ScalarReplAggregates.cpp revision 39c88a641b6bf9cea7d270ccee85992f9c30f40f
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/PromoteMemToReg.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/IRBuilder.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/Statistic.h"
44using namespace llvm;
45
46STATISTIC(NumReplaced,  "Number of allocas broken up");
47STATISTIC(NumPromoted,  "Number of allocas promoted");
48STATISTIC(NumConverted, "Number of aggregates converted to scalar");
49STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
50
51namespace {
52  struct SROA : public FunctionPass {
53    static char ID; // Pass identification, replacement for typeid
54    explicit SROA(signed T = -1) : FunctionPass(&ID) {
55      if (T == -1)
56        SRThreshold = 128;
57      else
58        SRThreshold = T;
59    }
60
61    bool runOnFunction(Function &F);
62
63    bool performScalarRepl(Function &F);
64    bool performPromotion(Function &F);
65
66    // getAnalysisUsage - This pass does not require any passes, but we know it
67    // will not alter the CFG, so say so.
68    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69      AU.addRequired<DominatorTree>();
70      AU.addRequired<DominanceFrontier>();
71      AU.setPreservesCFG();
72    }
73
74  private:
75    TargetData *TD;
76
77    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
78    /// information about the uses.  All these fields are initialized to false
79    /// and set to true when something is learned.
80    struct AllocaInfo {
81      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
82      bool isUnsafe : 1;
83
84      /// needsCleanup - This is set to true if there is some use of the alloca
85      /// that requires cleanup.
86      bool needsCleanup : 1;
87
88      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
89      bool isMemCpySrc : 1;
90
91      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
92      bool isMemCpyDst : 1;
93
94      AllocaInfo()
95        : isUnsafe(false), needsCleanup(false),
96          isMemCpySrc(false), isMemCpyDst(false) {}
97    };
98
99    unsigned SRThreshold;
100
101    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
102
103    int isSafeAllocaToScalarRepl(AllocaInst *AI);
104
105    void isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
106                               AllocaInfo &Info);
107    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
108                          AllocaInfo &Info);
109    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
110                                        unsigned OpNo, AllocaInfo &Info);
111    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocaInst *AI,
112                                        AllocaInfo &Info);
113
114    void DoScalarReplacement(AllocaInst *AI,
115                             std::vector<AllocaInst*> &WorkList);
116    void CleanupGEP(GetElementPtrInst *GEP);
117    void CleanupAllocaUsers(AllocaInst *AI);
118    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocaInst *Base);
119
120    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
121                                    SmallVector<AllocaInst*, 32> &NewElts);
122
123    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
124                                      AllocaInst *AI,
125                                      SmallVector<AllocaInst*, 32> &NewElts);
126    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
127                                       SmallVector<AllocaInst*, 32> &NewElts);
128    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
129                                      SmallVector<AllocaInst*, 32> &NewElts);
130
131    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
132                            bool &SawVec, uint64_t Offset, unsigned AllocaSize);
133    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
134    Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
135                                     uint64_t Offset, IRBuilder<> &Builder);
136    Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
137                                     uint64_t Offset, IRBuilder<> &Builder);
138    static Instruction *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
139  };
140}
141
142char SROA::ID = 0;
143static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
144
145// Public interface to the ScalarReplAggregates pass
146FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
147  return new SROA(Threshold);
148}
149
150
151bool SROA::runOnFunction(Function &F) {
152  TD = getAnalysisIfAvailable<TargetData>();
153
154  bool Changed = performPromotion(F);
155
156  // FIXME: ScalarRepl currently depends on TargetData more than it
157  // theoretically needs to. It should be refactored in order to support
158  // target-independent IR. Until this is done, just skip the actual
159  // scalar-replacement portion of this pass.
160  if (!TD) return Changed;
161
162  while (1) {
163    bool LocalChange = performScalarRepl(F);
164    if (!LocalChange) break;   // No need to repromote if no scalarrepl
165    Changed = true;
166    LocalChange = performPromotion(F);
167    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
168  }
169
170  return Changed;
171}
172
173
174bool SROA::performPromotion(Function &F) {
175  std::vector<AllocaInst*> Allocas;
176  DominatorTree         &DT = getAnalysis<DominatorTree>();
177  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
178
179  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
180
181  bool Changed = false;
182
183  while (1) {
184    Allocas.clear();
185
186    // Find allocas that are safe to promote, by looking at all instructions in
187    // the entry node
188    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
189      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
190        if (isAllocaPromotable(AI))
191          Allocas.push_back(AI);
192
193    if (Allocas.empty()) break;
194
195    PromoteMemToReg(Allocas, DT, DF);
196    NumPromoted += Allocas.size();
197    Changed = true;
198  }
199
200  return Changed;
201}
202
203/// getNumSAElements - Return the number of elements in the specific struct or
204/// array.
205static uint64_t getNumSAElements(const Type *T) {
206  if (const StructType *ST = dyn_cast<StructType>(T))
207    return ST->getNumElements();
208  return cast<ArrayType>(T)->getNumElements();
209}
210
211// performScalarRepl - This algorithm is a simple worklist driven algorithm,
212// which runs on all of the malloc/alloca instructions in the function, removing
213// them if they are only used by getelementptr instructions.
214//
215bool SROA::performScalarRepl(Function &F) {
216  std::vector<AllocaInst*> WorkList;
217
218  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
219  BasicBlock &BB = F.getEntryBlock();
220  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
221    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
222      WorkList.push_back(A);
223
224  // Process the worklist
225  bool Changed = false;
226  while (!WorkList.empty()) {
227    AllocaInst *AI = WorkList.back();
228    WorkList.pop_back();
229
230    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
231    // with unused elements.
232    if (AI->use_empty()) {
233      AI->eraseFromParent();
234      continue;
235    }
236
237    // If this alloca is impossible for us to promote, reject it early.
238    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
239      continue;
240
241    // Check to see if this allocation is only modified by a memcpy/memmove from
242    // a constant global.  If this is the case, we can change all users to use
243    // the constant global instead.  This is commonly produced by the CFE by
244    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
245    // is only subsequently read.
246    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
247      DEBUG(errs() << "Found alloca equal to global: " << *AI << '\n');
248      DEBUG(errs() << "  memcpy = " << *TheCopy << '\n');
249      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
250      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
251      TheCopy->eraseFromParent();  // Don't mutate the global.
252      AI->eraseFromParent();
253      ++NumGlobals;
254      Changed = true;
255      continue;
256    }
257
258    // Check to see if we can perform the core SROA transformation.  We cannot
259    // transform the allocation instruction if it is an array allocation
260    // (allocations OF arrays are ok though), and an allocation of a scalar
261    // value cannot be decomposed at all.
262    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
263
264    // Do not promote [0 x %struct].
265    if (AllocaSize == 0) continue;
266
267    // Do not promote any struct whose size is too big.
268    if (AllocaSize > SRThreshold) continue;
269
270    if ((isa<StructType>(AI->getAllocatedType()) ||
271         isa<ArrayType>(AI->getAllocatedType())) &&
272        // Do not promote any struct into more than "32" separate vars.
273        getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
274      // Check that all of the users of the allocation are capable of being
275      // transformed.
276      switch (isSafeAllocaToScalarRepl(AI)) {
277      default: llvm_unreachable("Unexpected value!");
278      case 0:  // Not safe to scalar replace.
279        break;
280      case 1:  // Safe, but requires cleanup/canonicalizations first
281        CleanupAllocaUsers(AI);
282        // FALL THROUGH.
283      case 3:  // Safe to scalar replace.
284        DoScalarReplacement(AI, WorkList);
285        Changed = true;
286        continue;
287      }
288    }
289
290    // If we can turn this aggregate value (potentially with casts) into a
291    // simple scalar value that can be mem2reg'd into a register value.
292    // IsNotTrivial tracks whether this is something that mem2reg could have
293    // promoted itself.  If so, we don't want to transform it needlessly.  Note
294    // that we can't just check based on the type: the alloca may be of an i32
295    // but that has pointer arithmetic to set byte 3 of it or something.
296    bool IsNotTrivial = false;
297    const Type *VectorTy = 0;
298    bool HadAVector = false;
299    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
300                           0, unsigned(AllocaSize)) && IsNotTrivial) {
301      AllocaInst *NewAI;
302      // If we were able to find a vector type that can handle this with
303      // insert/extract elements, and if there was at least one use that had
304      // a vector type, promote this to a vector.  We don't want to promote
305      // random stuff that doesn't use vectors (e.g. <9 x double>) because then
306      // we just get a lot of insert/extracts.  If at least one vector is
307      // involved, then we probably really do have a union of vector/array.
308      if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
309        DEBUG(errs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
310                     << *VectorTy << '\n');
311
312        // Create and insert the vector alloca.
313        NewAI = new AllocaInst(VectorTy, 0, "",  AI->getParent()->begin());
314        ConvertUsesToScalar(AI, NewAI, 0);
315      } else {
316        DEBUG(errs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
317
318        // Create and insert the integer alloca.
319        const Type *NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
320        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
321        ConvertUsesToScalar(AI, NewAI, 0);
322      }
323      NewAI->takeName(AI);
324      AI->eraseFromParent();
325      ++NumConverted;
326      Changed = true;
327      continue;
328    }
329
330    // Otherwise, couldn't process this alloca.
331  }
332
333  return Changed;
334}
335
336/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
337/// predicate, do SROA now.
338void SROA::DoScalarReplacement(AllocaInst *AI,
339                               std::vector<AllocaInst*> &WorkList) {
340  DEBUG(errs() << "Found inst to SROA: " << *AI << '\n');
341  SmallVector<AllocaInst*, 32> ElementAllocas;
342  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
343    ElementAllocas.reserve(ST->getNumContainedTypes());
344    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
345      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
346                                      AI->getAlignment(),
347                                      AI->getName() + "." + Twine(i), AI);
348      ElementAllocas.push_back(NA);
349      WorkList.push_back(NA);  // Add to worklist for recursive processing
350    }
351  } else {
352    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
353    ElementAllocas.reserve(AT->getNumElements());
354    const Type *ElTy = AT->getElementType();
355    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
356      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
357                                      AI->getName() + "." + Twine(i), AI);
358      ElementAllocas.push_back(NA);
359      WorkList.push_back(NA);  // Add to worklist for recursive processing
360    }
361  }
362
363  // Now that we have created the alloca instructions that we want to use,
364  // expand the getelementptr instructions to use them.
365  while (!AI->use_empty()) {
366    Instruction *User = cast<Instruction>(AI->use_back());
367    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
368      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
369      BCInst->eraseFromParent();
370      continue;
371    }
372
373    // Replace:
374    //   %res = load { i32, i32 }* %alloc
375    // with:
376    //   %load.0 = load i32* %alloc.0
377    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
378    //   %load.1 = load i32* %alloc.1
379    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
380    // (Also works for arrays instead of structs)
381    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
382      Value *Insert = UndefValue::get(LI->getType());
383      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
384        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
385        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
386      }
387      LI->replaceAllUsesWith(Insert);
388      LI->eraseFromParent();
389      continue;
390    }
391
392    // Replace:
393    //   store { i32, i32 } %val, { i32, i32 }* %alloc
394    // with:
395    //   %val.0 = extractvalue { i32, i32 } %val, 0
396    //   store i32 %val.0, i32* %alloc.0
397    //   %val.1 = extractvalue { i32, i32 } %val, 1
398    //   store i32 %val.1, i32* %alloc.1
399    // (Also works for arrays instead of structs)
400    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
401      Value *Val = SI->getOperand(0);
402      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
403        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
404        new StoreInst(Extract, ElementAllocas[i], SI);
405      }
406      SI->eraseFromParent();
407      continue;
408    }
409
410    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
411    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
412    unsigned Idx =
413       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
414
415    assert(Idx < ElementAllocas.size() && "Index out of range?");
416    AllocaInst *AllocaToUse = ElementAllocas[Idx];
417
418    Value *RepValue;
419    if (GEPI->getNumOperands() == 3) {
420      // Do not insert a new getelementptr instruction with zero indices, only
421      // to have it optimized out later.
422      RepValue = AllocaToUse;
423    } else {
424      // We are indexing deeply into the structure, so we still need a
425      // getelement ptr instruction to finish the indexing.  This may be
426      // expanded itself once the worklist is rerun.
427      //
428      SmallVector<Value*, 8> NewArgs;
429      NewArgs.push_back(Constant::getNullValue(
430                                           Type::getInt32Ty(AI->getContext())));
431      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
432      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
433                                           NewArgs.end(), "", GEPI);
434      RepValue->takeName(GEPI);
435    }
436
437    // If this GEP is to the start of the aggregate, check for memcpys.
438    if (Idx == 0 && GEPI->hasAllZeroIndices())
439      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
440
441    // Move all of the users over to the new GEP.
442    GEPI->replaceAllUsesWith(RepValue);
443    // Delete the old GEP
444    GEPI->eraseFromParent();
445  }
446
447  // Finally, delete the Alloca instruction
448  AI->eraseFromParent();
449  NumReplaced++;
450}
451
452/// isSafeElementUse - Check to see if this use is an allowed use for a
453/// getelementptr instruction of an array aggregate allocation.  isFirstElt
454/// indicates whether Ptr is known to the start of the aggregate.
455void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
456                            AllocaInfo &Info) {
457  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
458       I != E; ++I) {
459    Instruction *User = cast<Instruction>(*I);
460    switch (User->getOpcode()) {
461    case Instruction::Load:  break;
462    case Instruction::Store:
463      // Store is ok if storing INTO the pointer, not storing the pointer
464      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
465      break;
466    case Instruction::GetElementPtr: {
467      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
468      bool AreAllZeroIndices = isFirstElt;
469      if (GEP->getNumOperands() > 1 &&
470          (!isa<ConstantInt>(GEP->getOperand(1)) ||
471           !cast<ConstantInt>(GEP->getOperand(1))->isZero()))
472        // Using pointer arithmetic to navigate the array.
473        return MarkUnsafe(Info);
474
475      // Verify that any array subscripts are in range.
476      for (gep_type_iterator GEPIt = gep_type_begin(GEP),
477           E = gep_type_end(GEP); GEPIt != E; ++GEPIt) {
478        // Ignore struct elements, no extra checking needed for these.
479        if (isa<StructType>(*GEPIt))
480          continue;
481
482        // This GEP indexes an array.  Verify that this is an in-range
483        // constant integer. Specifically, consider A[0][i]. We cannot know that
484        // the user isn't doing invalid things like allowing i to index an
485        // out-of-range subscript that accesses A[1].  Because of this, we have
486        // to reject SROA of any accesses into structs where any of the
487        // components are variables.
488        ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
489        if (!IdxVal) return MarkUnsafe(Info);
490
491        // Are all indices still zero?
492        AreAllZeroIndices &= IdxVal->isZero();
493
494        if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
495          if (IdxVal->getZExtValue() >= AT->getNumElements())
496            return MarkUnsafe(Info);
497        } else if (const VectorType *VT = dyn_cast<VectorType>(*GEPIt)) {
498          if (IdxVal->getZExtValue() >= VT->getNumElements())
499            return MarkUnsafe(Info);
500        }
501      }
502
503      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
504      if (Info.isUnsafe) return;
505      break;
506    }
507    case Instruction::BitCast:
508      if (isFirstElt) {
509        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
510        if (Info.isUnsafe) return;
511        break;
512      }
513      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
514      return MarkUnsafe(Info);
515    case Instruction::Call:
516      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
517        if (isFirstElt) {
518          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
519          if (Info.isUnsafe) return;
520          break;
521        }
522      }
523      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
524      return MarkUnsafe(Info);
525    default:
526      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
527      return MarkUnsafe(Info);
528    }
529  }
530  return;  // All users look ok :)
531}
532
533/// AllUsersAreLoads - Return true if all users of this value are loads.
534static bool AllUsersAreLoads(Value *Ptr) {
535  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
536       I != E; ++I)
537    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
538      return false;
539  return true;
540}
541
542/// isSafeUseOfAllocation - Check if this user is an allowed use for an
543/// aggregate allocation.
544void SROA::isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
545                                 AllocaInfo &Info) {
546  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
547    return isSafeUseOfBitCastedAllocation(C, AI, Info);
548
549  if (LoadInst *LI = dyn_cast<LoadInst>(User))
550    if (!LI->isVolatile())
551      return;// Loads (returning a first class aggregrate) are always rewritable
552
553  if (StoreInst *SI = dyn_cast<StoreInst>(User))
554    if (!SI->isVolatile() && SI->getOperand(0) != AI)
555      return;// Store is ok if storing INTO the pointer, not storing the pointer
556
557  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
558  if (GEPI == 0)
559    return MarkUnsafe(Info);
560
561  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
562
563  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
564  if (I == E ||
565      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
566    return MarkUnsafe(Info);
567  }
568
569  ++I;
570  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
571
572  bool IsAllZeroIndices = true;
573
574  // If the first index is a non-constant index into an array, see if we can
575  // handle it as a special case.
576  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
577    if (!isa<ConstantInt>(I.getOperand())) {
578      IsAllZeroIndices = 0;
579      uint64_t NumElements = AT->getNumElements();
580
581      // If this is an array index and the index is not constant, we cannot
582      // promote... that is unless the array has exactly one or two elements in
583      // it, in which case we CAN promote it, but we have to canonicalize this
584      // out if this is the only problem.
585      if ((NumElements == 1 || NumElements == 2) &&
586          AllUsersAreLoads(GEPI)) {
587        Info.needsCleanup = true;
588        return;  // Canonicalization required!
589      }
590      return MarkUnsafe(Info);
591    }
592  }
593
594  // Walk through the GEP type indices, checking the types that this indexes
595  // into.
596  for (; I != E; ++I) {
597    // Ignore struct elements, no extra checking needed for these.
598    if (isa<StructType>(*I))
599      continue;
600
601    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
602    if (!IdxVal) return MarkUnsafe(Info);
603
604    // Are all indices still zero?
605    IsAllZeroIndices &= IdxVal->isZero();
606
607    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
608      // This GEP indexes an array.  Verify that this is an in-range constant
609      // integer. Specifically, consider A[0][i]. We cannot know that the user
610      // isn't doing invalid things like allowing i to index an out-of-range
611      // subscript that accesses A[1].  Because of this, we have to reject SROA
612      // of any accesses into structs where any of the components are variables.
613      if (IdxVal->getZExtValue() >= AT->getNumElements())
614        return MarkUnsafe(Info);
615    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
616      if (IdxVal->getZExtValue() >= VT->getNumElements())
617        return MarkUnsafe(Info);
618    }
619  }
620
621  // If there are any non-simple uses of this getelementptr, make sure to reject
622  // them.
623  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
624}
625
626/// isSafeMemIntrinsicOnAllocation - Check if the specified memory
627/// intrinsic can be promoted by SROA.  At this point, we know that the operand
628/// of the memintrinsic is a pointer to the beginning of the allocation.
629void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
630                                          unsigned OpNo, AllocaInfo &Info) {
631  // If not constant length, give up.
632  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
633  if (!Length) return MarkUnsafe(Info);
634
635  // If not the whole aggregate, give up.
636  if (Length->getZExtValue() !=
637      TD->getTypeAllocSize(AI->getType()->getElementType()))
638    return MarkUnsafe(Info);
639
640  // We only know about memcpy/memset/memmove.
641  if (!isa<MemIntrinsic>(MI))
642    return MarkUnsafe(Info);
643
644  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
645  // into or out of the aggregate.
646  if (OpNo == 1)
647    Info.isMemCpyDst = true;
648  else {
649    assert(OpNo == 2);
650    Info.isMemCpySrc = true;
651  }
652}
653
654/// isSafeUseOfBitCastedAllocation - Check if all users of this bitcast
655/// from an alloca are safe for SROA of that alloca.
656void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocaInst *AI,
657                                          AllocaInfo &Info) {
658  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
659       UI != E; ++UI) {
660    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
661      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
662    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
663      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
664    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
665      if (SI->isVolatile())
666        return MarkUnsafe(Info);
667
668      // If storing the entire alloca in one chunk through a bitcasted pointer
669      // to integer, we can transform it.  This happens (for example) when you
670      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
671      // memcpy case and occurs in various "byval" cases and emulated memcpys.
672      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
673          TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
674          TD->getTypeAllocSize(AI->getType()->getElementType())) {
675        Info.isMemCpyDst = true;
676        continue;
677      }
678      return MarkUnsafe(Info);
679    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
680      if (LI->isVolatile())
681        return MarkUnsafe(Info);
682
683      // If loading the entire alloca in one chunk through a bitcasted pointer
684      // to integer, we can transform it.  This happens (for example) when you
685      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
686      // memcpy case and occurs in various "byval" cases and emulated memcpys.
687      if (isa<IntegerType>(LI->getType()) &&
688          TD->getTypeAllocSize(LI->getType()) ==
689          TD->getTypeAllocSize(AI->getType()->getElementType())) {
690        Info.isMemCpySrc = true;
691        continue;
692      }
693      return MarkUnsafe(Info);
694    } else if (isa<DbgInfoIntrinsic>(UI)) {
695      // If one user is DbgInfoIntrinsic then check if all users are
696      // DbgInfoIntrinsics.
697      if (OnlyUsedByDbgInfoIntrinsics(BC)) {
698        Info.needsCleanup = true;
699        return;
700      }
701      else
702        MarkUnsafe(Info);
703    }
704    else {
705      return MarkUnsafe(Info);
706    }
707    if (Info.isUnsafe) return;
708  }
709}
710
711/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
712/// to its first element.  Transform users of the cast to use the new values
713/// instead.
714void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
715                                      SmallVector<AllocaInst*, 32> &NewElts) {
716  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
717  while (UI != UE) {
718    Instruction *User = cast<Instruction>(*UI++);
719    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
720      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
721      if (BCU->use_empty()) BCU->eraseFromParent();
722      continue;
723    }
724
725    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
726      // This must be memcpy/memmove/memset of the entire aggregate.
727      // Split into one per element.
728      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
729      continue;
730    }
731
732    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
733      // If this is a store of the entire alloca from an integer, rewrite it.
734      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
735      continue;
736    }
737
738    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
739      // If this is a load of the entire alloca to an integer, rewrite it.
740      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
741      continue;
742    }
743
744    // Otherwise it must be some other user of a gep of the first pointer.  Just
745    // leave these alone.
746    continue;
747  }
748}
749
750/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
751/// Rewrite it to copy or set the elements of the scalarized memory.
752void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
753                                        AllocaInst *AI,
754                                        SmallVector<AllocaInst*, 32> &NewElts) {
755
756  // If this is a memcpy/memmove, construct the other pointer as the
757  // appropriate type.  The "Other" pointer is the pointer that goes to memory
758  // that doesn't have anything to do with the alloca that we are promoting. For
759  // memset, this Value* stays null.
760  Value *OtherPtr = 0;
761  LLVMContext &Context = MI->getContext();
762  unsigned MemAlignment = MI->getAlignment();
763  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
764    if (BCInst == MTI->getRawDest())
765      OtherPtr = MTI->getRawSource();
766    else {
767      assert(BCInst == MTI->getRawSource());
768      OtherPtr = MTI->getRawDest();
769    }
770  }
771
772  // Keep track of the other intrinsic argument, so it can be removed if it
773  // is dead when the intrinsic is replaced.
774  Value *PossiblyDead = OtherPtr;
775
776  // If there is an other pointer, we want to convert it to the same pointer
777  // type as AI has, so we can GEP through it safely.
778  if (OtherPtr) {
779    // It is likely that OtherPtr is a bitcast, if so, remove it.
780    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
781      OtherPtr = BC->getOperand(0);
782    // All zero GEPs are effectively bitcasts.
783    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
784      if (GEP->hasAllZeroIndices())
785        OtherPtr = GEP->getOperand(0);
786
787    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
788      if (BCE->getOpcode() == Instruction::BitCast)
789        OtherPtr = BCE->getOperand(0);
790
791    // If the pointer is not the right type, insert a bitcast to the right
792    // type.
793    if (OtherPtr->getType() != AI->getType())
794      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
795                                 MI);
796  }
797
798  // Process each element of the aggregate.
799  Value *TheFn = MI->getOperand(0);
800  const Type *BytePtrTy = MI->getRawDest()->getType();
801  bool SROADest = MI->getRawDest() == BCInst;
802
803  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
804
805  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
806    // If this is a memcpy/memmove, emit a GEP of the other element address.
807    Value *OtherElt = 0;
808    unsigned OtherEltAlign = MemAlignment;
809
810    if (OtherPtr) {
811      Value *Idx[2] = { Zero,
812                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
813      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
814                                           OtherPtr->getNameStr()+"."+Twine(i),
815                                           MI);
816      uint64_t EltOffset;
817      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
818      if (const StructType *ST =
819            dyn_cast<StructType>(OtherPtrTy->getElementType())) {
820        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
821      } else {
822        const Type *EltTy =
823          cast<SequentialType>(OtherPtr->getType())->getElementType();
824        EltOffset = TD->getTypeAllocSize(EltTy)*i;
825      }
826
827      // The alignment of the other pointer is the guaranteed alignment of the
828      // element, which is affected by both the known alignment of the whole
829      // mem intrinsic and the alignment of the element.  If the alignment of
830      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
831      // known alignment is just 4 bytes.
832      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
833    }
834
835    Value *EltPtr = NewElts[i];
836    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
837
838    // If we got down to a scalar, insert a load or store as appropriate.
839    if (EltTy->isSingleValueType()) {
840      if (isa<MemTransferInst>(MI)) {
841        if (SROADest) {
842          // From Other to Alloca.
843          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
844          new StoreInst(Elt, EltPtr, MI);
845        } else {
846          // From Alloca to Other.
847          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
848          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
849        }
850        continue;
851      }
852      assert(isa<MemSetInst>(MI));
853
854      // If the stored element is zero (common case), just store a null
855      // constant.
856      Constant *StoreVal;
857      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
858        if (CI->isZero()) {
859          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
860        } else {
861          // If EltTy is a vector type, get the element type.
862          const Type *ValTy = EltTy->getScalarType();
863
864          // Construct an integer with the right value.
865          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
866          APInt OneVal(EltSize, CI->getZExtValue());
867          APInt TotalVal(OneVal);
868          // Set each byte.
869          for (unsigned i = 0; 8*i < EltSize; ++i) {
870            TotalVal = TotalVal.shl(8);
871            TotalVal |= OneVal;
872          }
873
874          // Convert the integer value to the appropriate type.
875          StoreVal = ConstantInt::get(Context, TotalVal);
876          if (isa<PointerType>(ValTy))
877            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
878          else if (ValTy->isFloatingPoint())
879            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
880          assert(StoreVal->getType() == ValTy && "Type mismatch!");
881
882          // If the requested value was a vector constant, create it.
883          if (EltTy != ValTy) {
884            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
885            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
886            StoreVal = ConstantVector::get(&Elts[0], NumElts);
887          }
888        }
889        new StoreInst(StoreVal, EltPtr, MI);
890        continue;
891      }
892      // Otherwise, if we're storing a byte variable, use a memset call for
893      // this element.
894    }
895
896    // Cast the element pointer to BytePtrTy.
897    if (EltPtr->getType() != BytePtrTy)
898      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
899
900    // Cast the other pointer (if we have one) to BytePtrTy.
901    if (OtherElt && OtherElt->getType() != BytePtrTy)
902      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
903                                 MI);
904
905    unsigned EltSize = TD->getTypeAllocSize(EltTy);
906
907    // Finally, insert the meminst for this element.
908    if (isa<MemTransferInst>(MI)) {
909      Value *Ops[] = {
910        SROADest ? EltPtr : OtherElt,  // Dest ptr
911        SROADest ? OtherElt : EltPtr,  // Src ptr
912        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
913        // Align
914        ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign)
915      };
916      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
917    } else {
918      assert(isa<MemSetInst>(MI));
919      Value *Ops[] = {
920        EltPtr, MI->getOperand(2),  // Dest, Value,
921        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
922        Zero  // Align
923      };
924      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
925    }
926  }
927  MI->eraseFromParent();
928  if (PossiblyDead)
929    RecursivelyDeleteTriviallyDeadInstructions(PossiblyDead);
930}
931
932/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
933/// overwrites the entire allocation.  Extract out the pieces of the stored
934/// integer and store them individually.
935void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
936                                         SmallVector<AllocaInst*, 32> &NewElts){
937  // Extract each element out of the integer according to its structure offset
938  // and store the element value to the individual alloca.
939  Value *SrcVal = SI->getOperand(0);
940  const Type *AllocaEltTy = AI->getType()->getElementType();
941  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
942
943  // If this isn't a store of an integer to the whole alloca, it may be a store
944  // to the first element.  Just ignore the store in this case and normal SROA
945  // will handle it.
946  if (!isa<IntegerType>(SrcVal->getType()) ||
947      TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
948    return;
949  // Handle tail padding by extending the operand
950  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
951    SrcVal = new ZExtInst(SrcVal,
952                          IntegerType::get(SI->getContext(), AllocaSizeBits),
953                          "", SI);
954
955  DEBUG(errs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
956               << '\n');
957
958  // There are two forms here: AI could be an array or struct.  Both cases
959  // have different ways to compute the element offset.
960  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
961    const StructLayout *Layout = TD->getStructLayout(EltSTy);
962
963    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
964      // Get the number of bits to shift SrcVal to get the value.
965      const Type *FieldTy = EltSTy->getElementType(i);
966      uint64_t Shift = Layout->getElementOffsetInBits(i);
967
968      if (TD->isBigEndian())
969        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
970
971      Value *EltVal = SrcVal;
972      if (Shift) {
973        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
974        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
975                                            "sroa.store.elt", SI);
976      }
977
978      // Truncate down to an integer of the right size.
979      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
980
981      // Ignore zero sized fields like {}, they obviously contain no data.
982      if (FieldSizeBits == 0) continue;
983
984      if (FieldSizeBits != AllocaSizeBits)
985        EltVal = new TruncInst(EltVal,
986                             IntegerType::get(SI->getContext(), FieldSizeBits),
987                              "", SI);
988      Value *DestField = NewElts[i];
989      if (EltVal->getType() == FieldTy) {
990        // Storing to an integer field of this size, just do it.
991      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
992        // Bitcast to the right element type (for fp/vector values).
993        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
994      } else {
995        // Otherwise, bitcast the dest pointer (for aggregates).
996        DestField = new BitCastInst(DestField,
997                              PointerType::getUnqual(EltVal->getType()),
998                                    "", SI);
999      }
1000      new StoreInst(EltVal, DestField, SI);
1001    }
1002
1003  } else {
1004    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
1005    const Type *ArrayEltTy = ATy->getElementType();
1006    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1007    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
1008
1009    uint64_t Shift;
1010
1011    if (TD->isBigEndian())
1012      Shift = AllocaSizeBits-ElementOffset;
1013    else
1014      Shift = 0;
1015
1016    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1017      // Ignore zero sized fields like {}, they obviously contain no data.
1018      if (ElementSizeBits == 0) continue;
1019
1020      Value *EltVal = SrcVal;
1021      if (Shift) {
1022        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1023        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1024                                            "sroa.store.elt", SI);
1025      }
1026
1027      // Truncate down to an integer of the right size.
1028      if (ElementSizeBits != AllocaSizeBits)
1029        EltVal = new TruncInst(EltVal,
1030                               IntegerType::get(SI->getContext(),
1031                                                ElementSizeBits),"",SI);
1032      Value *DestField = NewElts[i];
1033      if (EltVal->getType() == ArrayEltTy) {
1034        // Storing to an integer field of this size, just do it.
1035      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
1036        // Bitcast to the right element type (for fp/vector values).
1037        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1038      } else {
1039        // Otherwise, bitcast the dest pointer (for aggregates).
1040        DestField = new BitCastInst(DestField,
1041                              PointerType::getUnqual(EltVal->getType()),
1042                                    "", SI);
1043      }
1044      new StoreInst(EltVal, DestField, SI);
1045
1046      if (TD->isBigEndian())
1047        Shift -= ElementOffset;
1048      else
1049        Shift += ElementOffset;
1050    }
1051  }
1052
1053  SI->eraseFromParent();
1054}
1055
1056/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
1057/// an integer.  Load the individual pieces to form the aggregate value.
1058void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1059                                        SmallVector<AllocaInst*, 32> &NewElts) {
1060  // Extract each element out of the NewElts according to its structure offset
1061  // and form the result value.
1062  const Type *AllocaEltTy = AI->getType()->getElementType();
1063  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1064
1065  // If this isn't a load of the whole alloca to an integer, it may be a load
1066  // of the first element.  Just ignore the load in this case and normal SROA
1067  // will handle it.
1068  if (!isa<IntegerType>(LI->getType()) ||
1069      TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
1070    return;
1071
1072  DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1073               << '\n');
1074
1075  // There are two forms here: AI could be an array or struct.  Both cases
1076  // have different ways to compute the element offset.
1077  const StructLayout *Layout = 0;
1078  uint64_t ArrayEltBitOffset = 0;
1079  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1080    Layout = TD->getStructLayout(EltSTy);
1081  } else {
1082    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1083    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1084  }
1085
1086  Value *ResultVal =
1087    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1088
1089  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1090    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1091    // the pointer to an integer of the same size before doing the load.
1092    Value *SrcField = NewElts[i];
1093    const Type *FieldTy =
1094      cast<PointerType>(SrcField->getType())->getElementType();
1095    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1096
1097    // Ignore zero sized fields like {}, they obviously contain no data.
1098    if (FieldSizeBits == 0) continue;
1099
1100    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1101                                                     FieldSizeBits);
1102    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1103        !isa<VectorType>(FieldTy))
1104      SrcField = new BitCastInst(SrcField,
1105                                 PointerType::getUnqual(FieldIntTy),
1106                                 "", LI);
1107    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1108
1109    // If SrcField is a fp or vector of the right size but that isn't an
1110    // integer type, bitcast to an integer so we can shift it.
1111    if (SrcField->getType() != FieldIntTy)
1112      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1113
1114    // Zero extend the field to be the same size as the final alloca so that
1115    // we can shift and insert it.
1116    if (SrcField->getType() != ResultVal->getType())
1117      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1118
1119    // Determine the number of bits to shift SrcField.
1120    uint64_t Shift;
1121    if (Layout) // Struct case.
1122      Shift = Layout->getElementOffsetInBits(i);
1123    else  // Array case.
1124      Shift = i*ArrayEltBitOffset;
1125
1126    if (TD->isBigEndian())
1127      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1128
1129    if (Shift) {
1130      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1131      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1132    }
1133
1134    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1135  }
1136
1137  // Handle tail padding by truncating the result
1138  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1139    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1140
1141  LI->replaceAllUsesWith(ResultVal);
1142  LI->eraseFromParent();
1143}
1144
1145
1146/// HasPadding - Return true if the specified type has any structure or
1147/// alignment padding, false otherwise.
1148static bool HasPadding(const Type *Ty, const TargetData &TD) {
1149  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1150    const StructLayout *SL = TD.getStructLayout(STy);
1151    unsigned PrevFieldBitOffset = 0;
1152    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1153      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1154
1155      // Padding in sub-elements?
1156      if (HasPadding(STy->getElementType(i), TD))
1157        return true;
1158
1159      // Check to see if there is any padding between this element and the
1160      // previous one.
1161      if (i) {
1162        unsigned PrevFieldEnd =
1163        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1164        if (PrevFieldEnd < FieldBitOffset)
1165          return true;
1166      }
1167
1168      PrevFieldBitOffset = FieldBitOffset;
1169    }
1170
1171    //  Check for tail padding.
1172    if (unsigned EltCount = STy->getNumElements()) {
1173      unsigned PrevFieldEnd = PrevFieldBitOffset +
1174                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1175      if (PrevFieldEnd < SL->getSizeInBits())
1176        return true;
1177    }
1178
1179  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1180    return HasPadding(ATy->getElementType(), TD);
1181  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1182    return HasPadding(VTy->getElementType(), TD);
1183  }
1184  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1185}
1186
1187/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1188/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1189/// or 1 if safe after canonicalization has been performed.
1190int SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1191  // Loop over the use list of the alloca.  We can only transform it if all of
1192  // the users are safe to transform.
1193  AllocaInfo Info;
1194
1195  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1196       I != E; ++I) {
1197    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1198    if (Info.isUnsafe) {
1199      DEBUG(errs() << "Cannot transform: " << *AI << "\n  due to user: "
1200                   << **I << '\n');
1201      return 0;
1202    }
1203  }
1204
1205  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1206  // source and destination, we have to be careful.  In particular, the memcpy
1207  // could be moving around elements that live in structure padding of the LLVM
1208  // types, but may actually be used.  In these cases, we refuse to promote the
1209  // struct.
1210  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1211      HasPadding(AI->getType()->getElementType(), *TD))
1212    return 0;
1213
1214  // If we require cleanup, return 1, otherwise return 3.
1215  return Info.needsCleanup ? 1 : 3;
1216}
1217
1218/// CleanupGEP - GEP is used by an Alloca, which can be promoted after the GEP
1219/// is canonicalized here.
1220void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
1221  gep_type_iterator I = gep_type_begin(GEPI);
1222  ++I;
1223
1224  const ArrayType *AT = dyn_cast<ArrayType>(*I);
1225  if (!AT)
1226    return;
1227
1228  uint64_t NumElements = AT->getNumElements();
1229
1230  if (isa<ConstantInt>(I.getOperand()))
1231    return;
1232
1233  if (NumElements == 1) {
1234    GEPI->setOperand(2,
1235                  Constant::getNullValue(Type::getInt32Ty(GEPI->getContext())));
1236    return;
1237  }
1238
1239  assert(NumElements == 2 && "Unhandled case!");
1240  // All users of the GEP must be loads.  At each use of the GEP, insert
1241  // two loads of the appropriate indexed GEP and select between them.
1242  Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
1243                              Constant::getNullValue(I.getOperand()->getType()),
1244                              "isone");
1245  // Insert the new GEP instructions, which are properly indexed.
1246  SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1247  Indices[1] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
1248  Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1249                                             Indices.begin(),
1250                                             Indices.end(),
1251                                             GEPI->getName()+".0", GEPI);
1252  Indices[1] = ConstantInt::get(Type::getInt32Ty(GEPI->getContext()), 1);
1253  Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1254                                            Indices.begin(),
1255                                            Indices.end(),
1256                                            GEPI->getName()+".1", GEPI);
1257  // Replace all loads of the variable index GEP with loads from both
1258  // indexes and a select.
1259  while (!GEPI->use_empty()) {
1260    LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1261    Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1262    Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
1263    Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1264    LI->replaceAllUsesWith(R);
1265    LI->eraseFromParent();
1266  }
1267  GEPI->eraseFromParent();
1268}
1269
1270
1271/// CleanupAllocaUsers - If SROA reported that it can promote the specified
1272/// allocation, but only if cleaned up, perform the cleanups required.
1273void SROA::CleanupAllocaUsers(AllocaInst *AI) {
1274  // At this point, we know that the end result will be SROA'd and promoted, so
1275  // we can insert ugly code if required so long as sroa+mem2reg will clean it
1276  // up.
1277  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1278       UI != E; ) {
1279    User *U = *UI++;
1280    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
1281      CleanupGEP(GEPI);
1282    else {
1283      Instruction *I = cast<Instruction>(U);
1284      SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1285      if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1286        // Safe to remove debug info uses.
1287        while (!DbgInUses.empty()) {
1288          DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1289          DI->eraseFromParent();
1290        }
1291        I->eraseFromParent();
1292      }
1293    }
1294  }
1295}
1296
1297/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1298/// the offset specified by Offset (which is specified in bytes).
1299///
1300/// There are two cases we handle here:
1301///   1) A union of vector types of the same size and potentially its elements.
1302///      Here we turn element accesses into insert/extract element operations.
1303///      This promotes a <4 x float> with a store of float to the third element
1304///      into a <4 x float> that uses insert element.
1305///   2) A fully general blob of memory, which we turn into some (potentially
1306///      large) integer type with extract and insert operations where the loads
1307///      and stores would mutate the memory.
1308static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1309                        unsigned AllocaSize, const TargetData &TD,
1310                        LLVMContext &Context) {
1311  // If this could be contributing to a vector, analyze it.
1312  if (VecTy != Type::getVoidTy(Context)) { // either null or a vector type.
1313
1314    // If the In type is a vector that is the same size as the alloca, see if it
1315    // matches the existing VecTy.
1316    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1317      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1318        // If we're storing/loading a vector of the right size, allow it as a
1319        // vector.  If this the first vector we see, remember the type so that
1320        // we know the element size.
1321        if (VecTy == 0)
1322          VecTy = VInTy;
1323        return;
1324      }
1325    } else if (In->isFloatTy() || In->isDoubleTy() ||
1326               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1327                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1328      // If we're accessing something that could be an element of a vector, see
1329      // if the implied vector agrees with what we already have and if Offset is
1330      // compatible with it.
1331      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1332      if (Offset % EltSize == 0 &&
1333          AllocaSize % EltSize == 0 &&
1334          (VecTy == 0 ||
1335           cast<VectorType>(VecTy)->getElementType()
1336                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1337        if (VecTy == 0)
1338          VecTy = VectorType::get(In, AllocaSize/EltSize);
1339        return;
1340      }
1341    }
1342  }
1343
1344  // Otherwise, we have a case that we can't handle with an optimized vector
1345  // form.  We can still turn this into a large integer.
1346  VecTy = Type::getVoidTy(Context);
1347}
1348
1349/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1350/// its accesses to a single vector type, return true and set VecTy to
1351/// the new type.  If we could convert the alloca into a single promotable
1352/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
1353/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
1354/// is the current offset from the base of the alloca being analyzed.
1355///
1356/// If we see at least one access to the value that is as a vector type, set the
1357/// SawVec flag.
1358bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1359                              bool &SawVec, uint64_t Offset,
1360                              unsigned AllocaSize) {
1361  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1362    Instruction *User = cast<Instruction>(*UI);
1363
1364    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1365      // Don't break volatile loads.
1366      if (LI->isVolatile())
1367        return false;
1368      MergeInType(LI->getType(), Offset, VecTy,
1369                  AllocaSize, *TD, V->getContext());
1370      SawVec |= isa<VectorType>(LI->getType());
1371      continue;
1372    }
1373
1374    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1375      // Storing the pointer, not into the value?
1376      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1377      MergeInType(SI->getOperand(0)->getType(), Offset,
1378                  VecTy, AllocaSize, *TD, V->getContext());
1379      SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1380      continue;
1381    }
1382
1383    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1384      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1385                              AllocaSize))
1386        return false;
1387      IsNotTrivial = true;
1388      continue;
1389    }
1390
1391    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1392      // If this is a GEP with a variable indices, we can't handle it.
1393      if (!GEP->hasAllConstantIndices())
1394        return false;
1395
1396      // Compute the offset that this GEP adds to the pointer.
1397      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1398      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1399                                                &Indices[0], Indices.size());
1400      // See if all uses can be converted.
1401      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1402                              AllocaSize))
1403        return false;
1404      IsNotTrivial = true;
1405      continue;
1406    }
1407
1408    // If this is a constant sized memset of a constant value (e.g. 0) we can
1409    // handle it.
1410    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1411      // Store of constant value and constant size.
1412      if (isa<ConstantInt>(MSI->getValue()) &&
1413          isa<ConstantInt>(MSI->getLength())) {
1414        IsNotTrivial = true;
1415        continue;
1416      }
1417    }
1418
1419    // If this is a memcpy or memmove into or out of the whole allocation, we
1420    // can handle it like a load or store of the scalar type.
1421    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1422      if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
1423        if (Len->getZExtValue() == AllocaSize && Offset == 0) {
1424          IsNotTrivial = true;
1425          continue;
1426        }
1427    }
1428
1429    // Ignore dbg intrinsic.
1430    if (isa<DbgInfoIntrinsic>(User))
1431      continue;
1432
1433    // Otherwise, we cannot handle this!
1434    return false;
1435  }
1436
1437  return true;
1438}
1439
1440/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1441/// directly.  This happens when we are converting an "integer union" to a
1442/// single integer scalar, or when we are converting a "vector union" to a
1443/// vector with insert/extractelement instructions.
1444///
1445/// Offset is an offset from the original alloca, in bits that need to be
1446/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1447void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1448  while (!Ptr->use_empty()) {
1449    Instruction *User = cast<Instruction>(Ptr->use_back());
1450
1451    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1452      ConvertUsesToScalar(CI, NewAI, Offset);
1453      CI->eraseFromParent();
1454      continue;
1455    }
1456
1457    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1458      // Compute the offset that this GEP adds to the pointer.
1459      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1460      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1461                                                &Indices[0], Indices.size());
1462      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1463      GEP->eraseFromParent();
1464      continue;
1465    }
1466
1467    IRBuilder<> Builder(User->getParent(), User);
1468
1469    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1470      // The load is a bit extract from NewAI shifted right by Offset bits.
1471      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1472      Value *NewLoadVal
1473        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1474      LI->replaceAllUsesWith(NewLoadVal);
1475      LI->eraseFromParent();
1476      continue;
1477    }
1478
1479    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1480      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1481      // FIXME: Remove once builder has Twine API.
1482      Value *Old = Builder.CreateLoad(NewAI,
1483                                      (NewAI->getName()+".in").str().c_str());
1484      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1485                                             Builder);
1486      Builder.CreateStore(New, NewAI);
1487      SI->eraseFromParent();
1488      continue;
1489    }
1490
1491    // If this is a constant sized memset of a constant value (e.g. 0) we can
1492    // transform it into a store of the expanded constant value.
1493    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1494      assert(MSI->getRawDest() == Ptr && "Consistency error!");
1495      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1496      if (NumBytes != 0) {
1497        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1498
1499        // Compute the value replicated the right number of times.
1500        APInt APVal(NumBytes*8, Val);
1501
1502        // Splat the value if non-zero.
1503        if (Val)
1504          for (unsigned i = 1; i != NumBytes; ++i)
1505            APVal |= APVal << 8;
1506
1507        // FIXME: Remove once builder has Twine API.
1508        Value *Old = Builder.CreateLoad(NewAI,
1509                                        (NewAI->getName()+".in").str().c_str());
1510        Value *New = ConvertScalar_InsertValue(
1511                                    ConstantInt::get(User->getContext(), APVal),
1512                                               Old, Offset, Builder);
1513        Builder.CreateStore(New, NewAI);
1514      }
1515      MSI->eraseFromParent();
1516      continue;
1517    }
1518
1519    // If this is a memcpy or memmove into or out of the whole allocation, we
1520    // can handle it like a load or store of the scalar type.
1521    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1522      assert(Offset == 0 && "must be store to start of alloca");
1523
1524      // If the source and destination are both to the same alloca, then this is
1525      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
1526      // as appropriate.
1527      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
1528
1529      if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
1530        // Dest must be OrigAI, change this to be a load from the original
1531        // pointer (bitcasted), then a store to our new alloca.
1532        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
1533        Value *SrcPtr = MTI->getSource();
1534        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
1535
1536        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
1537        SrcVal->setAlignment(MTI->getAlignment());
1538        Builder.CreateStore(SrcVal, NewAI);
1539      } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
1540        // Src must be OrigAI, change this to be a load from NewAI then a store
1541        // through the original dest pointer (bitcasted).
1542        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
1543        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
1544
1545        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
1546        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
1547        NewStore->setAlignment(MTI->getAlignment());
1548      } else {
1549        // Noop transfer. Src == Dst
1550      }
1551
1552
1553      MTI->eraseFromParent();
1554      continue;
1555    }
1556
1557    // If user is a dbg info intrinsic then it is safe to remove it.
1558    if (isa<DbgInfoIntrinsic>(User)) {
1559      User->eraseFromParent();
1560      continue;
1561    }
1562
1563    llvm_unreachable("Unsupported operation!");
1564  }
1565}
1566
1567/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1568/// or vector value FromVal, extracting the bits from the offset specified by
1569/// Offset.  This returns the value, which is of type ToType.
1570///
1571/// This happens when we are converting an "integer union" to a single
1572/// integer scalar, or when we are converting a "vector union" to a vector with
1573/// insert/extractelement instructions.
1574///
1575/// Offset is an offset from the original alloca, in bits that need to be
1576/// shifted to the right.
1577Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1578                                        uint64_t Offset, IRBuilder<> &Builder) {
1579  // If the load is of the whole new alloca, no conversion is needed.
1580  if (FromVal->getType() == ToType && Offset == 0)
1581    return FromVal;
1582
1583  // If the result alloca is a vector type, this is either an element
1584  // access or a bitcast to another vector type of the same size.
1585  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1586    if (isa<VectorType>(ToType))
1587      return Builder.CreateBitCast(FromVal, ToType, "tmp");
1588
1589    // Otherwise it must be an element access.
1590    unsigned Elt = 0;
1591    if (Offset) {
1592      unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1593      Elt = Offset/EltSize;
1594      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1595    }
1596    // Return the element extracted out of it.
1597    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
1598                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
1599    if (V->getType() != ToType)
1600      V = Builder.CreateBitCast(V, ToType, "tmp");
1601    return V;
1602  }
1603
1604  // If ToType is a first class aggregate, extract out each of the pieces and
1605  // use insertvalue's to form the FCA.
1606  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1607    const StructLayout &Layout = *TD->getStructLayout(ST);
1608    Value *Res = UndefValue::get(ST);
1609    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1610      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1611                                        Offset+Layout.getElementOffsetInBits(i),
1612                                              Builder);
1613      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1614    }
1615    return Res;
1616  }
1617
1618  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1619    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1620    Value *Res = UndefValue::get(AT);
1621    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1622      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1623                                              Offset+i*EltSize, Builder);
1624      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1625    }
1626    return Res;
1627  }
1628
1629  // Otherwise, this must be a union that was converted to an integer value.
1630  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1631
1632  // If this is a big-endian system and the load is narrower than the
1633  // full alloca type, we need to do a shift to get the right bits.
1634  int ShAmt = 0;
1635  if (TD->isBigEndian()) {
1636    // On big-endian machines, the lowest bit is stored at the bit offset
1637    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1638    // integers with a bitwidth that is not a multiple of 8.
1639    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1640            TD->getTypeStoreSizeInBits(ToType) - Offset;
1641  } else {
1642    ShAmt = Offset;
1643  }
1644
1645  // Note: we support negative bitwidths (with shl) which are not defined.
1646  // We do this to support (f.e.) loads off the end of a structure where
1647  // only some bits are used.
1648  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1649    FromVal = Builder.CreateLShr(FromVal,
1650                                 ConstantInt::get(FromVal->getType(),
1651                                                           ShAmt), "tmp");
1652  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1653    FromVal = Builder.CreateShl(FromVal,
1654                                ConstantInt::get(FromVal->getType(),
1655                                                          -ShAmt), "tmp");
1656
1657  // Finally, unconditionally truncate the integer to the right width.
1658  unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1659  if (LIBitWidth < NTy->getBitWidth())
1660    FromVal =
1661      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
1662                                                    LIBitWidth), "tmp");
1663  else if (LIBitWidth > NTy->getBitWidth())
1664    FromVal =
1665       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
1666                                                    LIBitWidth), "tmp");
1667
1668  // If the result is an integer, this is a trunc or bitcast.
1669  if (isa<IntegerType>(ToType)) {
1670    // Should be done.
1671  } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1672    // Just do a bitcast, we know the sizes match up.
1673    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1674  } else {
1675    // Otherwise must be a pointer.
1676    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1677  }
1678  assert(FromVal->getType() == ToType && "Didn't convert right?");
1679  return FromVal;
1680}
1681
1682/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1683/// or vector value "Old" at the offset specified by Offset.
1684///
1685/// This happens when we are converting an "integer union" to a
1686/// single integer scalar, or when we are converting a "vector union" to a
1687/// vector with insert/extractelement instructions.
1688///
1689/// Offset is an offset from the original alloca, in bits that need to be
1690/// shifted to the right.
1691Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1692                                       uint64_t Offset, IRBuilder<> &Builder) {
1693
1694  // Convert the stored type to the actual type, shift it left to insert
1695  // then 'or' into place.
1696  const Type *AllocaType = Old->getType();
1697  LLVMContext &Context = Old->getContext();
1698
1699  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1700    uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
1701    uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
1702
1703    // Changing the whole vector with memset or with an access of a different
1704    // vector type?
1705    if (ValSize == VecSize)
1706      return Builder.CreateBitCast(SV, AllocaType, "tmp");
1707
1708    uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1709
1710    // Must be an element insertion.
1711    unsigned Elt = Offset/EltSize;
1712
1713    if (SV->getType() != VTy->getElementType())
1714      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1715
1716    SV = Builder.CreateInsertElement(Old, SV,
1717                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
1718                                     "tmp");
1719    return SV;
1720  }
1721
1722  // If SV is a first-class aggregate value, insert each value recursively.
1723  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1724    const StructLayout &Layout = *TD->getStructLayout(ST);
1725    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1726      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1727      Old = ConvertScalar_InsertValue(Elt, Old,
1728                                      Offset+Layout.getElementOffsetInBits(i),
1729                                      Builder);
1730    }
1731    return Old;
1732  }
1733
1734  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1735    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1736    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1737      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1738      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1739    }
1740    return Old;
1741  }
1742
1743  // If SV is a float, convert it to the appropriate integer type.
1744  // If it is a pointer, do the same.
1745  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1746  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1747  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1748  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1749  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1750    SV = Builder.CreateBitCast(SV,
1751                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
1752  else if (isa<PointerType>(SV->getType()))
1753    SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(SV->getContext()), "tmp");
1754
1755  // Zero extend or truncate the value if needed.
1756  if (SV->getType() != AllocaType) {
1757    if (SV->getType()->getPrimitiveSizeInBits() <
1758             AllocaType->getPrimitiveSizeInBits())
1759      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1760    else {
1761      // Truncation may be needed if storing more than the alloca can hold
1762      // (undefined behavior).
1763      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1764      SrcWidth = DestWidth;
1765      SrcStoreWidth = DestStoreWidth;
1766    }
1767  }
1768
1769  // If this is a big-endian system and the store is narrower than the
1770  // full alloca type, we need to do a shift to get the right bits.
1771  int ShAmt = 0;
1772  if (TD->isBigEndian()) {
1773    // On big-endian machines, the lowest bit is stored at the bit offset
1774    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1775    // integers with a bitwidth that is not a multiple of 8.
1776    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1777  } else {
1778    ShAmt = Offset;
1779  }
1780
1781  // Note: we support negative bitwidths (with shr) which are not defined.
1782  // We do this to support (f.e.) stores off the end of a structure where
1783  // only some bits in the structure are set.
1784  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1785  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1786    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1787                           ShAmt), "tmp");
1788    Mask <<= ShAmt;
1789  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1790    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1791                            -ShAmt), "tmp");
1792    Mask = Mask.lshr(-ShAmt);
1793  }
1794
1795  // Mask out the bits we are about to insert from the old value, and or
1796  // in the new bits.
1797  if (SrcWidth != DestWidth) {
1798    assert(DestWidth > SrcWidth);
1799    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1800    SV = Builder.CreateOr(Old, SV, "ins");
1801  }
1802  return SV;
1803}
1804
1805
1806
1807/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1808/// some part of a constant global variable.  This intentionally only accepts
1809/// constant expressions because we don't can't rewrite arbitrary instructions.
1810static bool PointsToConstantGlobal(Value *V) {
1811  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1812    return GV->isConstant();
1813  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1814    if (CE->getOpcode() == Instruction::BitCast ||
1815        CE->getOpcode() == Instruction::GetElementPtr)
1816      return PointsToConstantGlobal(CE->getOperand(0));
1817  return false;
1818}
1819
1820/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1821/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1822/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1823/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1824/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1825/// the alloca, and if the source pointer is a pointer to a constant  global, we
1826/// can optimize this.
1827static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1828                                           bool isOffset) {
1829  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1830    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1831      // Ignore non-volatile loads, they are always ok.
1832      if (!LI->isVolatile())
1833        continue;
1834
1835    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1836      // If uses of the bitcast are ok, we are ok.
1837      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1838        return false;
1839      continue;
1840    }
1841    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1842      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1843      // doesn't, it does.
1844      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1845                                         isOffset || !GEP->hasAllZeroIndices()))
1846        return false;
1847      continue;
1848    }
1849
1850    // If this is isn't our memcpy/memmove, reject it as something we can't
1851    // handle.
1852    if (!isa<MemTransferInst>(*UI))
1853      return false;
1854
1855    // If we already have seen a copy, reject the second one.
1856    if (TheCopy) return false;
1857
1858    // If the pointer has been offset from the start of the alloca, we can't
1859    // safely handle this.
1860    if (isOffset) return false;
1861
1862    // If the memintrinsic isn't using the alloca as the dest, reject it.
1863    if (UI.getOperandNo() != 1) return false;
1864
1865    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1866
1867    // If the source of the memcpy/move is not a constant global, reject it.
1868    if (!PointsToConstantGlobal(MI->getOperand(2)))
1869      return false;
1870
1871    // Otherwise, the transform is safe.  Remember the copy instruction.
1872    TheCopy = MI;
1873  }
1874  return true;
1875}
1876
1877/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1878/// modified by a copy from a constant global.  If we can prove this, we can
1879/// replace any uses of the alloca with uses of the global directly.
1880Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1881  Instruction *TheCopy = 0;
1882  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1883    return TheCopy;
1884  return 0;
1885}
1886