(FieldIntTy),
1652                                 "", LI);
1653    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1654
1655    // If SrcField is a fp or vector of the right size but that isn't an
1656    // integer type, bitcast to an integer so we can shift it.
1657    if (SrcField->getType() != FieldIntTy)
1658      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1659
1660    // Zero extend the field to be the same size as the final alloca so that
1661    // we can shift and insert it.
1662    if (SrcField->getType() != ResultVal->getType())
1663      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1664
1665    // Determine the number of bits to shift SrcField.
1666    uint64_t Shift;
1667    if (Layout) // Struct case.
1668      Shift = Layout->getElementOffsetInBits(i);
1669    else  // Array case.
1670      Shift = i*ArrayEltBitOffset;
1671
1672    if (TD->isBigEndian())
1673      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1674
1675    if (Shift) {
1676      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1677      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1678    }
1679
1680    // Don't create an 'or x, 0' on the first iteration.
1681    if (!isa<Constant>(ResultVal) ||
1682        !cast<Constant>(ResultVal)->isNullValue())
1683      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1684    else
1685      ResultVal = SrcField;
1686  }
1687
1688  // Handle tail padding by truncating the result
1689  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1690    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1691
1692  LI->replaceAllUsesWith(ResultVal);
1693  DeadInsts.push_back(LI);
1694}
1695
1696/// HasPadding - Return true if the specified type has any structure or
1697/// alignment padding, false otherwise.
1698static bool HasPadding(const Type *Ty, const TargetData &TD) {
1699  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
1700    return HasPadding(ATy->getElementType(), TD);
1701
1702  if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
1703    return HasPadding(VTy->getElementType(), TD);
1704
1705  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1706    const StructLayout *SL = TD.getStructLayout(STy);
1707    unsigned PrevFieldBitOffset = 0;
1708    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1709      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1710
1711      // Padding in sub-elements?
1712      if (HasPadding(STy->getElementType(i), TD))
1713        return true;
1714
1715      // Check to see if there is any padding between this element and the
1716      // previous one.
1717      if (i) {
1718        unsigned PrevFieldEnd =
1719        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1720        if (PrevFieldEnd < FieldBitOffset)
1721          return true;
1722      }
1723
1724      PrevFieldBitOffset = FieldBitOffset;
1725    }
1726
1727    //  Check for tail padding.
1728    if (unsigned EltCount = STy->getNumElements()) {
1729      unsigned PrevFieldEnd = PrevFieldBitOffset +
1730                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1731      if (PrevFieldEnd < SL->getSizeInBits())
1732        return true;
1733    }
1734  }
1735
1736  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1737}
1738
1739/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1740/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1741/// or 1 if safe after canonicalization has been performed.
1742bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1743  // Loop over the use list of the alloca.  We can only transform it if all of
1744  // the users are safe to transform.
1745  AllocaInfo Info;
1746
1747  isSafeForScalarRepl(AI, AI, 0, Info);
1748  if (Info.isUnsafe) {
1749    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
1750    return false;
1751  }
1752
1753  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1754  // source and destination, we have to be careful.  In particular, the memcpy
1755  // could be moving around elements that live in structure padding of the LLVM
1756  // types, but may actually be used.  In these cases, we refuse to promote the
1757  // struct.
1758  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1759      HasPadding(AI->getAllocatedType(), *TD))
1760    return false;
1761
1762  return true;
1763}
1764
1765
1766
1767/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1768/// some part of a constant global variable.  This intentionally only accepts
1769/// constant expressions because we don't can't rewrite arbitrary instructions.
1770static bool PointsToConstantGlobal(Value *V) {
1771  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1772    return GV->isConstant();
1773  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1774    if (CE->getOpcode() == Instruction::BitCast ||
1775        CE->getOpcode() == Instruction::GetElementPtr)
1776      return PointsToConstantGlobal(CE->getOperand(0));
1777  return false;
1778}
1779
1780/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1781/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1782/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1783/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1784/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1785/// the alloca, and if the source pointer is a pointer to a constant  global, we
1786/// can optimize this.
1787static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
1788                                           bool isOffset) {
1789  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1790    User *U = cast<Instruction>(*UI);
1791
1792    if (LoadInst *LI = dyn_cast<LoadInst>(U))
1793      // Ignore non-volatile loads, they are always ok.
1794      if (!LI->isVolatile())
1795        continue;
1796
1797    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1798      // If uses of the bitcast are ok, we are ok.
1799      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1800        return false;
1801      continue;
1802    }
1803    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
1804      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1805      // doesn't, it does.
1806      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1807                                         isOffset || !GEP->hasAllZeroIndices()))
1808        return false;
1809      continue;
1810    }
1811
1812    // If this is isn't our memcpy/memmove, reject it as something we can't
1813    // handle.
1814    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
1815    if (MI == 0)
1816      return false;
1817
1818    // If we already have seen a copy, reject the second one.
1819    if (TheCopy) return false;
1820
1821    // If the pointer has been offset from the start of the alloca, we can't
1822    // safely handle this.
1823    if (isOffset) return false;
1824
1825    // If the memintrinsic isn't using the alloca as the dest, reject it.
1826    if (UI.getOperandNo() != 0) return false;
1827
1828    // If the source of the memcpy/move is not a constant global, reject it.
1829    if (!PointsToConstantGlobal(MI->getSource()))
1830      return false;
1831
1832    // Otherwise, the transform is safe.  Remember the copy instruction.
1833    TheCopy = MI;
1834  }
1835  return true;
1836}
1837
1838/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1839/// modified by a copy from a constant global.  If we can prove this, we can
1840/// replace any uses of the alloca with uses of the global directly.
1841MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1842  MemTransferInst *TheCopy = 0;
1843  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1844    return TheCopy;
1845  return 0;
1846}
1847