ScalarReplAggregates.cpp revision 2ca5c8644e6c35b3a7910a576ed89cddb7b82c3b
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/Dominators.h"
34#include "llvm/Analysis/Loads.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Transforms/Utils/PromoteMemToReg.h"
38#include "llvm/Transforms/Utils/Local.h"
39#include "llvm/Transforms/Utils/SSAUpdater.h"
40#include "llvm/Support/CallSite.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GetElementPtrTypeIterator.h"
44#include "llvm/Support/IRBuilder.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/Statistic.h"
50using namespace llvm;
51
52STATISTIC(NumReplaced,  "Number of allocas broken up");
53STATISTIC(NumPromoted,  "Number of allocas promoted");
54STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
55STATISTIC(NumConverted, "Number of aggregates converted to scalar");
56STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
57
58namespace {
59  struct SROA : public FunctionPass {
60    SROA(int T, bool hasDT, char &ID)
61      : FunctionPass(ID), HasDomTree(hasDT) {
62      if (T == -1)
63        SRThreshold = 128;
64      else
65        SRThreshold = T;
66    }
67
68    bool runOnFunction(Function &F);
69
70    bool performScalarRepl(Function &F);
71    bool performPromotion(Function &F);
72
73  private:
74    bool HasDomTree;
75    TargetData *TD;
76
77    /// DeadInsts - Keep track of instructions we have made dead, so that
78    /// we can remove them after we are done working.
79    SmallVector<Value*, 32> DeadInsts;
80
81    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
82    /// information about the uses.  All these fields are initialized to false
83    /// and set to true when something is learned.
84    struct AllocaInfo {
85      /// The alloca to promote.
86      AllocaInst *AI;
87
88      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
89      /// looping and avoid redundant work.
90      SmallPtrSet<PHINode*, 8> CheckedPHIs;
91
92      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
93      bool isUnsafe : 1;
94
95      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
96      bool isMemCpySrc : 1;
97
98      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
99      bool isMemCpyDst : 1;
100
101      /// hasSubelementAccess - This is true if a subelement of the alloca is
102      /// ever accessed, or false if the alloca is only accessed with mem
103      /// intrinsics or load/store that only access the entire alloca at once.
104      bool hasSubelementAccess : 1;
105
106      /// hasALoadOrStore - This is true if there are any loads or stores to it.
107      /// The alloca may just be accessed with memcpy, for example, which would
108      /// not set this.
109      bool hasALoadOrStore : 1;
110
111      explicit AllocaInfo(AllocaInst *ai)
112        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
113          hasSubelementAccess(false), hasALoadOrStore(false) {}
114    };
115
116    unsigned SRThreshold;
117
118    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
119      I.isUnsafe = true;
120      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
121    }
122
123    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
124
125    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
126    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
127                                         AllocaInfo &Info);
128    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
129    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
130                         const Type *MemOpType, bool isStore, AllocaInfo &Info,
131                         Instruction *TheAccess, bool AllowWholeAccess);
132    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
133    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
134                                  const Type *&IdxTy);
135
136    void DoScalarReplacement(AllocaInst *AI,
137                             std::vector<AllocaInst*> &WorkList);
138    void DeleteDeadInstructions();
139
140    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
141                              SmallVector<AllocaInst*, 32> &NewElts);
142    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
143                        SmallVector<AllocaInst*, 32> &NewElts);
144    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
145                    SmallVector<AllocaInst*, 32> &NewElts);
146    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
147                                      AllocaInst *AI,
148                                      SmallVector<AllocaInst*, 32> &NewElts);
149    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
150                                       SmallVector<AllocaInst*, 32> &NewElts);
151    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
152                                      SmallVector<AllocaInst*, 32> &NewElts);
153
154    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
155  };
156
157  // SROA_DT - SROA that uses DominatorTree.
158  struct SROA_DT : public SROA {
159    static char ID;
160  public:
161    SROA_DT(int T = -1) : SROA(T, true, ID) {
162      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
163    }
164
165    // getAnalysisUsage - This pass does not require any passes, but we know it
166    // will not alter the CFG, so say so.
167    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
168      AU.addRequired<DominatorTree>();
169      AU.setPreservesCFG();
170    }
171  };
172
173  // SROA_SSAUp - SROA that uses SSAUpdater.
174  struct SROA_SSAUp : public SROA {
175    static char ID;
176  public:
177    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
178      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
179    }
180
181    // getAnalysisUsage - This pass does not require any passes, but we know it
182    // will not alter the CFG, so say so.
183    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
184      AU.setPreservesCFG();
185    }
186  };
187
188}
189
190char SROA_DT::ID = 0;
191char SROA_SSAUp::ID = 0;
192
193INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
194                "Scalar Replacement of Aggregates (DT)", false, false)
195INITIALIZE_PASS_DEPENDENCY(DominatorTree)
196INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
197                "Scalar Replacement of Aggregates (DT)", false, false)
198
199INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
200                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
201INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
202                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
203
204// Public interface to the ScalarReplAggregates pass
205FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
206                                                   bool UseDomTree) {
207  if (UseDomTree)
208    return new SROA_DT(Threshold);
209  return new SROA_SSAUp(Threshold);
210}
211
212
213//===----------------------------------------------------------------------===//
214// Convert To Scalar Optimization.
215//===----------------------------------------------------------------------===//
216
217namespace {
218/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
219/// optimization, which scans the uses of an alloca and determines if it can
220/// rewrite it in terms of a single new alloca that can be mem2reg'd.
221class ConvertToScalarInfo {
222  /// AllocaSize - The size of the alloca being considered.
223  unsigned AllocaSize;
224  const TargetData &TD;
225
226  /// IsNotTrivial - This is set to true if there is some access to the object
227  /// which means that mem2reg can't promote it.
228  bool IsNotTrivial;
229
230  /// VectorTy - This tracks the type that we should promote the vector to if
231  /// it is possible to turn it into a vector.  This starts out null, and if it
232  /// isn't possible to turn into a vector type, it gets set to VoidTy.
233  const Type *VectorTy;
234
235  /// HadAVector - True if there is at least one vector access to the alloca.
236  /// We don't want to turn random arrays into vectors and use vector element
237  /// insert/extract, but if there are element accesses to something that is
238  /// also declared as a vector, we do want to promote to a vector.
239  bool HadAVector;
240
241public:
242  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
243    : AllocaSize(Size), TD(td) {
244    IsNotTrivial = false;
245    VectorTy = 0;
246    HadAVector = false;
247  }
248
249  AllocaInst *TryConvert(AllocaInst *AI);
250
251private:
252  bool CanConvertToScalar(Value *V, uint64_t Offset);
253  void MergeInType(const Type *In, uint64_t Offset);
254  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
255
256  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
257                                    uint64_t Offset, IRBuilder<> &Builder);
258  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
259                                   uint64_t Offset, IRBuilder<> &Builder);
260};
261} // end anonymous namespace.
262
263
264/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
265/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
266/// alloca if possible or null if not.
267AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
268  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
269  // out.
270  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
271    return 0;
272
273  // If we were able to find a vector type that can handle this with
274  // insert/extract elements, and if there was at least one use that had
275  // a vector type, promote this to a vector.  We don't want to promote
276  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
277  // we just get a lot of insert/extracts.  If at least one vector is
278  // involved, then we probably really do have a union of vector/array.
279  const Type *NewTy;
280  if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
281    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
282          << *VectorTy << '\n');
283    NewTy = VectorTy;  // Use the vector type.
284  } else {
285    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
286    // Create and insert the integer alloca.
287    NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
288  }
289  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
290  ConvertUsesToScalar(AI, NewAI, 0);
291  return NewAI;
292}
293
294/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
295/// so far at the offset specified by Offset (which is specified in bytes).
296///
297/// There are two cases we handle here:
298///   1) A union of vector types of the same size and potentially its elements.
299///      Here we turn element accesses into insert/extract element operations.
300///      This promotes a <4 x float> with a store of float to the third element
301///      into a <4 x float> that uses insert element.
302///   2) A fully general blob of memory, which we turn into some (potentially
303///      large) integer type with extract and insert operations where the loads
304///      and stores would mutate the memory.  We mark this by setting VectorTy
305///      to VoidTy.
306void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
307  // If we already decided to turn this into a blob of integer memory, there is
308  // nothing to be done.
309  if (VectorTy && VectorTy->isVoidTy())
310    return;
311
312  // If this could be contributing to a vector, analyze it.
313
314  // If the In type is a vector that is the same size as the alloca, see if it
315  // matches the existing VecTy.
316  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
317    // Remember if we saw a vector type.
318    HadAVector = true;
319
320    if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
321      // If we're storing/loading a vector of the right size, allow it as a
322      // vector.  If this the first vector we see, remember the type so that
323      // we know the element size.  If this is a subsequent access, ignore it
324      // even if it is a differing type but the same size.  Worst case we can
325      // bitcast the resultant vectors.
326      if (VectorTy == 0)
327        VectorTy = VInTy;
328      return;
329    }
330  } else if (In->isFloatTy() || In->isDoubleTy() ||
331             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
332              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
333    // If we're accessing something that could be an element of a vector, see
334    // if the implied vector agrees with what we already have and if Offset is
335    // compatible with it.
336    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
337    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
338        (VectorTy == 0 ||
339         cast<VectorType>(VectorTy)->getElementType()
340               ->getPrimitiveSizeInBits()/8 == EltSize)) {
341      if (VectorTy == 0)
342        VectorTy = VectorType::get(In, AllocaSize/EltSize);
343      return;
344    }
345  }
346
347  // Otherwise, we have a case that we can't handle with an optimized vector
348  // form.  We can still turn this into a large integer.
349  VectorTy = Type::getVoidTy(In->getContext());
350}
351
352/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
353/// its accesses to a single vector type, return true and set VecTy to
354/// the new type.  If we could convert the alloca into a single promotable
355/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
356/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
357/// is the current offset from the base of the alloca being analyzed.
358///
359/// If we see at least one access to the value that is as a vector type, set the
360/// SawVec flag.
361bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
362  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
363    Instruction *User = cast<Instruction>(*UI);
364
365    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
366      // Don't break volatile loads.
367      if (LI->isVolatile())
368        return false;
369      // Don't touch MMX operations.
370      if (LI->getType()->isX86_MMXTy())
371        return false;
372      MergeInType(LI->getType(), Offset);
373      continue;
374    }
375
376    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
377      // Storing the pointer, not into the value?
378      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
379      // Don't touch MMX operations.
380      if (SI->getOperand(0)->getType()->isX86_MMXTy())
381        return false;
382      MergeInType(SI->getOperand(0)->getType(), Offset);
383      continue;
384    }
385
386    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
387      IsNotTrivial = true;  // Can't be mem2reg'd.
388      if (!CanConvertToScalar(BCI, Offset))
389        return false;
390      continue;
391    }
392
393    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
394      // If this is a GEP with a variable indices, we can't handle it.
395      if (!GEP->hasAllConstantIndices())
396        return false;
397
398      // Compute the offset that this GEP adds to the pointer.
399      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
400      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
401                                               &Indices[0], Indices.size());
402      // See if all uses can be converted.
403      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
404        return false;
405      IsNotTrivial = true;  // Can't be mem2reg'd.
406      continue;
407    }
408
409    // If this is a constant sized memset of a constant value (e.g. 0) we can
410    // handle it.
411    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
412      // Store of constant value and constant size.
413      if (!isa<ConstantInt>(MSI->getValue()) ||
414          !isa<ConstantInt>(MSI->getLength()))
415        return false;
416      IsNotTrivial = true;  // Can't be mem2reg'd.
417      continue;
418    }
419
420    // If this is a memcpy or memmove into or out of the whole allocation, we
421    // can handle it like a load or store of the scalar type.
422    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
423      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
424      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
425        return false;
426
427      IsNotTrivial = true;  // Can't be mem2reg'd.
428      continue;
429    }
430
431    // Otherwise, we cannot handle this!
432    return false;
433  }
434
435  return true;
436}
437
438/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
439/// directly.  This happens when we are converting an "integer union" to a
440/// single integer scalar, or when we are converting a "vector union" to a
441/// vector with insert/extractelement instructions.
442///
443/// Offset is an offset from the original alloca, in bits that need to be
444/// shifted to the right.  By the end of this, there should be no uses of Ptr.
445void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
446                                              uint64_t Offset) {
447  while (!Ptr->use_empty()) {
448    Instruction *User = cast<Instruction>(Ptr->use_back());
449
450    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
451      ConvertUsesToScalar(CI, NewAI, Offset);
452      CI->eraseFromParent();
453      continue;
454    }
455
456    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
457      // Compute the offset that this GEP adds to the pointer.
458      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
459      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
460                                               &Indices[0], Indices.size());
461      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
462      GEP->eraseFromParent();
463      continue;
464    }
465
466    IRBuilder<> Builder(User);
467
468    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
469      // The load is a bit extract from NewAI shifted right by Offset bits.
470      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
471      Value *NewLoadVal
472        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
473      LI->replaceAllUsesWith(NewLoadVal);
474      LI->eraseFromParent();
475      continue;
476    }
477
478    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
479      assert(SI->getOperand(0) != Ptr && "Consistency error!");
480      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
481      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
482                                             Builder);
483      Builder.CreateStore(New, NewAI);
484      SI->eraseFromParent();
485
486      // If the load we just inserted is now dead, then the inserted store
487      // overwrote the entire thing.
488      if (Old->use_empty())
489        Old->eraseFromParent();
490      continue;
491    }
492
493    // If this is a constant sized memset of a constant value (e.g. 0) we can
494    // transform it into a store of the expanded constant value.
495    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
496      assert(MSI->getRawDest() == Ptr && "Consistency error!");
497      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
498      if (NumBytes != 0) {
499        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
500
501        // Compute the value replicated the right number of times.
502        APInt APVal(NumBytes*8, Val);
503
504        // Splat the value if non-zero.
505        if (Val)
506          for (unsigned i = 1; i != NumBytes; ++i)
507            APVal |= APVal << 8;
508
509        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
510        Value *New = ConvertScalar_InsertValue(
511                                    ConstantInt::get(User->getContext(), APVal),
512                                               Old, Offset, Builder);
513        Builder.CreateStore(New, NewAI);
514
515        // If the load we just inserted is now dead, then the memset overwrote
516        // the entire thing.
517        if (Old->use_empty())
518          Old->eraseFromParent();
519      }
520      MSI->eraseFromParent();
521      continue;
522    }
523
524    // If this is a memcpy or memmove into or out of the whole allocation, we
525    // can handle it like a load or store of the scalar type.
526    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
527      assert(Offset == 0 && "must be store to start of alloca");
528
529      // If the source and destination are both to the same alloca, then this is
530      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
531      // as appropriate.
532      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
533
534      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
535        // Dest must be OrigAI, change this to be a load from the original
536        // pointer (bitcasted), then a store to our new alloca.
537        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
538        Value *SrcPtr = MTI->getSource();
539        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
540        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
541        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
542          AIPTy = PointerType::get(AIPTy->getElementType(),
543                                   SPTy->getAddressSpace());
544        }
545        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
546
547        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
548        SrcVal->setAlignment(MTI->getAlignment());
549        Builder.CreateStore(SrcVal, NewAI);
550      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
551        // Src must be OrigAI, change this to be a load from NewAI then a store
552        // through the original dest pointer (bitcasted).
553        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
554        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
555
556        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
557        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
558        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
559          AIPTy = PointerType::get(AIPTy->getElementType(),
560                                   DPTy->getAddressSpace());
561        }
562        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
563
564        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
565        NewStore->setAlignment(MTI->getAlignment());
566      } else {
567        // Noop transfer. Src == Dst
568      }
569
570      MTI->eraseFromParent();
571      continue;
572    }
573
574    llvm_unreachable("Unsupported operation!");
575  }
576}
577
578/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
579/// or vector value FromVal, extracting the bits from the offset specified by
580/// Offset.  This returns the value, which is of type ToType.
581///
582/// This happens when we are converting an "integer union" to a single
583/// integer scalar, or when we are converting a "vector union" to a vector with
584/// insert/extractelement instructions.
585///
586/// Offset is an offset from the original alloca, in bits that need to be
587/// shifted to the right.
588Value *ConvertToScalarInfo::
589ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
590                           uint64_t Offset, IRBuilder<> &Builder) {
591  // If the load is of the whole new alloca, no conversion is needed.
592  if (FromVal->getType() == ToType && Offset == 0)
593    return FromVal;
594
595  // If the result alloca is a vector type, this is either an element
596  // access or a bitcast to another vector type of the same size.
597  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
598    if (ToType->isVectorTy())
599      return Builder.CreateBitCast(FromVal, ToType, "tmp");
600
601    // Otherwise it must be an element access.
602    unsigned Elt = 0;
603    if (Offset) {
604      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
605      Elt = Offset/EltSize;
606      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
607    }
608    // Return the element extracted out of it.
609    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
610                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
611    if (V->getType() != ToType)
612      V = Builder.CreateBitCast(V, ToType, "tmp");
613    return V;
614  }
615
616  // If ToType is a first class aggregate, extract out each of the pieces and
617  // use insertvalue's to form the FCA.
618  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
619    const StructLayout &Layout = *TD.getStructLayout(ST);
620    Value *Res = UndefValue::get(ST);
621    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
622      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
623                                        Offset+Layout.getElementOffsetInBits(i),
624                                              Builder);
625      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
626    }
627    return Res;
628  }
629
630  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
631    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
632    Value *Res = UndefValue::get(AT);
633    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
634      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
635                                              Offset+i*EltSize, Builder);
636      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
637    }
638    return Res;
639  }
640
641  // Otherwise, this must be a union that was converted to an integer value.
642  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
643
644  // If this is a big-endian system and the load is narrower than the
645  // full alloca type, we need to do a shift to get the right bits.
646  int ShAmt = 0;
647  if (TD.isBigEndian()) {
648    // On big-endian machines, the lowest bit is stored at the bit offset
649    // from the pointer given by getTypeStoreSizeInBits.  This matters for
650    // integers with a bitwidth that is not a multiple of 8.
651    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
652            TD.getTypeStoreSizeInBits(ToType) - Offset;
653  } else {
654    ShAmt = Offset;
655  }
656
657  // Note: we support negative bitwidths (with shl) which are not defined.
658  // We do this to support (f.e.) loads off the end of a structure where
659  // only some bits are used.
660  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
661    FromVal = Builder.CreateLShr(FromVal,
662                                 ConstantInt::get(FromVal->getType(),
663                                                           ShAmt), "tmp");
664  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
665    FromVal = Builder.CreateShl(FromVal,
666                                ConstantInt::get(FromVal->getType(),
667                                                          -ShAmt), "tmp");
668
669  // Finally, unconditionally truncate the integer to the right width.
670  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
671  if (LIBitWidth < NTy->getBitWidth())
672    FromVal =
673      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
674                                                    LIBitWidth), "tmp");
675  else if (LIBitWidth > NTy->getBitWidth())
676    FromVal =
677       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
678                                                    LIBitWidth), "tmp");
679
680  // If the result is an integer, this is a trunc or bitcast.
681  if (ToType->isIntegerTy()) {
682    // Should be done.
683  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
684    // Just do a bitcast, we know the sizes match up.
685    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
686  } else {
687    // Otherwise must be a pointer.
688    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
689  }
690  assert(FromVal->getType() == ToType && "Didn't convert right?");
691  return FromVal;
692}
693
694/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
695/// or vector value "Old" at the offset specified by Offset.
696///
697/// This happens when we are converting an "integer union" to a
698/// single integer scalar, or when we are converting a "vector union" to a
699/// vector with insert/extractelement instructions.
700///
701/// Offset is an offset from the original alloca, in bits that need to be
702/// shifted to the right.
703Value *ConvertToScalarInfo::
704ConvertScalar_InsertValue(Value *SV, Value *Old,
705                          uint64_t Offset, IRBuilder<> &Builder) {
706  // Convert the stored type to the actual type, shift it left to insert
707  // then 'or' into place.
708  const Type *AllocaType = Old->getType();
709  LLVMContext &Context = Old->getContext();
710
711  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
712    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
713    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
714
715    // Changing the whole vector with memset or with an access of a different
716    // vector type?
717    if (ValSize == VecSize)
718      return Builder.CreateBitCast(SV, AllocaType, "tmp");
719
720    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
721
722    // Must be an element insertion.
723    unsigned Elt = Offset/EltSize;
724
725    if (SV->getType() != VTy->getElementType())
726      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
727
728    SV = Builder.CreateInsertElement(Old, SV,
729                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
730                                     "tmp");
731    return SV;
732  }
733
734  // If SV is a first-class aggregate value, insert each value recursively.
735  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
736    const StructLayout &Layout = *TD.getStructLayout(ST);
737    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
738      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
739      Old = ConvertScalar_InsertValue(Elt, Old,
740                                      Offset+Layout.getElementOffsetInBits(i),
741                                      Builder);
742    }
743    return Old;
744  }
745
746  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
747    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
748    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
749      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
750      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
751    }
752    return Old;
753  }
754
755  // If SV is a float, convert it to the appropriate integer type.
756  // If it is a pointer, do the same.
757  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
758  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
759  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
760  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
761  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
762    SV = Builder.CreateBitCast(SV,
763                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
764  else if (SV->getType()->isPointerTy())
765    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
766
767  // Zero extend or truncate the value if needed.
768  if (SV->getType() != AllocaType) {
769    if (SV->getType()->getPrimitiveSizeInBits() <
770             AllocaType->getPrimitiveSizeInBits())
771      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
772    else {
773      // Truncation may be needed if storing more than the alloca can hold
774      // (undefined behavior).
775      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
776      SrcWidth = DestWidth;
777      SrcStoreWidth = DestStoreWidth;
778    }
779  }
780
781  // If this is a big-endian system and the store is narrower than the
782  // full alloca type, we need to do a shift to get the right bits.
783  int ShAmt = 0;
784  if (TD.isBigEndian()) {
785    // On big-endian machines, the lowest bit is stored at the bit offset
786    // from the pointer given by getTypeStoreSizeInBits.  This matters for
787    // integers with a bitwidth that is not a multiple of 8.
788    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
789  } else {
790    ShAmt = Offset;
791  }
792
793  // Note: we support negative bitwidths (with shr) which are not defined.
794  // We do this to support (f.e.) stores off the end of a structure where
795  // only some bits in the structure are set.
796  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
797  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
798    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
799                           ShAmt), "tmp");
800    Mask <<= ShAmt;
801  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
802    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
803                            -ShAmt), "tmp");
804    Mask = Mask.lshr(-ShAmt);
805  }
806
807  // Mask out the bits we are about to insert from the old value, and or
808  // in the new bits.
809  if (SrcWidth != DestWidth) {
810    assert(DestWidth > SrcWidth);
811    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
812    SV = Builder.CreateOr(Old, SV, "ins");
813  }
814  return SV;
815}
816
817
818//===----------------------------------------------------------------------===//
819// SRoA Driver
820//===----------------------------------------------------------------------===//
821
822
823bool SROA::runOnFunction(Function &F) {
824  TD = getAnalysisIfAvailable<TargetData>();
825
826  bool Changed = performPromotion(F);
827
828  // FIXME: ScalarRepl currently depends on TargetData more than it
829  // theoretically needs to. It should be refactored in order to support
830  // target-independent IR. Until this is done, just skip the actual
831  // scalar-replacement portion of this pass.
832  if (!TD) return Changed;
833
834  while (1) {
835    bool LocalChange = performScalarRepl(F);
836    if (!LocalChange) break;   // No need to repromote if no scalarrepl
837    Changed = true;
838    LocalChange = performPromotion(F);
839    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
840  }
841
842  return Changed;
843}
844
845namespace {
846class AllocaPromoter : public LoadAndStorePromoter {
847  AllocaInst *AI;
848public:
849  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S)
850    : LoadAndStorePromoter(Insts, S), AI(0) {}
851
852  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
853    // Remember which alloca we're promoting (for isInstInList).
854    this->AI = AI;
855    LoadAndStorePromoter::run(Insts);
856    AI->eraseFromParent();
857  }
858
859  virtual bool isInstInList(Instruction *I,
860                            const SmallVectorImpl<Instruction*> &Insts) const {
861    if (LoadInst *LI = dyn_cast<LoadInst>(I))
862      return LI->getOperand(0) == AI;
863    return cast<StoreInst>(I)->getPointerOperand() == AI;
864  }
865};
866} // end anon namespace
867
868/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
869/// subsequently loaded can be rewritten to load both input pointers and then
870/// select between the result, allowing the load of the alloca to be promoted.
871/// From this:
872///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
873///   %V = load i32* %P2
874/// to:
875///   %V1 = load i32* %Alloca      -> will be mem2reg'd
876///   %V2 = load i32* %Other
877///   %V = select i1 %cond, i32 %V1, i32 %V2
878///
879/// We can do this to a select if its only uses are loads and if the operand to
880/// the select can be loaded unconditionally.
881static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
882  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
883  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
884
885  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
886       UI != UE; ++UI) {
887    LoadInst *LI = dyn_cast<LoadInst>(*UI);
888    if (LI == 0 || LI->isVolatile()) return false;
889
890    // Both operands to the select need to be dereferencable, either absolutely
891    // (e.g. allocas) or at this point because we can see other accesses to it.
892    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
893                                                    LI->getAlignment(), TD))
894      return false;
895    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
896                                                    LI->getAlignment(), TD))
897      return false;
898  }
899
900  return true;
901}
902
903/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
904/// subsequently loaded can be rewritten to load both input pointers in the pred
905/// blocks and then PHI the results, allowing the load of the alloca to be
906/// promoted.
907/// From this:
908///   %P2 = phi [i32* %Alloca, i32* %Other]
909///   %V = load i32* %P2
910/// to:
911///   %V1 = load i32* %Alloca      -> will be mem2reg'd
912///   ...
913///   %V2 = load i32* %Other
914///   ...
915///   %V = phi [i32 %V1, i32 %V2]
916///
917/// We can do this to a select if its only uses are loads and if the operand to
918/// the select can be loaded unconditionally.
919static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
920  // For now, we can only do this promotion if the load is in the same block as
921  // the PHI, and if there are no stores between the phi and load.
922  // TODO: Allow recursive phi users.
923  // TODO: Allow stores.
924  BasicBlock *BB = PN->getParent();
925  unsigned MaxAlign = 0;
926  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
927       UI != UE; ++UI) {
928    LoadInst *LI = dyn_cast<LoadInst>(*UI);
929    if (LI == 0 || LI->isVolatile()) return false;
930
931    // For now we only allow loads in the same block as the PHI.  This is a
932    // common case that happens when instcombine merges two loads through a PHI.
933    if (LI->getParent() != BB) return false;
934
935    // Ensure that there are no instructions between the PHI and the load that
936    // could store.
937    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
938      if (BBI->mayWriteToMemory())
939        return false;
940
941    MaxAlign = std::max(MaxAlign, LI->getAlignment());
942  }
943
944  // Okay, we know that we have one or more loads in the same block as the PHI.
945  // We can transform this if it is safe to push the loads into the predecessor
946  // blocks.  The only thing to watch out for is that we can't put a possibly
947  // trapping load in the predecessor if it is a critical edge.
948  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
949    BasicBlock *Pred = PN->getIncomingBlock(i);
950
951    // If the predecessor has a single successor, then the edge isn't critical.
952    if (Pred->getTerminator()->getNumSuccessors() == 1)
953      continue;
954
955    Value *InVal = PN->getIncomingValue(i);
956
957    // If the InVal is an invoke in the pred, we can't put a load on the edge.
958    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
959      if (II->getParent() == Pred)
960        return false;
961
962    // If this pointer is always safe to load, or if we can prove that there is
963    // already a load in the block, then we can move the load to the pred block.
964    if (InVal->isDereferenceablePointer() ||
965        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
966      continue;
967
968    return false;
969  }
970
971  return true;
972}
973
974
975/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
976/// direct (non-volatile) loads and stores to it.  If the alloca is close but
977/// not quite there, this will transform the code to allow promotion.  As such,
978/// it is a non-pure predicate.
979static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
980  SetVector<Instruction*, SmallVector<Instruction*, 4>,
981            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
982
983  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
984       UI != UE; ++UI) {
985    User *U = *UI;
986    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
987      if (LI->isVolatile())
988        return false;
989      continue;
990    }
991
992    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
993      if (SI->getOperand(0) == AI || SI->isVolatile())
994        return false;   // Don't allow a store OF the AI, only INTO the AI.
995      continue;
996    }
997
998    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
999      // If the condition being selected on is a constant, fold the select, yes
1000      // this does (rarely) happen early on.
1001      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1002        Value *Result = SI->getOperand(1+CI->isZero());
1003        SI->replaceAllUsesWith(Result);
1004        SI->eraseFromParent();
1005
1006        // This is very rare and we just scrambled the use list of AI, start
1007        // over completely.
1008        return tryToMakeAllocaBePromotable(AI, TD);
1009      }
1010
1011      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1012      // loads, then we can transform this by rewriting the select.
1013      if (!isSafeSelectToSpeculate(SI, TD))
1014        return false;
1015
1016      InstsToRewrite.insert(SI);
1017      continue;
1018    }
1019
1020    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1021      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1022        InstsToRewrite.insert(PN);
1023        continue;
1024      }
1025
1026      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1027      // in the pred blocks, then we can transform this by rewriting the PHI.
1028      if (!isSafePHIToSpeculate(PN, TD))
1029        return false;
1030
1031      InstsToRewrite.insert(PN);
1032      continue;
1033    }
1034
1035    return false;
1036  }
1037
1038  // If there are no instructions to rewrite, then all uses are load/stores and
1039  // we're done!
1040  if (InstsToRewrite.empty())
1041    return true;
1042
1043  // If we have instructions that need to be rewritten for this to be promotable
1044  // take care of it now.
1045  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1046    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1047      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1048      // loads with a new select.
1049      while (!SI->use_empty()) {
1050        LoadInst *LI = cast<LoadInst>(SI->use_back());
1051
1052        IRBuilder<> Builder(LI);
1053        LoadInst *TrueLoad =
1054          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1055        LoadInst *FalseLoad =
1056          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1057
1058        // Transfer alignment and TBAA info if present.
1059        TrueLoad->setAlignment(LI->getAlignment());
1060        FalseLoad->setAlignment(LI->getAlignment());
1061        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1062          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1063          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1064        }
1065
1066        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1067        V->takeName(LI);
1068        LI->replaceAllUsesWith(V);
1069        LI->eraseFromParent();
1070      }
1071
1072      // Now that all the loads are gone, the select is gone too.
1073      SI->eraseFromParent();
1074      continue;
1075    }
1076
1077    // Otherwise, we have a PHI node which allows us to push the loads into the
1078    // predecessors.
1079    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1080    if (PN->use_empty()) {
1081      PN->eraseFromParent();
1082      continue;
1083    }
1084
1085    const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1086    PHINode *NewPN = PHINode::Create(LoadTy, PN->getName()+".ld", PN);
1087
1088    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1089    // matter which one we get and if any differ, it doesn't matter.
1090    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1091    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1092    unsigned Align = SomeLoad->getAlignment();
1093
1094    // Rewrite all loads of the PN to use the new PHI.
1095    while (!PN->use_empty()) {
1096      LoadInst *LI = cast<LoadInst>(PN->use_back());
1097      LI->replaceAllUsesWith(NewPN);
1098      LI->eraseFromParent();
1099    }
1100
1101    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1102    // insert them into in case we have multiple edges from the same block.
1103    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1104
1105    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1106      BasicBlock *Pred = PN->getIncomingBlock(i);
1107      LoadInst *&Load = InsertedLoads[Pred];
1108      if (Load == 0) {
1109        Load = new LoadInst(PN->getIncomingValue(i),
1110                            PN->getName() + "." + Pred->getName(),
1111                            Pred->getTerminator());
1112        Load->setAlignment(Align);
1113        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1114      }
1115
1116      NewPN->addIncoming(Load, Pred);
1117    }
1118
1119    PN->eraseFromParent();
1120  }
1121
1122  ++NumAdjusted;
1123  return true;
1124}
1125
1126
1127bool SROA::performPromotion(Function &F) {
1128  std::vector<AllocaInst*> Allocas;
1129  DominatorTree *DT = 0;
1130  if (HasDomTree)
1131    DT = &getAnalysis<DominatorTree>();
1132
1133  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1134
1135  bool Changed = false;
1136  SmallVector<Instruction*, 64> Insts;
1137  while (1) {
1138    Allocas.clear();
1139
1140    // Find allocas that are safe to promote, by looking at all instructions in
1141    // the entry node
1142    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1143      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1144        if (tryToMakeAllocaBePromotable(AI, TD))
1145          Allocas.push_back(AI);
1146
1147    if (Allocas.empty()) break;
1148
1149    if (HasDomTree)
1150      PromoteMemToReg(Allocas, *DT);
1151    else {
1152      SSAUpdater SSA;
1153      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1154        AllocaInst *AI = Allocas[i];
1155
1156        // Build list of instructions to promote.
1157        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1158             UI != E; ++UI)
1159          Insts.push_back(cast<Instruction>(*UI));
1160
1161        AllocaPromoter(Insts, SSA).run(AI, Insts);
1162        Insts.clear();
1163      }
1164    }
1165    NumPromoted += Allocas.size();
1166    Changed = true;
1167  }
1168
1169  return Changed;
1170}
1171
1172
1173/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1174/// SROA.  It must be a struct or array type with a small number of elements.
1175static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1176  const Type *T = AI->getAllocatedType();
1177  // Do not promote any struct into more than 32 separate vars.
1178  if (const StructType *ST = dyn_cast<StructType>(T))
1179    return ST->getNumElements() <= 32;
1180  // Arrays are much less likely to be safe for SROA; only consider
1181  // them if they are very small.
1182  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1183    return AT->getNumElements() <= 8;
1184  return false;
1185}
1186
1187
1188// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1189// which runs on all of the malloc/alloca instructions in the function, removing
1190// them if they are only used by getelementptr instructions.
1191//
1192bool SROA::performScalarRepl(Function &F) {
1193  std::vector<AllocaInst*> WorkList;
1194
1195  // Scan the entry basic block, adding allocas to the worklist.
1196  BasicBlock &BB = F.getEntryBlock();
1197  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1198    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1199      WorkList.push_back(A);
1200
1201  // Process the worklist
1202  bool Changed = false;
1203  while (!WorkList.empty()) {
1204    AllocaInst *AI = WorkList.back();
1205    WorkList.pop_back();
1206
1207    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1208    // with unused elements.
1209    if (AI->use_empty()) {
1210      AI->eraseFromParent();
1211      Changed = true;
1212      continue;
1213    }
1214
1215    // If this alloca is impossible for us to promote, reject it early.
1216    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1217      continue;
1218
1219    // Check to see if this allocation is only modified by a memcpy/memmove from
1220    // a constant global.  If this is the case, we can change all users to use
1221    // the constant global instead.  This is commonly produced by the CFE by
1222    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1223    // is only subsequently read.
1224    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1225      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1226      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
1227      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1228      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1229      TheCopy->eraseFromParent();  // Don't mutate the global.
1230      AI->eraseFromParent();
1231      ++NumGlobals;
1232      Changed = true;
1233      continue;
1234    }
1235
1236    // Check to see if we can perform the core SROA transformation.  We cannot
1237    // transform the allocation instruction if it is an array allocation
1238    // (allocations OF arrays are ok though), and an allocation of a scalar
1239    // value cannot be decomposed at all.
1240    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1241
1242    // Do not promote [0 x %struct].
1243    if (AllocaSize == 0) continue;
1244
1245    // Do not promote any struct whose size is too big.
1246    if (AllocaSize > SRThreshold) continue;
1247
1248    // If the alloca looks like a good candidate for scalar replacement, and if
1249    // all its users can be transformed, then split up the aggregate into its
1250    // separate elements.
1251    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1252      DoScalarReplacement(AI, WorkList);
1253      Changed = true;
1254      continue;
1255    }
1256
1257    // If we can turn this aggregate value (potentially with casts) into a
1258    // simple scalar value that can be mem2reg'd into a register value.
1259    // IsNotTrivial tracks whether this is something that mem2reg could have
1260    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1261    // that we can't just check based on the type: the alloca may be of an i32
1262    // but that has pointer arithmetic to set byte 3 of it or something.
1263    if (AllocaInst *NewAI =
1264          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1265      NewAI->takeName(AI);
1266      AI->eraseFromParent();
1267      ++NumConverted;
1268      Changed = true;
1269      continue;
1270    }
1271
1272    // Otherwise, couldn't process this alloca.
1273  }
1274
1275  return Changed;
1276}
1277
1278/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1279/// predicate, do SROA now.
1280void SROA::DoScalarReplacement(AllocaInst *AI,
1281                               std::vector<AllocaInst*> &WorkList) {
1282  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1283  SmallVector<AllocaInst*, 32> ElementAllocas;
1284  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1285    ElementAllocas.reserve(ST->getNumContainedTypes());
1286    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1287      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1288                                      AI->getAlignment(),
1289                                      AI->getName() + "." + Twine(i), AI);
1290      ElementAllocas.push_back(NA);
1291      WorkList.push_back(NA);  // Add to worklist for recursive processing
1292    }
1293  } else {
1294    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1295    ElementAllocas.reserve(AT->getNumElements());
1296    const Type *ElTy = AT->getElementType();
1297    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1298      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1299                                      AI->getName() + "." + Twine(i), AI);
1300      ElementAllocas.push_back(NA);
1301      WorkList.push_back(NA);  // Add to worklist for recursive processing
1302    }
1303  }
1304
1305  // Now that we have created the new alloca instructions, rewrite all the
1306  // uses of the old alloca.
1307  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1308
1309  // Now erase any instructions that were made dead while rewriting the alloca.
1310  DeleteDeadInstructions();
1311  AI->eraseFromParent();
1312
1313  ++NumReplaced;
1314}
1315
1316/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1317/// recursively including all their operands that become trivially dead.
1318void SROA::DeleteDeadInstructions() {
1319  while (!DeadInsts.empty()) {
1320    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1321
1322    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1323      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1324        // Zero out the operand and see if it becomes trivially dead.
1325        // (But, don't add allocas to the dead instruction list -- they are
1326        // already on the worklist and will be deleted separately.)
1327        *OI = 0;
1328        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1329          DeadInsts.push_back(U);
1330      }
1331
1332    I->eraseFromParent();
1333  }
1334}
1335
1336/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1337/// performing scalar replacement of alloca AI.  The results are flagged in
1338/// the Info parameter.  Offset indicates the position within AI that is
1339/// referenced by this instruction.
1340void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1341                               AllocaInfo &Info) {
1342  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1343    Instruction *User = cast<Instruction>(*UI);
1344
1345    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1346      isSafeForScalarRepl(BC, Offset, Info);
1347    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1348      uint64_t GEPOffset = Offset;
1349      isSafeGEP(GEPI, GEPOffset, Info);
1350      if (!Info.isUnsafe)
1351        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1352    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1353      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1354      if (Length == 0)
1355        return MarkUnsafe(Info, User);
1356      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1357                      UI.getOperandNo() == 0, Info, MI,
1358                      true /*AllowWholeAccess*/);
1359    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1360      if (LI->isVolatile())
1361        return MarkUnsafe(Info, User);
1362      const Type *LIType = LI->getType();
1363      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1364                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1365      Info.hasALoadOrStore = true;
1366
1367    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1368      // Store is ok if storing INTO the pointer, not storing the pointer
1369      if (SI->isVolatile() || SI->getOperand(0) == I)
1370        return MarkUnsafe(Info, User);
1371
1372      const Type *SIType = SI->getOperand(0)->getType();
1373      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1374                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1375      Info.hasALoadOrStore = true;
1376    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1377      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1378    } else {
1379      return MarkUnsafe(Info, User);
1380    }
1381    if (Info.isUnsafe) return;
1382  }
1383}
1384
1385
1386/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1387/// derived from the alloca, we can often still split the alloca into elements.
1388/// This is useful if we have a large alloca where one element is phi'd
1389/// together somewhere: we can SRoA and promote all the other elements even if
1390/// we end up not being able to promote this one.
1391///
1392/// All we require is that the uses of the PHI do not index into other parts of
1393/// the alloca.  The most important use case for this is single load and stores
1394/// that are PHI'd together, which can happen due to code sinking.
1395void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1396                                           AllocaInfo &Info) {
1397  // If we've already checked this PHI, don't do it again.
1398  if (PHINode *PN = dyn_cast<PHINode>(I))
1399    if (!Info.CheckedPHIs.insert(PN))
1400      return;
1401
1402  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1403    Instruction *User = cast<Instruction>(*UI);
1404
1405    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1406      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1407    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1408      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1409      // but would have to prove that we're staying inside of an element being
1410      // promoted.
1411      if (!GEPI->hasAllZeroIndices())
1412        return MarkUnsafe(Info, User);
1413      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1414    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1415      if (LI->isVolatile())
1416        return MarkUnsafe(Info, User);
1417      const Type *LIType = LI->getType();
1418      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1419                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1420      Info.hasALoadOrStore = true;
1421
1422    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1423      // Store is ok if storing INTO the pointer, not storing the pointer
1424      if (SI->isVolatile() || SI->getOperand(0) == I)
1425        return MarkUnsafe(Info, User);
1426
1427      const Type *SIType = SI->getOperand(0)->getType();
1428      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1429                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1430      Info.hasALoadOrStore = true;
1431    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1432      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1433    } else {
1434      return MarkUnsafe(Info, User);
1435    }
1436    if (Info.isUnsafe) return;
1437  }
1438}
1439
1440/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1441/// replacement.  It is safe when all the indices are constant, in-bounds
1442/// references, and when the resulting offset corresponds to an element within
1443/// the alloca type.  The results are flagged in the Info parameter.  Upon
1444/// return, Offset is adjusted as specified by the GEP indices.
1445void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1446                     uint64_t &Offset, AllocaInfo &Info) {
1447  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1448  if (GEPIt == E)
1449    return;
1450
1451  // Walk through the GEP type indices, checking the types that this indexes
1452  // into.
1453  for (; GEPIt != E; ++GEPIt) {
1454    // Ignore struct elements, no extra checking needed for these.
1455    if ((*GEPIt)->isStructTy())
1456      continue;
1457
1458    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1459    if (!IdxVal)
1460      return MarkUnsafe(Info, GEPI);
1461  }
1462
1463  // Compute the offset due to this GEP and check if the alloca has a
1464  // component element at that offset.
1465  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1466  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1467                                 &Indices[0], Indices.size());
1468  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1469    MarkUnsafe(Info, GEPI);
1470}
1471
1472/// isHomogeneousAggregate - Check if type T is a struct or array containing
1473/// elements of the same type (which is always true for arrays).  If so,
1474/// return true with NumElts and EltTy set to the number of elements and the
1475/// element type, respectively.
1476static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1477                                   const Type *&EltTy) {
1478  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1479    NumElts = AT->getNumElements();
1480    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1481    return true;
1482  }
1483  if (const StructType *ST = dyn_cast<StructType>(T)) {
1484    NumElts = ST->getNumContainedTypes();
1485    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1486    for (unsigned n = 1; n < NumElts; ++n) {
1487      if (ST->getContainedType(n) != EltTy)
1488        return false;
1489    }
1490    return true;
1491  }
1492  return false;
1493}
1494
1495/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1496/// "homogeneous" aggregates with the same element type and number of elements.
1497static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1498  if (T1 == T2)
1499    return true;
1500
1501  unsigned NumElts1, NumElts2;
1502  const Type *EltTy1, *EltTy2;
1503  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1504      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1505      NumElts1 == NumElts2 &&
1506      EltTy1 == EltTy2)
1507    return true;
1508
1509  return false;
1510}
1511
1512/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1513/// alloca or has an offset and size that corresponds to a component element
1514/// within it.  The offset checked here may have been formed from a GEP with a
1515/// pointer bitcasted to a different type.
1516///
1517/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1518/// unit.  If false, it only allows accesses known to be in a single element.
1519void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1520                           const Type *MemOpType, bool isStore,
1521                           AllocaInfo &Info, Instruction *TheAccess,
1522                           bool AllowWholeAccess) {
1523  // Check if this is a load/store of the entire alloca.
1524  if (Offset == 0 && AllowWholeAccess &&
1525      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1526    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1527    // loads/stores (which are essentially the same as the MemIntrinsics with
1528    // regard to copying padding between elements).  But, if an alloca is
1529    // flagged as both a source and destination of such operations, we'll need
1530    // to check later for padding between elements.
1531    if (!MemOpType || MemOpType->isIntegerTy()) {
1532      if (isStore)
1533        Info.isMemCpyDst = true;
1534      else
1535        Info.isMemCpySrc = true;
1536      return;
1537    }
1538    // This is also safe for references using a type that is compatible with
1539    // the type of the alloca, so that loads/stores can be rewritten using
1540    // insertvalue/extractvalue.
1541    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1542      Info.hasSubelementAccess = true;
1543      return;
1544    }
1545  }
1546  // Check if the offset/size correspond to a component within the alloca type.
1547  const Type *T = Info.AI->getAllocatedType();
1548  if (TypeHasComponent(T, Offset, MemSize)) {
1549    Info.hasSubelementAccess = true;
1550    return;
1551  }
1552
1553  return MarkUnsafe(Info, TheAccess);
1554}
1555
1556/// TypeHasComponent - Return true if T has a component type with the
1557/// specified offset and size.  If Size is zero, do not check the size.
1558bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1559  const Type *EltTy;
1560  uint64_t EltSize;
1561  if (const StructType *ST = dyn_cast<StructType>(T)) {
1562    const StructLayout *Layout = TD->getStructLayout(ST);
1563    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1564    EltTy = ST->getContainedType(EltIdx);
1565    EltSize = TD->getTypeAllocSize(EltTy);
1566    Offset -= Layout->getElementOffset(EltIdx);
1567  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1568    EltTy = AT->getElementType();
1569    EltSize = TD->getTypeAllocSize(EltTy);
1570    if (Offset >= AT->getNumElements() * EltSize)
1571      return false;
1572    Offset %= EltSize;
1573  } else {
1574    return false;
1575  }
1576  if (Offset == 0 && (Size == 0 || EltSize == Size))
1577    return true;
1578  // Check if the component spans multiple elements.
1579  if (Offset + Size > EltSize)
1580    return false;
1581  return TypeHasComponent(EltTy, Offset, Size);
1582}
1583
1584/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1585/// the instruction I, which references it, to use the separate elements.
1586/// Offset indicates the position within AI that is referenced by this
1587/// instruction.
1588void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1589                                SmallVector<AllocaInst*, 32> &NewElts) {
1590  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1591    Use &TheUse = UI.getUse();
1592    Instruction *User = cast<Instruction>(*UI++);
1593
1594    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1595      RewriteBitCast(BC, AI, Offset, NewElts);
1596      continue;
1597    }
1598
1599    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1600      RewriteGEP(GEPI, AI, Offset, NewElts);
1601      continue;
1602    }
1603
1604    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1605      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1606      uint64_t MemSize = Length->getZExtValue();
1607      if (Offset == 0 &&
1608          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1609        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1610      // Otherwise the intrinsic can only touch a single element and the
1611      // address operand will be updated, so nothing else needs to be done.
1612      continue;
1613    }
1614
1615    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1616      const Type *LIType = LI->getType();
1617
1618      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1619        // Replace:
1620        //   %res = load { i32, i32 }* %alloc
1621        // with:
1622        //   %load.0 = load i32* %alloc.0
1623        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1624        //   %load.1 = load i32* %alloc.1
1625        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1626        // (Also works for arrays instead of structs)
1627        Value *Insert = UndefValue::get(LIType);
1628        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1629          Value *Load = new LoadInst(NewElts[i], "load", LI);
1630          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1631        }
1632        LI->replaceAllUsesWith(Insert);
1633        DeadInsts.push_back(LI);
1634      } else if (LIType->isIntegerTy() &&
1635                 TD->getTypeAllocSize(LIType) ==
1636                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1637        // If this is a load of the entire alloca to an integer, rewrite it.
1638        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1639      }
1640      continue;
1641    }
1642
1643    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1644      Value *Val = SI->getOperand(0);
1645      const Type *SIType = Val->getType();
1646      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1647        // Replace:
1648        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1649        // with:
1650        //   %val.0 = extractvalue { i32, i32 } %val, 0
1651        //   store i32 %val.0, i32* %alloc.0
1652        //   %val.1 = extractvalue { i32, i32 } %val, 1
1653        //   store i32 %val.1, i32* %alloc.1
1654        // (Also works for arrays instead of structs)
1655        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1656          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1657          new StoreInst(Extract, NewElts[i], SI);
1658        }
1659        DeadInsts.push_back(SI);
1660      } else if (SIType->isIntegerTy() &&
1661                 TD->getTypeAllocSize(SIType) ==
1662                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1663        // If this is a store of the entire alloca from an integer, rewrite it.
1664        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1665      }
1666      continue;
1667    }
1668
1669    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1670      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1671      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1672      // the new pointer.
1673      if (!isa<AllocaInst>(I)) continue;
1674
1675      assert(Offset == 0 && NewElts[0] &&
1676             "Direct alloca use should have a zero offset");
1677
1678      // If we have a use of the alloca, we know the derived uses will be
1679      // utilizing just the first element of the scalarized result.  Insert a
1680      // bitcast of the first alloca before the user as required.
1681      AllocaInst *NewAI = NewElts[0];
1682      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1683      NewAI->moveBefore(BCI);
1684      TheUse = BCI;
1685      continue;
1686    }
1687  }
1688}
1689
1690/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1691/// and recursively continue updating all of its uses.
1692void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1693                          SmallVector<AllocaInst*, 32> &NewElts) {
1694  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1695  if (BC->getOperand(0) != AI)
1696    return;
1697
1698  // The bitcast references the original alloca.  Replace its uses with
1699  // references to the first new element alloca.
1700  Instruction *Val = NewElts[0];
1701  if (Val->getType() != BC->getDestTy()) {
1702    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1703    Val->takeName(BC);
1704  }
1705  BC->replaceAllUsesWith(Val);
1706  DeadInsts.push_back(BC);
1707}
1708
1709/// FindElementAndOffset - Return the index of the element containing Offset
1710/// within the specified type, which must be either a struct or an array.
1711/// Sets T to the type of the element and Offset to the offset within that
1712/// element.  IdxTy is set to the type of the index result to be used in a
1713/// GEP instruction.
1714uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1715                                    const Type *&IdxTy) {
1716  uint64_t Idx = 0;
1717  if (const StructType *ST = dyn_cast<StructType>(T)) {
1718    const StructLayout *Layout = TD->getStructLayout(ST);
1719    Idx = Layout->getElementContainingOffset(Offset);
1720    T = ST->getContainedType(Idx);
1721    Offset -= Layout->getElementOffset(Idx);
1722    IdxTy = Type::getInt32Ty(T->getContext());
1723    return Idx;
1724  }
1725  const ArrayType *AT = cast<ArrayType>(T);
1726  T = AT->getElementType();
1727  uint64_t EltSize = TD->getTypeAllocSize(T);
1728  Idx = Offset / EltSize;
1729  Offset -= Idx * EltSize;
1730  IdxTy = Type::getInt64Ty(T->getContext());
1731  return Idx;
1732}
1733
1734/// RewriteGEP - Check if this GEP instruction moves the pointer across
1735/// elements of the alloca that are being split apart, and if so, rewrite
1736/// the GEP to be relative to the new element.
1737void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1738                      SmallVector<AllocaInst*, 32> &NewElts) {
1739  uint64_t OldOffset = Offset;
1740  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1741  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1742                                 &Indices[0], Indices.size());
1743
1744  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1745
1746  const Type *T = AI->getAllocatedType();
1747  const Type *IdxTy;
1748  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1749  if (GEPI->getOperand(0) == AI)
1750    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1751
1752  T = AI->getAllocatedType();
1753  uint64_t EltOffset = Offset;
1754  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1755
1756  // If this GEP does not move the pointer across elements of the alloca
1757  // being split, then it does not needs to be rewritten.
1758  if (Idx == OldIdx)
1759    return;
1760
1761  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1762  SmallVector<Value*, 8> NewArgs;
1763  NewArgs.push_back(Constant::getNullValue(i32Ty));
1764  while (EltOffset != 0) {
1765    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1766    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1767  }
1768  Instruction *Val = NewElts[Idx];
1769  if (NewArgs.size() > 1) {
1770    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1771                                            NewArgs.end(), "", GEPI);
1772    Val->takeName(GEPI);
1773  }
1774  if (Val->getType() != GEPI->getType())
1775    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1776  GEPI->replaceAllUsesWith(Val);
1777  DeadInsts.push_back(GEPI);
1778}
1779
1780/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1781/// Rewrite it to copy or set the elements of the scalarized memory.
1782void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1783                                        AllocaInst *AI,
1784                                        SmallVector<AllocaInst*, 32> &NewElts) {
1785  // If this is a memcpy/memmove, construct the other pointer as the
1786  // appropriate type.  The "Other" pointer is the pointer that goes to memory
1787  // that doesn't have anything to do with the alloca that we are promoting. For
1788  // memset, this Value* stays null.
1789  Value *OtherPtr = 0;
1790  unsigned MemAlignment = MI->getAlignment();
1791  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1792    if (Inst == MTI->getRawDest())
1793      OtherPtr = MTI->getRawSource();
1794    else {
1795      assert(Inst == MTI->getRawSource());
1796      OtherPtr = MTI->getRawDest();
1797    }
1798  }
1799
1800  // If there is an other pointer, we want to convert it to the same pointer
1801  // type as AI has, so we can GEP through it safely.
1802  if (OtherPtr) {
1803    unsigned AddrSpace =
1804      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
1805
1806    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
1807    // optimization, but it's also required to detect the corner case where
1808    // both pointer operands are referencing the same memory, and where
1809    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
1810    // function is only called for mem intrinsics that access the whole
1811    // aggregate, so non-zero GEPs are not an issue here.)
1812    OtherPtr = OtherPtr->stripPointerCasts();
1813
1814    // Copying the alloca to itself is a no-op: just delete it.
1815    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1816      // This code will run twice for a no-op memcpy -- once for each operand.
1817      // Put only one reference to MI on the DeadInsts list.
1818      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1819             E = DeadInsts.end(); I != E; ++I)
1820        if (*I == MI) return;
1821      DeadInsts.push_back(MI);
1822      return;
1823    }
1824
1825    // If the pointer is not the right type, insert a bitcast to the right
1826    // type.
1827    const Type *NewTy =
1828      PointerType::get(AI->getType()->getElementType(), AddrSpace);
1829
1830    if (OtherPtr->getType() != NewTy)
1831      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
1832  }
1833
1834  // Process each element of the aggregate.
1835  bool SROADest = MI->getRawDest() == Inst;
1836
1837  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
1838
1839  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1840    // If this is a memcpy/memmove, emit a GEP of the other element address.
1841    Value *OtherElt = 0;
1842    unsigned OtherEltAlign = MemAlignment;
1843
1844    if (OtherPtr) {
1845      Value *Idx[2] = { Zero,
1846                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
1847      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
1848                                              OtherPtr->getName()+"."+Twine(i),
1849                                                   MI);
1850      uint64_t EltOffset;
1851      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
1852      const Type *OtherTy = OtherPtrTy->getElementType();
1853      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
1854        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1855      } else {
1856        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
1857        EltOffset = TD->getTypeAllocSize(EltTy)*i;
1858      }
1859
1860      // The alignment of the other pointer is the guaranteed alignment of the
1861      // element, which is affected by both the known alignment of the whole
1862      // mem intrinsic and the alignment of the element.  If the alignment of
1863      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
1864      // known alignment is just 4 bytes.
1865      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
1866    }
1867
1868    Value *EltPtr = NewElts[i];
1869    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
1870
1871    // If we got down to a scalar, insert a load or store as appropriate.
1872    if (EltTy->isSingleValueType()) {
1873      if (isa<MemTransferInst>(MI)) {
1874        if (SROADest) {
1875          // From Other to Alloca.
1876          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
1877          new StoreInst(Elt, EltPtr, MI);
1878        } else {
1879          // From Alloca to Other.
1880          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
1881          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
1882        }
1883        continue;
1884      }
1885      assert(isa<MemSetInst>(MI));
1886
1887      // If the stored element is zero (common case), just store a null
1888      // constant.
1889      Constant *StoreVal;
1890      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
1891        if (CI->isZero()) {
1892          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
1893        } else {
1894          // If EltTy is a vector type, get the element type.
1895          const Type *ValTy = EltTy->getScalarType();
1896
1897          // Construct an integer with the right value.
1898          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
1899          APInt OneVal(EltSize, CI->getZExtValue());
1900          APInt TotalVal(OneVal);
1901          // Set each byte.
1902          for (unsigned i = 0; 8*i < EltSize; ++i) {
1903            TotalVal = TotalVal.shl(8);
1904            TotalVal |= OneVal;
1905          }
1906
1907          // Convert the integer value to the appropriate type.
1908          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
1909          if (ValTy->isPointerTy())
1910            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
1911          else if (ValTy->isFloatingPointTy())
1912            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
1913          assert(StoreVal->getType() == ValTy && "Type mismatch!");
1914
1915          // If the requested value was a vector constant, create it.
1916          if (EltTy != ValTy) {
1917            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
1918            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
1919            StoreVal = ConstantVector::get(Elts);
1920          }
1921        }
1922        new StoreInst(StoreVal, EltPtr, MI);
1923        continue;
1924      }
1925      // Otherwise, if we're storing a byte variable, use a memset call for
1926      // this element.
1927    }
1928
1929    unsigned EltSize = TD->getTypeAllocSize(EltTy);
1930
1931    IRBuilder<> Builder(MI);
1932
1933    // Finally, insert the meminst for this element.
1934    if (isa<MemSetInst>(MI)) {
1935      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
1936                           MI->isVolatile());
1937    } else {
1938      assert(isa<MemTransferInst>(MI));
1939      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
1940      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
1941
1942      if (isa<MemCpyInst>(MI))
1943        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
1944      else
1945        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
1946    }
1947  }
1948  DeadInsts.push_back(MI);
1949}
1950
1951/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
1952/// overwrites the entire allocation.  Extract out the pieces of the stored
1953/// integer and store them individually.
1954void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
1955                                         SmallVector<AllocaInst*, 32> &NewElts){
1956  // Extract each element out of the integer according to its structure offset
1957  // and store the element value to the individual alloca.
1958  Value *SrcVal = SI->getOperand(0);
1959  const Type *AllocaEltTy = AI->getAllocatedType();
1960  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1961
1962  IRBuilder<> Builder(SI);
1963
1964  // Handle tail padding by extending the operand
1965  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
1966    SrcVal = Builder.CreateZExt(SrcVal,
1967                            IntegerType::get(SI->getContext(), AllocaSizeBits));
1968
1969  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
1970               << '\n');
1971
1972  // There are two forms here: AI could be an array or struct.  Both cases
1973  // have different ways to compute the element offset.
1974  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1975    const StructLayout *Layout = TD->getStructLayout(EltSTy);
1976
1977    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1978      // Get the number of bits to shift SrcVal to get the value.
1979      const Type *FieldTy = EltSTy->getElementType(i);
1980      uint64_t Shift = Layout->getElementOffsetInBits(i);
1981
1982      if (TD->isBigEndian())
1983        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
1984
1985      Value *EltVal = SrcVal;
1986      if (Shift) {
1987        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1988        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
1989      }
1990
1991      // Truncate down to an integer of the right size.
1992      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1993
1994      // Ignore zero sized fields like {}, they obviously contain no data.
1995      if (FieldSizeBits == 0) continue;
1996
1997      if (FieldSizeBits != AllocaSizeBits)
1998        EltVal = Builder.CreateTrunc(EltVal,
1999                             IntegerType::get(SI->getContext(), FieldSizeBits));
2000      Value *DestField = NewElts[i];
2001      if (EltVal->getType() == FieldTy) {
2002        // Storing to an integer field of this size, just do it.
2003      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2004        // Bitcast to the right element type (for fp/vector values).
2005        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2006      } else {
2007        // Otherwise, bitcast the dest pointer (for aggregates).
2008        DestField = Builder.CreateBitCast(DestField,
2009                                     PointerType::getUnqual(EltVal->getType()));
2010      }
2011      new StoreInst(EltVal, DestField, SI);
2012    }
2013
2014  } else {
2015    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2016    const Type *ArrayEltTy = ATy->getElementType();
2017    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2018    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2019
2020    uint64_t Shift;
2021
2022    if (TD->isBigEndian())
2023      Shift = AllocaSizeBits-ElementOffset;
2024    else
2025      Shift = 0;
2026
2027    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2028      // Ignore zero sized fields like {}, they obviously contain no data.
2029      if (ElementSizeBits == 0) continue;
2030
2031      Value *EltVal = SrcVal;
2032      if (Shift) {
2033        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2034        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2035      }
2036
2037      // Truncate down to an integer of the right size.
2038      if (ElementSizeBits != AllocaSizeBits)
2039        EltVal = Builder.CreateTrunc(EltVal,
2040                                     IntegerType::get(SI->getContext(),
2041                                                      ElementSizeBits));
2042      Value *DestField = NewElts[i];
2043      if (EltVal->getType() == ArrayEltTy) {
2044        // Storing to an integer field of this size, just do it.
2045      } else if (ArrayEltTy->isFloatingPointTy() ||
2046                 ArrayEltTy->isVectorTy()) {
2047        // Bitcast to the right element type (for fp/vector values).
2048        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2049      } else {
2050        // Otherwise, bitcast the dest pointer (for aggregates).
2051        DestField = Builder.CreateBitCast(DestField,
2052                                     PointerType::getUnqual(EltVal->getType()));
2053      }
2054      new StoreInst(EltVal, DestField, SI);
2055
2056      if (TD->isBigEndian())
2057        Shift -= ElementOffset;
2058      else
2059        Shift += ElementOffset;
2060    }
2061  }
2062
2063  DeadInsts.push_back(SI);
2064}
2065
2066/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2067/// an integer.  Load the individual pieces to form the aggregate value.
2068void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2069                                        SmallVector<AllocaInst*, 32> &NewElts) {
2070  // Extract each element out of the NewElts according to its structure offset
2071  // and form the result value.
2072  const Type *AllocaEltTy = AI->getAllocatedType();
2073  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2074
2075  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2076               << '\n');
2077
2078  // There are two forms here: AI could be an array or struct.  Both cases
2079  // have different ways to compute the element offset.
2080  const StructLayout *Layout = 0;
2081  uint64_t ArrayEltBitOffset = 0;
2082  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2083    Layout = TD->getStructLayout(EltSTy);
2084  } else {
2085    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2086    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2087  }
2088
2089  Value *ResultVal =
2090    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2091
2092  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2093    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2094    // the pointer to an integer of the same size before doing the load.
2095    Value *SrcField = NewElts[i];
2096    const Type *FieldTy =
2097      cast<PointerType>(SrcField->getType())->getElementType();
2098    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2099
2100    // Ignore zero sized fields like {}, they obviously contain no data.
2101    if (FieldSizeBits == 0) continue;
2102
2103    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2104                                                     FieldSizeBits);
2105    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2106        !FieldTy->isVectorTy())
2107      SrcField = new BitCastInst(SrcField,
2108                                 PointerType::getUnqual(FieldIntTy),
2109                                 "", LI);
2110    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2111
2112    // If SrcField is a fp or vector of the right size but that isn't an
2113    // integer type, bitcast to an integer so we can shift it.
2114    if (SrcField->getType() != FieldIntTy)
2115      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2116
2117    // Zero extend the field to be the same size as the final alloca so that
2118    // we can shift and insert it.
2119    if (SrcField->getType() != ResultVal->getType())
2120      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2121
2122    // Determine the number of bits to shift SrcField.
2123    uint64_t Shift;
2124    if (Layout) // Struct case.
2125      Shift = Layout->getElementOffsetInBits(i);
2126    else  // Array case.
2127      Shift = i*ArrayEltBitOffset;
2128
2129    if (TD->isBigEndian())
2130      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2131
2132    if (Shift) {
2133      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2134      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2135    }
2136
2137    // Don't create an 'or x, 0' on the first iteration.
2138    if (!isa<Constant>(ResultVal) ||
2139        !cast<Constant>(ResultVal)->isNullValue())
2140      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2141    else
2142      ResultVal = SrcField;
2143  }
2144
2145  // Handle tail padding by truncating the result
2146  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2147    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2148
2149  LI->replaceAllUsesWith(ResultVal);
2150  DeadInsts.push_back(LI);
2151}
2152
2153/// HasPadding - Return true if the specified type has any structure or
2154/// alignment padding in between the elements that would be split apart
2155/// by SROA; return false otherwise.
2156static bool HasPadding(const Type *Ty, const TargetData &TD) {
2157  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2158    Ty = ATy->getElementType();
2159    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2160  }
2161
2162  // SROA currently handles only Arrays and Structs.
2163  const StructType *STy = cast<StructType>(Ty);
2164  const StructLayout *SL = TD.getStructLayout(STy);
2165  unsigned PrevFieldBitOffset = 0;
2166  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2167    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2168
2169    // Check to see if there is any padding between this element and the
2170    // previous one.
2171    if (i) {
2172      unsigned PrevFieldEnd =
2173        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2174      if (PrevFieldEnd < FieldBitOffset)
2175        return true;
2176    }
2177    PrevFieldBitOffset = FieldBitOffset;
2178  }
2179  // Check for tail padding.
2180  if (unsigned EltCount = STy->getNumElements()) {
2181    unsigned PrevFieldEnd = PrevFieldBitOffset +
2182      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2183    if (PrevFieldEnd < SL->getSizeInBits())
2184      return true;
2185  }
2186  return false;
2187}
2188
2189/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2190/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2191/// or 1 if safe after canonicalization has been performed.
2192bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2193  // Loop over the use list of the alloca.  We can only transform it if all of
2194  // the users are safe to transform.
2195  AllocaInfo Info(AI);
2196
2197  isSafeForScalarRepl(AI, 0, Info);
2198  if (Info.isUnsafe) {
2199    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2200    return false;
2201  }
2202
2203  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2204  // source and destination, we have to be careful.  In particular, the memcpy
2205  // could be moving around elements that live in structure padding of the LLVM
2206  // types, but may actually be used.  In these cases, we refuse to promote the
2207  // struct.
2208  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2209      HasPadding(AI->getAllocatedType(), *TD))
2210    return false;
2211
2212  // If the alloca never has an access to just *part* of it, but is accessed
2213  // via loads and stores, then we should use ConvertToScalarInfo to promote
2214  // the alloca instead of promoting each piece at a time and inserting fission
2215  // and fusion code.
2216  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2217    // If the struct/array just has one element, use basic SRoA.
2218    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2219      if (ST->getNumElements() > 1) return false;
2220    } else {
2221      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2222        return false;
2223    }
2224  }
2225
2226  return true;
2227}
2228
2229
2230
2231/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2232/// some part of a constant global variable.  This intentionally only accepts
2233/// constant expressions because we don't can't rewrite arbitrary instructions.
2234static bool PointsToConstantGlobal(Value *V) {
2235  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2236    return GV->isConstant();
2237  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2238    if (CE->getOpcode() == Instruction::BitCast ||
2239        CE->getOpcode() == Instruction::GetElementPtr)
2240      return PointsToConstantGlobal(CE->getOperand(0));
2241  return false;
2242}
2243
2244/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2245/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2246/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2247/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2248/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2249/// the alloca, and if the source pointer is a pointer to a constant global, we
2250/// can optimize this.
2251static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2252                                           bool isOffset) {
2253  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2254    User *U = cast<Instruction>(*UI);
2255
2256    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2257      // Ignore non-volatile loads, they are always ok.
2258      if (LI->isVolatile()) return false;
2259      continue;
2260    }
2261
2262    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2263      // If uses of the bitcast are ok, we are ok.
2264      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2265        return false;
2266      continue;
2267    }
2268    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2269      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2270      // doesn't, it does.
2271      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2272                                         isOffset || !GEP->hasAllZeroIndices()))
2273        return false;
2274      continue;
2275    }
2276
2277    if (CallSite CS = U) {
2278      // If this is a readonly/readnone call site, then we know it is just a
2279      // load and we can ignore it.
2280      if (CS.onlyReadsMemory())
2281        continue;
2282
2283      // If this is the function being called then we treat it like a load and
2284      // ignore it.
2285      if (CS.isCallee(UI))
2286        continue;
2287
2288      // If this is being passed as a byval argument, the caller is making a
2289      // copy, so it is only a read of the alloca.
2290      unsigned ArgNo = CS.getArgumentNo(UI);
2291      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2292        continue;
2293    }
2294
2295    // If this is isn't our memcpy/memmove, reject it as something we can't
2296    // handle.
2297    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2298    if (MI == 0)
2299      return false;
2300
2301    // If the transfer is using the alloca as a source of the transfer, then
2302    // ignore it since it is a load (unless the transfer is volatile).
2303    if (UI.getOperandNo() == 1) {
2304      if (MI->isVolatile()) return false;
2305      continue;
2306    }
2307
2308    // If we already have seen a copy, reject the second one.
2309    if (TheCopy) return false;
2310
2311    // If the pointer has been offset from the start of the alloca, we can't
2312    // safely handle this.
2313    if (isOffset) return false;
2314
2315    // If the memintrinsic isn't using the alloca as the dest, reject it.
2316    if (UI.getOperandNo() != 0) return false;
2317
2318    // If the source of the memcpy/move is not a constant global, reject it.
2319    if (!PointsToConstantGlobal(MI->getSource()))
2320      return false;
2321
2322    // Otherwise, the transform is safe.  Remember the copy instruction.
2323    TheCopy = MI;
2324  }
2325  return true;
2326}
2327
2328/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2329/// modified by a copy from a constant global.  If we can prove this, we can
2330/// replace any uses of the alloca with uses of the global directly.
2331MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2332  MemTransferInst *TheCopy = 0;
2333  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2334    return TheCopy;
2335  return 0;
2336}
2337