ScalarReplAggregates.cpp revision 39fdd6947cb800a0db7f7012fe843c98b414602f
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/PromoteMemToReg.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/IRBuilder.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/Statistic.h"
44using namespace llvm;
45
46STATISTIC(NumReplaced,  "Number of allocas broken up");
47STATISTIC(NumPromoted,  "Number of allocas promoted");
48STATISTIC(NumConverted, "Number of aggregates converted to scalar");
49STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
50
51namespace {
52  struct SROA : public FunctionPass {
53    static char ID; // Pass identification, replacement for typeid
54    explicit SROA(signed T = -1) : FunctionPass(&ID) {
55      if (T == -1)
56        SRThreshold = 128;
57      else
58        SRThreshold = T;
59    }
60
61    bool runOnFunction(Function &F);
62
63    bool performScalarRepl(Function &F);
64    bool performPromotion(Function &F);
65
66    // getAnalysisUsage - This pass does not require any passes, but we know it
67    // will not alter the CFG, so say so.
68    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69      AU.addRequired<DominatorTree>();
70      AU.addRequired<DominanceFrontier>();
71      AU.setPreservesCFG();
72    }
73
74  private:
75    TargetData *TD;
76
77    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
78    /// information about the uses.  All these fields are initialized to false
79    /// and set to true when something is learned.
80    struct AllocaInfo {
81      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
82      bool isUnsafe : 1;
83
84      /// needsCleanup - This is set to true if there is some use of the alloca
85      /// that requires cleanup.
86      bool needsCleanup : 1;
87
88      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
89      bool isMemCpySrc : 1;
90
91      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
92      bool isMemCpyDst : 1;
93
94      AllocaInfo()
95        : isUnsafe(false), needsCleanup(false),
96          isMemCpySrc(false), isMemCpyDst(false) {}
97    };
98
99    unsigned SRThreshold;
100
101    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
102
103    int isSafeAllocaToScalarRepl(AllocaInst *AI);
104
105    void isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
106                               AllocaInfo &Info);
107    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
108                         AllocaInfo &Info);
109    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
110                                        unsigned OpNo, AllocaInfo &Info);
111    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocaInst *AI,
112                                        AllocaInfo &Info);
113
114    void DoScalarReplacement(AllocaInst *AI,
115                             std::vector<AllocaInst*> &WorkList);
116    void CleanupGEP(GetElementPtrInst *GEP);
117    void CleanupAllocaUsers(AllocaInst *AI);
118    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocaInst *Base);
119
120    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
121                                    SmallVector<AllocaInst*, 32> &NewElts);
122
123    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
124                                      AllocaInst *AI,
125                                      SmallVector<AllocaInst*, 32> &NewElts);
126    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
127                                       SmallVector<AllocaInst*, 32> &NewElts);
128    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
129                                      SmallVector<AllocaInst*, 32> &NewElts);
130
131    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
132                            bool &SawVec, uint64_t Offset, unsigned AllocaSize);
133    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
134    Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
135                                     uint64_t Offset, IRBuilder<> &Builder);
136    Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
137                                     uint64_t Offset, IRBuilder<> &Builder);
138    static Instruction *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
139  };
140}
141
142char SROA::ID = 0;
143static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
144
145// Public interface to the ScalarReplAggregates pass
146FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
147  return new SROA(Threshold);
148}
149
150
151bool SROA::runOnFunction(Function &F) {
152  TD = getAnalysisIfAvailable<TargetData>();
153
154  bool Changed = performPromotion(F);
155
156  // FIXME: ScalarRepl currently depends on TargetData more than it
157  // theoretically needs to. It should be refactored in order to support
158  // target-independent IR. Until this is done, just skip the actual
159  // scalar-replacement portion of this pass.
160  if (!TD) return Changed;
161
162  while (1) {
163    bool LocalChange = performScalarRepl(F);
164    if (!LocalChange) break;   // No need to repromote if no scalarrepl
165    Changed = true;
166    LocalChange = performPromotion(F);
167    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
168  }
169
170  return Changed;
171}
172
173
174bool SROA::performPromotion(Function &F) {
175  std::vector<AllocaInst*> Allocas;
176  DominatorTree         &DT = getAnalysis<DominatorTree>();
177  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
178
179  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
180
181  bool Changed = false;
182
183  while (1) {
184    Allocas.clear();
185
186    // Find allocas that are safe to promote, by looking at all instructions in
187    // the entry node
188    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
189      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
190        if (isAllocaPromotable(AI))
191          Allocas.push_back(AI);
192
193    if (Allocas.empty()) break;
194
195    PromoteMemToReg(Allocas, DT, DF);
196    NumPromoted += Allocas.size();
197    Changed = true;
198  }
199
200  return Changed;
201}
202
203/// getNumSAElements - Return the number of elements in the specific struct or
204/// array.
205static uint64_t getNumSAElements(const Type *T) {
206  if (const StructType *ST = dyn_cast<StructType>(T))
207    return ST->getNumElements();
208  return cast<ArrayType>(T)->getNumElements();
209}
210
211// performScalarRepl - This algorithm is a simple worklist driven algorithm,
212// which runs on all of the malloc/alloca instructions in the function, removing
213// them if they are only used by getelementptr instructions.
214//
215bool SROA::performScalarRepl(Function &F) {
216  std::vector<AllocaInst*> WorkList;
217
218  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
219  BasicBlock &BB = F.getEntryBlock();
220  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
221    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
222      WorkList.push_back(A);
223
224  // Process the worklist
225  bool Changed = false;
226  while (!WorkList.empty()) {
227    AllocaInst *AI = WorkList.back();
228    WorkList.pop_back();
229
230    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
231    // with unused elements.
232    if (AI->use_empty()) {
233      AI->eraseFromParent();
234      continue;
235    }
236
237    // If this alloca is impossible for us to promote, reject it early.
238    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
239      continue;
240
241    // Check to see if this allocation is only modified by a memcpy/memmove from
242    // a constant global.  If this is the case, we can change all users to use
243    // the constant global instead.  This is commonly produced by the CFE by
244    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
245    // is only subsequently read.
246    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
247      DEBUG(errs() << "Found alloca equal to global: " << *AI << '\n');
248      DEBUG(errs() << "  memcpy = " << *TheCopy << '\n');
249      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
250      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
251      TheCopy->eraseFromParent();  // Don't mutate the global.
252      AI->eraseFromParent();
253      ++NumGlobals;
254      Changed = true;
255      continue;
256    }
257
258    // Check to see if we can perform the core SROA transformation.  We cannot
259    // transform the allocation instruction if it is an array allocation
260    // (allocations OF arrays are ok though), and an allocation of a scalar
261    // value cannot be decomposed at all.
262    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
263
264    // Do not promote [0 x %struct].
265    if (AllocaSize == 0) continue;
266
267    // Do not promote any struct whose size is too big.
268    if (AllocaSize > SRThreshold) continue;
269
270    if ((isa<StructType>(AI->getAllocatedType()) ||
271         isa<ArrayType>(AI->getAllocatedType())) &&
272        // Do not promote any struct into more than "32" separate vars.
273        getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
274      // Check that all of the users of the allocation are capable of being
275      // transformed.
276      switch (isSafeAllocaToScalarRepl(AI)) {
277      default: llvm_unreachable("Unexpected value!");
278      case 0:  // Not safe to scalar replace.
279        break;
280      case 1:  // Safe, but requires cleanup/canonicalizations first
281        CleanupAllocaUsers(AI);
282        // FALL THROUGH.
283      case 3:  // Safe to scalar replace.
284        DoScalarReplacement(AI, WorkList);
285        Changed = true;
286        continue;
287      }
288    }
289
290    // If we can turn this aggregate value (potentially with casts) into a
291    // simple scalar value that can be mem2reg'd into a register value.
292    // IsNotTrivial tracks whether this is something that mem2reg could have
293    // promoted itself.  If so, we don't want to transform it needlessly.  Note
294    // that we can't just check based on the type: the alloca may be of an i32
295    // but that has pointer arithmetic to set byte 3 of it or something.
296    bool IsNotTrivial = false;
297    const Type *VectorTy = 0;
298    bool HadAVector = false;
299    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
300                           0, unsigned(AllocaSize)) && IsNotTrivial) {
301      AllocaInst *NewAI;
302      // If we were able to find a vector type that can handle this with
303      // insert/extract elements, and if there was at least one use that had
304      // a vector type, promote this to a vector.  We don't want to promote
305      // random stuff that doesn't use vectors (e.g. <9 x double>) because then
306      // we just get a lot of insert/extracts.  If at least one vector is
307      // involved, then we probably really do have a union of vector/array.
308      if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
309        DEBUG(errs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
310                     << *VectorTy << '\n');
311
312        // Create and insert the vector alloca.
313        NewAI = new AllocaInst(VectorTy, 0, "",  AI->getParent()->begin());
314        ConvertUsesToScalar(AI, NewAI, 0);
315      } else {
316        DEBUG(errs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
317
318        // Create and insert the integer alloca.
319        const Type *NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
320        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
321        ConvertUsesToScalar(AI, NewAI, 0);
322      }
323      NewAI->takeName(AI);
324      AI->eraseFromParent();
325      ++NumConverted;
326      Changed = true;
327      continue;
328    }
329
330    // Otherwise, couldn't process this alloca.
331  }
332
333  return Changed;
334}
335
336/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
337/// predicate, do SROA now.
338void SROA::DoScalarReplacement(AllocaInst *AI,
339                               std::vector<AllocaInst*> &WorkList) {
340  DEBUG(errs() << "Found inst to SROA: " << *AI << '\n');
341  SmallVector<AllocaInst*, 32> ElementAllocas;
342  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
343    ElementAllocas.reserve(ST->getNumContainedTypes());
344    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
345      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
346                                      AI->getAlignment(),
347                                      AI->getName() + "." + Twine(i), AI);
348      ElementAllocas.push_back(NA);
349      WorkList.push_back(NA);  // Add to worklist for recursive processing
350    }
351  } else {
352    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
353    ElementAllocas.reserve(AT->getNumElements());
354    const Type *ElTy = AT->getElementType();
355    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
356      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
357                                      AI->getName() + "." + Twine(i), AI);
358      ElementAllocas.push_back(NA);
359      WorkList.push_back(NA);  // Add to worklist for recursive processing
360    }
361  }
362
363  // Now that we have created the alloca instructions that we want to use,
364  // expand the getelementptr instructions to use them.
365  //
366  while (!AI->use_empty()) {
367    Instruction *User = cast<Instruction>(AI->use_back());
368    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
369      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
370      BCInst->eraseFromParent();
371      continue;
372    }
373
374    // Replace:
375    //   %res = load { i32, i32 }* %alloc
376    // with:
377    //   %load.0 = load i32* %alloc.0
378    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
379    //   %load.1 = load i32* %alloc.1
380    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
381    // (Also works for arrays instead of structs)
382    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
383      Value *Insert = UndefValue::get(LI->getType());
384      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
385        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
386        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
387      }
388      LI->replaceAllUsesWith(Insert);
389      LI->eraseFromParent();
390      continue;
391    }
392
393    // Replace:
394    //   store { i32, i32 } %val, { i32, i32 }* %alloc
395    // with:
396    //   %val.0 = extractvalue { i32, i32 } %val, 0
397    //   store i32 %val.0, i32* %alloc.0
398    //   %val.1 = extractvalue { i32, i32 } %val, 1
399    //   store i32 %val.1, i32* %alloc.1
400    // (Also works for arrays instead of structs)
401    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
402      Value *Val = SI->getOperand(0);
403      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
404        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
405        new StoreInst(Extract, ElementAllocas[i], SI);
406      }
407      SI->eraseFromParent();
408      continue;
409    }
410
411    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
412    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
413    unsigned Idx =
414       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
415
416    assert(Idx < ElementAllocas.size() && "Index out of range?");
417    AllocaInst *AllocaToUse = ElementAllocas[Idx];
418
419    Value *RepValue;
420    if (GEPI->getNumOperands() == 3) {
421      // Do not insert a new getelementptr instruction with zero indices, only
422      // to have it optimized out later.
423      RepValue = AllocaToUse;
424    } else {
425      // We are indexing deeply into the structure, so we still need a
426      // getelement ptr instruction to finish the indexing.  This may be
427      // expanded itself once the worklist is rerun.
428      //
429      SmallVector<Value*, 8> NewArgs;
430      NewArgs.push_back(Constant::getNullValue(
431                                           Type::getInt32Ty(AI->getContext())));
432      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
433      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
434                                           NewArgs.end(), "", GEPI);
435      RepValue->takeName(GEPI);
436    }
437
438    // If this GEP is to the start of the aggregate, check for memcpys.
439    if (Idx == 0 && GEPI->hasAllZeroIndices())
440      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
441
442    // Move all of the users over to the new GEP.
443    GEPI->replaceAllUsesWith(RepValue);
444    // Delete the old GEP
445    GEPI->eraseFromParent();
446  }
447
448  // Finally, delete the Alloca instruction
449  AI->eraseFromParent();
450  NumReplaced++;
451}
452
453/// isSafeElementUse - Check to see if this use is an allowed use for a
454/// getelementptr instruction of an array aggregate allocation.  isFirstElt
455/// indicates whether Ptr is known to the start of the aggregate.
456void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
457                            AllocaInfo &Info) {
458  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
459       I != E; ++I) {
460    Instruction *User = cast<Instruction>(*I);
461    switch (User->getOpcode()) {
462    case Instruction::Load:  break;
463    case Instruction::Store:
464      // Store is ok if storing INTO the pointer, not storing the pointer
465      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
466      break;
467    case Instruction::GetElementPtr: {
468      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
469      bool AreAllZeroIndices = isFirstElt;
470      if (GEP->getNumOperands() > 1 &&
471          (!isa<ConstantInt>(GEP->getOperand(1)) ||
472           !cast<ConstantInt>(GEP->getOperand(1))->isZero()))
473        // Using pointer arithmetic to navigate the array.
474        return MarkUnsafe(Info);
475
476      // Verify that any array subscripts are in range.
477      for (gep_type_iterator GEPIt = gep_type_begin(GEP),
478           E = gep_type_end(GEP); GEPIt != E; ++GEPIt) {
479        // Ignore struct elements, no extra checking needed for these.
480        if (isa<StructType>(*GEPIt))
481          continue;
482
483        // This GEP indexes an array.  Verify that this is an in-range
484        // constant integer. Specifically, consider A[0][i]. We cannot know that
485        // the user isn't doing invalid things like allowing i to index an
486        // out-of-range subscript that accesses A[1].  Because of this, we have
487        // to reject SROA of any accesses into structs where any of the
488        // components are variables.
489        ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
490        if (!IdxVal) return MarkUnsafe(Info);
491
492        // Are all indices still zero?
493        AreAllZeroIndices &= IdxVal->isZero();
494
495        if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
496          if (IdxVal->getZExtValue() >= AT->getNumElements())
497            return MarkUnsafe(Info);
498        } else if (const VectorType *VT = dyn_cast<VectorType>(*GEPIt)) {
499          if (IdxVal->getZExtValue() >= VT->getNumElements())
500            return MarkUnsafe(Info);
501        }
502      }
503
504      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
505      if (Info.isUnsafe) return;
506      break;
507    }
508    case Instruction::BitCast:
509      if (isFirstElt) {
510        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
511        if (Info.isUnsafe) return;
512        break;
513      }
514      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
515      return MarkUnsafe(Info);
516    case Instruction::Call:
517      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
518        if (isFirstElt) {
519          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
520          if (Info.isUnsafe) return;
521          break;
522        }
523      }
524      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
525      return MarkUnsafe(Info);
526    default:
527      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
528      return MarkUnsafe(Info);
529    }
530  }
531  return;  // All users look ok :)
532}
533
534/// AllUsersAreLoads - Return true if all users of this value are loads.
535static bool AllUsersAreLoads(Value *Ptr) {
536  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
537       I != E; ++I)
538    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
539      return false;
540  return true;
541}
542
543/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
544/// aggregate allocation.
545void SROA::isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
546                                 AllocaInfo &Info) {
547  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
548    return isSafeUseOfBitCastedAllocation(C, AI, Info);
549
550  if (LoadInst *LI = dyn_cast<LoadInst>(User))
551    if (!LI->isVolatile())
552      return;// Loads (returning a first class aggregrate) are always rewritable
553
554  if (StoreInst *SI = dyn_cast<StoreInst>(User))
555    if (!SI->isVolatile() && SI->getOperand(0) != AI)
556      return;// Store is ok if storing INTO the pointer, not storing the pointer
557
558  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
559  if (GEPI == 0)
560    return MarkUnsafe(Info);
561
562  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
563
564  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
565  if (I == E ||
566      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
567    return MarkUnsafe(Info);
568  }
569
570  ++I;
571  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
572
573  bool IsAllZeroIndices = true;
574
575  // If the first index is a non-constant index into an array, see if we can
576  // handle it as a special case.
577  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
578    if (!isa<ConstantInt>(I.getOperand())) {
579      IsAllZeroIndices = 0;
580      uint64_t NumElements = AT->getNumElements();
581
582      // If this is an array index and the index is not constant, we cannot
583      // promote... that is unless the array has exactly one or two elements in
584      // it, in which case we CAN promote it, but we have to canonicalize this
585      // out if this is the only problem.
586      if ((NumElements == 1 || NumElements == 2) &&
587          AllUsersAreLoads(GEPI)) {
588        Info.needsCleanup = true;
589        return;  // Canonicalization required!
590      }
591      return MarkUnsafe(Info);
592    }
593  }
594
595  // Walk through the GEP type indices, checking the types that this indexes
596  // into.
597  for (; I != E; ++I) {
598    // Ignore struct elements, no extra checking needed for these.
599    if (isa<StructType>(*I))
600      continue;
601
602    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
603    if (!IdxVal) return MarkUnsafe(Info);
604
605    // Are all indices still zero?
606    IsAllZeroIndices &= IdxVal->isZero();
607
608    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
609      // This GEP indexes an array.  Verify that this is an in-range constant
610      // integer. Specifically, consider A[0][i]. We cannot know that the user
611      // isn't doing invalid things like allowing i to index an out-of-range
612      // subscript that accesses A[1].  Because of this, we have to reject SROA
613      // of any accesses into structs where any of the components are variables.
614      if (IdxVal->getZExtValue() >= AT->getNumElements())
615        return MarkUnsafe(Info);
616    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
617      if (IdxVal->getZExtValue() >= VT->getNumElements())
618        return MarkUnsafe(Info);
619    }
620  }
621
622  // If there are any non-simple uses of this getelementptr, make sure to reject
623  // them.
624  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
625}
626
627/// isSafeMemIntrinsicOnAllocation - Check if the specified memory
628/// intrinsic can be promoted by SROA.  At this point, we know that the operand
629/// of the memintrinsic is a pointer to the beginning of the allocation.
630void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
631                                          unsigned OpNo, AllocaInfo &Info) {
632  // If not constant length, give up.
633  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
634  if (!Length) return MarkUnsafe(Info);
635
636  // If not the whole aggregate, give up.
637  if (Length->getZExtValue() !=
638      TD->getTypeAllocSize(AI->getType()->getElementType()))
639    return MarkUnsafe(Info);
640
641  // We only know about memcpy/memset/memmove.
642  if (!isa<MemIntrinsic>(MI))
643    return MarkUnsafe(Info);
644
645  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
646  // into or out of the aggregate.
647  if (OpNo == 1)
648    Info.isMemCpyDst = true;
649  else {
650    assert(OpNo == 2);
651    Info.isMemCpySrc = true;
652  }
653}
654
655/// isSafeUseOfBitCastedAllocation - Check if all users of this bitcast
656/// from an alloca are safe for SROA of that alloca.
657void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocaInst *AI,
658                                          AllocaInfo &Info) {
659  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
660       UI != E; ++UI) {
661    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
662      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
663    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
664      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
665    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
666      if (SI->isVolatile())
667        return MarkUnsafe(Info);
668
669      // If storing the entire alloca in one chunk through a bitcasted pointer
670      // to integer, we can transform it.  This happens (for example) when you
671      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
672      // memcpy case and occurs in various "byval" cases and emulated memcpys.
673      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
674          TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
675          TD->getTypeAllocSize(AI->getType()->getElementType())) {
676        Info.isMemCpyDst = true;
677        continue;
678      }
679      return MarkUnsafe(Info);
680    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
681      if (LI->isVolatile())
682        return MarkUnsafe(Info);
683
684      // If loading the entire alloca in one chunk through a bitcasted pointer
685      // to integer, we can transform it.  This happens (for example) when you
686      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
687      // memcpy case and occurs in various "byval" cases and emulated memcpys.
688      if (isa<IntegerType>(LI->getType()) &&
689          TD->getTypeAllocSize(LI->getType()) ==
690          TD->getTypeAllocSize(AI->getType()->getElementType())) {
691        Info.isMemCpySrc = true;
692        continue;
693      }
694      return MarkUnsafe(Info);
695    } else if (isa<DbgInfoIntrinsic>(UI)) {
696      // If one user is DbgInfoIntrinsic then check if all users are
697      // DbgInfoIntrinsics.
698      if (OnlyUsedByDbgInfoIntrinsics(BC)) {
699        Info.needsCleanup = true;
700        return;
701      }
702      else
703        MarkUnsafe(Info);
704    }
705    else {
706      return MarkUnsafe(Info);
707    }
708    if (Info.isUnsafe) return;
709  }
710}
711
712/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
713/// to its first element.  Transform users of the cast to use the new values
714/// instead.
715void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
716                                      SmallVector<AllocaInst*, 32> &NewElts) {
717  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
718  while (UI != UE) {
719    Instruction *User = cast<Instruction>(*UI++);
720    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
721      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
722      if (BCU->use_empty()) BCU->eraseFromParent();
723      continue;
724    }
725
726    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
727      // This must be memcpy/memmove/memset of the entire aggregate.
728      // Split into one per element.
729      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
730      continue;
731    }
732
733    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
734      // If this is a store of the entire alloca from an integer, rewrite it.
735      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
736      continue;
737    }
738
739    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
740      // If this is a load of the entire alloca to an integer, rewrite it.
741      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
742      continue;
743    }
744
745    // Otherwise it must be some other user of a gep of the first pointer.  Just
746    // leave these alone.
747    continue;
748  }
749}
750
751/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
752/// Rewrite it to copy or set the elements of the scalarized memory.
753void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
754                                        AllocaInst *AI,
755                                        SmallVector<AllocaInst*, 32> &NewElts) {
756
757  // If this is a memcpy/memmove, construct the other pointer as the
758  // appropriate type.  The "Other" pointer is the pointer that goes to memory
759  // that doesn't have anything to do with the alloca that we are promoting. For
760  // memset, this Value* stays null.
761  Value *OtherPtr = 0;
762  LLVMContext &Context = MI->getContext();
763  unsigned MemAlignment = MI->getAlignment();
764  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
765    if (BCInst == MTI->getRawDest())
766      OtherPtr = MTI->getRawSource();
767    else {
768      assert(BCInst == MTI->getRawSource());
769      OtherPtr = MTI->getRawDest();
770    }
771  }
772
773  // If there is an other pointer, we want to convert it to the same pointer
774  // type as AI has, so we can GEP through it safely.
775  if (OtherPtr) {
776    // It is likely that OtherPtr is a bitcast, if so, remove it.
777    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
778      OtherPtr = BC->getOperand(0);
779    // All zero GEPs are effectively bitcasts.
780    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
781      if (GEP->hasAllZeroIndices())
782        OtherPtr = GEP->getOperand(0);
783
784    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
785      if (BCE->getOpcode() == Instruction::BitCast)
786        OtherPtr = BCE->getOperand(0);
787
788    // If the pointer is not the right type, insert a bitcast to the right
789    // type.
790    if (OtherPtr->getType() != AI->getType())
791      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
792                                 MI);
793  }
794
795  // Process each element of the aggregate.
796  Value *TheFn = MI->getOperand(0);
797  const Type *BytePtrTy = MI->getRawDest()->getType();
798  bool SROADest = MI->getRawDest() == BCInst;
799
800  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
801
802  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
803    // If this is a memcpy/memmove, emit a GEP of the other element address.
804    Value *OtherElt = 0;
805    unsigned OtherEltAlign = MemAlignment;
806
807    if (OtherPtr) {
808      Value *Idx[2] = { Zero,
809                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
810      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
811                                           OtherPtr->getNameStr()+"."+Twine(i),
812                                           MI);
813      uint64_t EltOffset;
814      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
815      if (const StructType *ST =
816            dyn_cast<StructType>(OtherPtrTy->getElementType())) {
817        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
818      } else {
819        const Type *EltTy =
820          cast<SequentialType>(OtherPtr->getType())->getElementType();
821        EltOffset = TD->getTypeAllocSize(EltTy)*i;
822      }
823
824      // The alignment of the other pointer is the guaranteed alignment of the
825      // element, which is affected by both the known alignment of the whole
826      // mem intrinsic and the alignment of the element.  If the alignment of
827      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
828      // known alignment is just 4 bytes.
829      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
830    }
831
832    Value *EltPtr = NewElts[i];
833    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
834
835    // If we got down to a scalar, insert a load or store as appropriate.
836    if (EltTy->isSingleValueType()) {
837      if (isa<MemTransferInst>(MI)) {
838        if (SROADest) {
839          // From Other to Alloca.
840          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
841          new StoreInst(Elt, EltPtr, MI);
842        } else {
843          // From Alloca to Other.
844          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
845          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
846        }
847        continue;
848      }
849      assert(isa<MemSetInst>(MI));
850
851      // If the stored element is zero (common case), just store a null
852      // constant.
853      Constant *StoreVal;
854      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
855        if (CI->isZero()) {
856          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
857        } else {
858          // If EltTy is a vector type, get the element type.
859          const Type *ValTy = EltTy->getScalarType();
860
861          // Construct an integer with the right value.
862          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
863          APInt OneVal(EltSize, CI->getZExtValue());
864          APInt TotalVal(OneVal);
865          // Set each byte.
866          for (unsigned i = 0; 8*i < EltSize; ++i) {
867            TotalVal = TotalVal.shl(8);
868            TotalVal |= OneVal;
869          }
870
871          // Convert the integer value to the appropriate type.
872          StoreVal = ConstantInt::get(Context, TotalVal);
873          if (isa<PointerType>(ValTy))
874            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
875          else if (ValTy->isFloatingPoint())
876            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
877          assert(StoreVal->getType() == ValTy && "Type mismatch!");
878
879          // If the requested value was a vector constant, create it.
880          if (EltTy != ValTy) {
881            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
882            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
883            StoreVal = ConstantVector::get(&Elts[0], NumElts);
884          }
885        }
886        new StoreInst(StoreVal, EltPtr, MI);
887        continue;
888      }
889      // Otherwise, if we're storing a byte variable, use a memset call for
890      // this element.
891    }
892
893    // Cast the element pointer to BytePtrTy.
894    if (EltPtr->getType() != BytePtrTy)
895      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
896
897    // Cast the other pointer (if we have one) to BytePtrTy.
898    if (OtherElt && OtherElt->getType() != BytePtrTy)
899      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
900                                 MI);
901
902    unsigned EltSize = TD->getTypeAllocSize(EltTy);
903
904    // Finally, insert the meminst for this element.
905    if (isa<MemTransferInst>(MI)) {
906      Value *Ops[] = {
907        SROADest ? EltPtr : OtherElt,  // Dest ptr
908        SROADest ? OtherElt : EltPtr,  // Src ptr
909        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
910        // Align
911        ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign)
912      };
913      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
914    } else {
915      assert(isa<MemSetInst>(MI));
916      Value *Ops[] = {
917        EltPtr, MI->getOperand(2),  // Dest, Value,
918        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
919        Zero  // Align
920      };
921      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
922    }
923  }
924  MI->eraseFromParent();
925}
926
927/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
928/// overwrites the entire allocation.  Extract out the pieces of the stored
929/// integer and store them individually.
930void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
931                                         SmallVector<AllocaInst*, 32> &NewElts){
932  // Extract each element out of the integer according to its structure offset
933  // and store the element value to the individual alloca.
934  Value *SrcVal = SI->getOperand(0);
935  const Type *AllocaEltTy = AI->getType()->getElementType();
936  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
937
938  // If this isn't a store of an integer to the whole alloca, it may be a store
939  // to the first element.  Just ignore the store in this case and normal SROA
940  // will handle it.
941  if (!isa<IntegerType>(SrcVal->getType()) ||
942      TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
943    return;
944  // Handle tail padding by extending the operand
945  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
946    SrcVal = new ZExtInst(SrcVal,
947                          IntegerType::get(SI->getContext(), AllocaSizeBits),
948                          "", SI);
949
950  DEBUG(errs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
951               << '\n');
952
953  // There are two forms here: AI could be an array or struct.  Both cases
954  // have different ways to compute the element offset.
955  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
956    const StructLayout *Layout = TD->getStructLayout(EltSTy);
957
958    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
959      // Get the number of bits to shift SrcVal to get the value.
960      const Type *FieldTy = EltSTy->getElementType(i);
961      uint64_t Shift = Layout->getElementOffsetInBits(i);
962
963      if (TD->isBigEndian())
964        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
965
966      Value *EltVal = SrcVal;
967      if (Shift) {
968        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
969        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
970                                            "sroa.store.elt", SI);
971      }
972
973      // Truncate down to an integer of the right size.
974      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
975
976      // Ignore zero sized fields like {}, they obviously contain no data.
977      if (FieldSizeBits == 0) continue;
978
979      if (FieldSizeBits != AllocaSizeBits)
980        EltVal = new TruncInst(EltVal,
981                             IntegerType::get(SI->getContext(), FieldSizeBits),
982                              "", SI);
983      Value *DestField = NewElts[i];
984      if (EltVal->getType() == FieldTy) {
985        // Storing to an integer field of this size, just do it.
986      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
987        // Bitcast to the right element type (for fp/vector values).
988        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
989      } else {
990        // Otherwise, bitcast the dest pointer (for aggregates).
991        DestField = new BitCastInst(DestField,
992                              PointerType::getUnqual(EltVal->getType()),
993                                    "", SI);
994      }
995      new StoreInst(EltVal, DestField, SI);
996    }
997
998  } else {
999    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
1000    const Type *ArrayEltTy = ATy->getElementType();
1001    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1002    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
1003
1004    uint64_t Shift;
1005
1006    if (TD->isBigEndian())
1007      Shift = AllocaSizeBits-ElementOffset;
1008    else
1009      Shift = 0;
1010
1011    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1012      // Ignore zero sized fields like {}, they obviously contain no data.
1013      if (ElementSizeBits == 0) continue;
1014
1015      Value *EltVal = SrcVal;
1016      if (Shift) {
1017        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1018        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1019                                            "sroa.store.elt", SI);
1020      }
1021
1022      // Truncate down to an integer of the right size.
1023      if (ElementSizeBits != AllocaSizeBits)
1024        EltVal = new TruncInst(EltVal,
1025                               IntegerType::get(SI->getContext(),
1026                                                ElementSizeBits),"",SI);
1027      Value *DestField = NewElts[i];
1028      if (EltVal->getType() == ArrayEltTy) {
1029        // Storing to an integer field of this size, just do it.
1030      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
1031        // Bitcast to the right element type (for fp/vector values).
1032        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1033      } else {
1034        // Otherwise, bitcast the dest pointer (for aggregates).
1035        DestField = new BitCastInst(DestField,
1036                              PointerType::getUnqual(EltVal->getType()),
1037                                    "", SI);
1038      }
1039      new StoreInst(EltVal, DestField, SI);
1040
1041      if (TD->isBigEndian())
1042        Shift -= ElementOffset;
1043      else
1044        Shift += ElementOffset;
1045    }
1046  }
1047
1048  SI->eraseFromParent();
1049}
1050
1051/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
1052/// an integer.  Load the individual pieces to form the aggregate value.
1053void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1054                                        SmallVector<AllocaInst*, 32> &NewElts) {
1055  // Extract each element out of the NewElts according to its structure offset
1056  // and form the result value.
1057  const Type *AllocaEltTy = AI->getType()->getElementType();
1058  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1059
1060  // If this isn't a load of the whole alloca to an integer, it may be a load
1061  // of the first element.  Just ignore the load in this case and normal SROA
1062  // will handle it.
1063  if (!isa<IntegerType>(LI->getType()) ||
1064      TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
1065    return;
1066
1067  DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1068               << '\n');
1069
1070  // There are two forms here: AI could be an array or struct.  Both cases
1071  // have different ways to compute the element offset.
1072  const StructLayout *Layout = 0;
1073  uint64_t ArrayEltBitOffset = 0;
1074  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1075    Layout = TD->getStructLayout(EltSTy);
1076  } else {
1077    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1078    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1079  }
1080
1081  Value *ResultVal =
1082    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1083
1084  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1085    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1086    // the pointer to an integer of the same size before doing the load.
1087    Value *SrcField = NewElts[i];
1088    const Type *FieldTy =
1089      cast<PointerType>(SrcField->getType())->getElementType();
1090    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1091
1092    // Ignore zero sized fields like {}, they obviously contain no data.
1093    if (FieldSizeBits == 0) continue;
1094
1095    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1096                                                     FieldSizeBits);
1097    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1098        !isa<VectorType>(FieldTy))
1099      SrcField = new BitCastInst(SrcField,
1100                                 PointerType::getUnqual(FieldIntTy),
1101                                 "", LI);
1102    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1103
1104    // If SrcField is a fp or vector of the right size but that isn't an
1105    // integer type, bitcast to an integer so we can shift it.
1106    if (SrcField->getType() != FieldIntTy)
1107      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1108
1109    // Zero extend the field to be the same size as the final alloca so that
1110    // we can shift and insert it.
1111    if (SrcField->getType() != ResultVal->getType())
1112      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1113
1114    // Determine the number of bits to shift SrcField.
1115    uint64_t Shift;
1116    if (Layout) // Struct case.
1117      Shift = Layout->getElementOffsetInBits(i);
1118    else  // Array case.
1119      Shift = i*ArrayEltBitOffset;
1120
1121    if (TD->isBigEndian())
1122      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1123
1124    if (Shift) {
1125      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1126      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1127    }
1128
1129    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1130  }
1131
1132  // Handle tail padding by truncating the result
1133  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1134    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1135
1136  LI->replaceAllUsesWith(ResultVal);
1137  LI->eraseFromParent();
1138}
1139
1140
1141/// HasPadding - Return true if the specified type has any structure or
1142/// alignment padding, false otherwise.
1143static bool HasPadding(const Type *Ty, const TargetData &TD) {
1144  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1145    const StructLayout *SL = TD.getStructLayout(STy);
1146    unsigned PrevFieldBitOffset = 0;
1147    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1148      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1149
1150      // Padding in sub-elements?
1151      if (HasPadding(STy->getElementType(i), TD))
1152        return true;
1153
1154      // Check to see if there is any padding between this element and the
1155      // previous one.
1156      if (i) {
1157        unsigned PrevFieldEnd =
1158        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1159        if (PrevFieldEnd < FieldBitOffset)
1160          return true;
1161      }
1162
1163      PrevFieldBitOffset = FieldBitOffset;
1164    }
1165
1166    //  Check for tail padding.
1167    if (unsigned EltCount = STy->getNumElements()) {
1168      unsigned PrevFieldEnd = PrevFieldBitOffset +
1169                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1170      if (PrevFieldEnd < SL->getSizeInBits())
1171        return true;
1172    }
1173
1174  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1175    return HasPadding(ATy->getElementType(), TD);
1176  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1177    return HasPadding(VTy->getElementType(), TD);
1178  }
1179  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1180}
1181
1182/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1183/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1184/// or 1 if safe after canonicalization has been performed.
1185int SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1186  // Loop over the use list of the alloca.  We can only transform it if all of
1187  // the users are safe to transform.
1188  AllocaInfo Info;
1189
1190  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1191       I != E; ++I) {
1192    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1193    if (Info.isUnsafe) {
1194      DEBUG(errs() << "Cannot transform: " << *AI << "\n  due to user: "
1195                   << **I << '\n');
1196      return 0;
1197    }
1198  }
1199
1200  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1201  // source and destination, we have to be careful.  In particular, the memcpy
1202  // could be moving around elements that live in structure padding of the LLVM
1203  // types, but may actually be used.  In these cases, we refuse to promote the
1204  // struct.
1205  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1206      HasPadding(AI->getType()->getElementType(), *TD))
1207    return 0;
1208
1209  // If we require cleanup, return 1, otherwise return 3.
1210  return Info.needsCleanup ? 1 : 3;
1211}
1212
1213/// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
1214/// is canonicalized here.
1215void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
1216  gep_type_iterator I = gep_type_begin(GEPI);
1217  ++I;
1218
1219  const ArrayType *AT = dyn_cast<ArrayType>(*I);
1220  if (!AT)
1221    return;
1222
1223  uint64_t NumElements = AT->getNumElements();
1224
1225  if (isa<ConstantInt>(I.getOperand()))
1226    return;
1227
1228  if (NumElements == 1) {
1229    GEPI->setOperand(2,
1230                  Constant::getNullValue(Type::getInt32Ty(GEPI->getContext())));
1231    return;
1232  }
1233
1234  assert(NumElements == 2 && "Unhandled case!");
1235  // All users of the GEP must be loads.  At each use of the GEP, insert
1236  // two loads of the appropriate indexed GEP and select between them.
1237  Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
1238                              Constant::getNullValue(I.getOperand()->getType()),
1239                              "isone");
1240  // Insert the new GEP instructions, which are properly indexed.
1241  SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1242  Indices[1] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
1243  Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1244                                             Indices.begin(),
1245                                             Indices.end(),
1246                                             GEPI->getName()+".0", GEPI);
1247  Indices[1] = ConstantInt::get(Type::getInt32Ty(GEPI->getContext()), 1);
1248  Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1249                                            Indices.begin(),
1250                                            Indices.end(),
1251                                            GEPI->getName()+".1", GEPI);
1252  // Replace all loads of the variable index GEP with loads from both
1253  // indexes and a select.
1254  while (!GEPI->use_empty()) {
1255    LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1256    Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1257    Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
1258    Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1259    LI->replaceAllUsesWith(R);
1260    LI->eraseFromParent();
1261  }
1262  GEPI->eraseFromParent();
1263}
1264
1265
1266/// CleanupAllocaUsers - If SROA reported that it can promote the specified
1267/// allocation, but only if cleaned up, perform the cleanups required.
1268void SROA::CleanupAllocaUsers(AllocaInst *AI) {
1269  // At this point, we know that the end result will be SROA'd and promoted, so
1270  // we can insert ugly code if required so long as sroa+mem2reg will clean it
1271  // up.
1272  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1273       UI != E; ) {
1274    User *U = *UI++;
1275    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
1276      CleanupGEP(GEPI);
1277    else {
1278      Instruction *I = cast<Instruction>(U);
1279      SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1280      if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1281        // Safe to remove debug info uses.
1282        while (!DbgInUses.empty()) {
1283          DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1284          DI->eraseFromParent();
1285        }
1286        I->eraseFromParent();
1287      }
1288    }
1289  }
1290}
1291
1292/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1293/// the offset specified by Offset (which is specified in bytes).
1294///
1295/// There are two cases we handle here:
1296///   1) A union of vector types of the same size and potentially its elements.
1297///      Here we turn element accesses into insert/extract element operations.
1298///      This promotes a <4 x float> with a store of float to the third element
1299///      into a <4 x float> that uses insert element.
1300///   2) A fully general blob of memory, which we turn into some (potentially
1301///      large) integer type with extract and insert operations where the loads
1302///      and stores would mutate the memory.
1303static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1304                        unsigned AllocaSize, const TargetData &TD,
1305                        LLVMContext &Context) {
1306  // If this could be contributing to a vector, analyze it.
1307  if (VecTy != Type::getVoidTy(Context)) { // either null or a vector type.
1308
1309    // If the In type is a vector that is the same size as the alloca, see if it
1310    // matches the existing VecTy.
1311    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1312      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1313        // If we're storing/loading a vector of the right size, allow it as a
1314        // vector.  If this the first vector we see, remember the type so that
1315        // we know the element size.
1316        if (VecTy == 0)
1317          VecTy = VInTy;
1318        return;
1319      }
1320    } else if (In->isFloatTy() || In->isDoubleTy() ||
1321               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1322                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1323      // If we're accessing something that could be an element of a vector, see
1324      // if the implied vector agrees with what we already have and if Offset is
1325      // compatible with it.
1326      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1327      if (Offset % EltSize == 0 &&
1328          AllocaSize % EltSize == 0 &&
1329          (VecTy == 0 ||
1330           cast<VectorType>(VecTy)->getElementType()
1331                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1332        if (VecTy == 0)
1333          VecTy = VectorType::get(In, AllocaSize/EltSize);
1334        return;
1335      }
1336    }
1337  }
1338
1339  // Otherwise, we have a case that we can't handle with an optimized vector
1340  // form.  We can still turn this into a large integer.
1341  VecTy = Type::getVoidTy(Context);
1342}
1343
1344/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1345/// its accesses to use a to single vector type, return true, and set VecTy to
1346/// the new type.  If we could convert the alloca into a single promotable
1347/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
1348/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
1349/// is the current offset from the base of the alloca being analyzed.
1350///
1351/// If we see at least one access to the value that is as a vector type, set the
1352/// SawVec flag.
1353bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1354                              bool &SawVec, uint64_t Offset,
1355                              unsigned AllocaSize) {
1356  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1357    Instruction *User = cast<Instruction>(*UI);
1358
1359    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1360      // Don't break volatile loads.
1361      if (LI->isVolatile())
1362        return false;
1363      MergeInType(LI->getType(), Offset, VecTy,
1364                  AllocaSize, *TD, V->getContext());
1365      SawVec |= isa<VectorType>(LI->getType());
1366      continue;
1367    }
1368
1369    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1370      // Storing the pointer, not into the value?
1371      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1372      MergeInType(SI->getOperand(0)->getType(), Offset,
1373                  VecTy, AllocaSize, *TD, V->getContext());
1374      SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1375      continue;
1376    }
1377
1378    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1379      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1380                              AllocaSize))
1381        return false;
1382      IsNotTrivial = true;
1383      continue;
1384    }
1385
1386    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1387      // If this is a GEP with a variable indices, we can't handle it.
1388      if (!GEP->hasAllConstantIndices())
1389        return false;
1390
1391      // Compute the offset that this GEP adds to the pointer.
1392      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1393      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1394                                                &Indices[0], Indices.size());
1395      // See if all uses can be converted.
1396      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1397                              AllocaSize))
1398        return false;
1399      IsNotTrivial = true;
1400      continue;
1401    }
1402
1403    // If this is a constant sized memset of a constant value (e.g. 0) we can
1404    // handle it.
1405    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1406      // Store of constant value and constant size.
1407      if (isa<ConstantInt>(MSI->getValue()) &&
1408          isa<ConstantInt>(MSI->getLength())) {
1409        IsNotTrivial = true;
1410        continue;
1411      }
1412    }
1413
1414    // If this is a memcpy or memmove into or out of the whole allocation, we
1415    // can handle it like a load or store of the scalar type.
1416    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1417      if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
1418        if (Len->getZExtValue() == AllocaSize && Offset == 0) {
1419          IsNotTrivial = true;
1420          continue;
1421        }
1422    }
1423
1424    // Ignore dbg intrinsic.
1425    if (isa<DbgInfoIntrinsic>(User))
1426      continue;
1427
1428    // Otherwise, we cannot handle this!
1429    return false;
1430  }
1431
1432  return true;
1433}
1434
1435/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1436/// directly.  This happens when we are converting an "integer union" to a
1437/// single integer scalar, or when we are converting a "vector union" to a
1438/// vector with insert/extractelement instructions.
1439///
1440/// Offset is an offset from the original alloca, in bits that need to be
1441/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1442void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1443  while (!Ptr->use_empty()) {
1444    Instruction *User = cast<Instruction>(Ptr->use_back());
1445
1446    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1447      ConvertUsesToScalar(CI, NewAI, Offset);
1448      CI->eraseFromParent();
1449      continue;
1450    }
1451
1452    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1453      // Compute the offset that this GEP adds to the pointer.
1454      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1455      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1456                                                &Indices[0], Indices.size());
1457      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1458      GEP->eraseFromParent();
1459      continue;
1460    }
1461
1462    IRBuilder<> Builder(User->getParent(), User);
1463
1464    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1465      // The load is a bit extract from NewAI shifted right by Offset bits.
1466      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1467      Value *NewLoadVal
1468        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1469      LI->replaceAllUsesWith(NewLoadVal);
1470      LI->eraseFromParent();
1471      continue;
1472    }
1473
1474    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1475      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1476      // FIXME: Remove once builder has Twine API.
1477      Value *Old = Builder.CreateLoad(NewAI,
1478                                      (NewAI->getName()+".in").str().c_str());
1479      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1480                                             Builder);
1481      Builder.CreateStore(New, NewAI);
1482      SI->eraseFromParent();
1483      continue;
1484    }
1485
1486    // If this is a constant sized memset of a constant value (e.g. 0) we can
1487    // transform it into a store of the expanded constant value.
1488    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1489      assert(MSI->getRawDest() == Ptr && "Consistency error!");
1490      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1491      if (NumBytes != 0) {
1492        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1493
1494        // Compute the value replicated the right number of times.
1495        APInt APVal(NumBytes*8, Val);
1496
1497        // Splat the value if non-zero.
1498        if (Val)
1499          for (unsigned i = 1; i != NumBytes; ++i)
1500            APVal |= APVal << 8;
1501
1502        // FIXME: Remove once builder has Twine API.
1503        Value *Old = Builder.CreateLoad(NewAI,
1504                                        (NewAI->getName()+".in").str().c_str());
1505        Value *New = ConvertScalar_InsertValue(
1506                                    ConstantInt::get(User->getContext(), APVal),
1507                                               Old, Offset, Builder);
1508        Builder.CreateStore(New, NewAI);
1509      }
1510      MSI->eraseFromParent();
1511      continue;
1512    }
1513
1514    // If this is a memcpy or memmove into or out of the whole allocation, we
1515    // can handle it like a load or store of the scalar type.
1516    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1517      assert(Offset == 0 && "must be store to start of alloca");
1518
1519      // If the source and destination are both to the same alloca, then this is
1520      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
1521      // as appropriate.
1522      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
1523
1524      if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
1525        // Dest must be OrigAI, change this to be a load from the original
1526        // pointer (bitcasted), then a store to our new alloca.
1527        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
1528        Value *SrcPtr = MTI->getSource();
1529        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
1530
1531        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
1532        SrcVal->setAlignment(MTI->getAlignment());
1533        Builder.CreateStore(SrcVal, NewAI);
1534      } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
1535        // Src must be OrigAI, change this to be a load from NewAI then a store
1536        // through the original dest pointer (bitcasted).
1537        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
1538        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
1539
1540        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
1541        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
1542        NewStore->setAlignment(MTI->getAlignment());
1543      } else {
1544        // Noop transfer. Src == Dst
1545      }
1546
1547
1548      MTI->eraseFromParent();
1549      continue;
1550    }
1551
1552    // If user is a dbg info intrinsic then it is safe to remove it.
1553    if (isa<DbgInfoIntrinsic>(User)) {
1554      User->eraseFromParent();
1555      continue;
1556    }
1557
1558    llvm_unreachable("Unsupported operation!");
1559  }
1560}
1561
1562/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1563/// or vector value FromVal, extracting the bits from the offset specified by
1564/// Offset.  This returns the value, which is of type ToType.
1565///
1566/// This happens when we are converting an "integer union" to a single
1567/// integer scalar, or when we are converting a "vector union" to a vector with
1568/// insert/extractelement instructions.
1569///
1570/// Offset is an offset from the original alloca, in bits that need to be
1571/// shifted to the right.
1572Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1573                                        uint64_t Offset, IRBuilder<> &Builder) {
1574  // If the load is of the whole new alloca, no conversion is needed.
1575  if (FromVal->getType() == ToType && Offset == 0)
1576    return FromVal;
1577
1578  // If the result alloca is a vector type, this is either an element
1579  // access or a bitcast to another vector type of the same size.
1580  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1581    if (isa<VectorType>(ToType))
1582      return Builder.CreateBitCast(FromVal, ToType, "tmp");
1583
1584    // Otherwise it must be an element access.
1585    unsigned Elt = 0;
1586    if (Offset) {
1587      unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1588      Elt = Offset/EltSize;
1589      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1590    }
1591    // Return the element extracted out of it.
1592    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
1593                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
1594    if (V->getType() != ToType)
1595      V = Builder.CreateBitCast(V, ToType, "tmp");
1596    return V;
1597  }
1598
1599  // If ToType is a first class aggregate, extract out each of the pieces and
1600  // use insertvalue's to form the FCA.
1601  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1602    const StructLayout &Layout = *TD->getStructLayout(ST);
1603    Value *Res = UndefValue::get(ST);
1604    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1605      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1606                                        Offset+Layout.getElementOffsetInBits(i),
1607                                              Builder);
1608      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1609    }
1610    return Res;
1611  }
1612
1613  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1614    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1615    Value *Res = UndefValue::get(AT);
1616    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1617      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1618                                              Offset+i*EltSize, Builder);
1619      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1620    }
1621    return Res;
1622  }
1623
1624  // Otherwise, this must be a union that was converted to an integer value.
1625  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1626
1627  // If this is a big-endian system and the load is narrower than the
1628  // full alloca type, we need to do a shift to get the right bits.
1629  int ShAmt = 0;
1630  if (TD->isBigEndian()) {
1631    // On big-endian machines, the lowest bit is stored at the bit offset
1632    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1633    // integers with a bitwidth that is not a multiple of 8.
1634    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1635            TD->getTypeStoreSizeInBits(ToType) - Offset;
1636  } else {
1637    ShAmt = Offset;
1638  }
1639
1640  // Note: we support negative bitwidths (with shl) which are not defined.
1641  // We do this to support (f.e.) loads off the end of a structure where
1642  // only some bits are used.
1643  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1644    FromVal = Builder.CreateLShr(FromVal,
1645                                 ConstantInt::get(FromVal->getType(),
1646                                                           ShAmt), "tmp");
1647  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1648    FromVal = Builder.CreateShl(FromVal,
1649                                ConstantInt::get(FromVal->getType(),
1650                                                          -ShAmt), "tmp");
1651
1652  // Finally, unconditionally truncate the integer to the right width.
1653  unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1654  if (LIBitWidth < NTy->getBitWidth())
1655    FromVal =
1656      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
1657                                                    LIBitWidth), "tmp");
1658  else if (LIBitWidth > NTy->getBitWidth())
1659    FromVal =
1660       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
1661                                                    LIBitWidth), "tmp");
1662
1663  // If the result is an integer, this is a trunc or bitcast.
1664  if (isa<IntegerType>(ToType)) {
1665    // Should be done.
1666  } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1667    // Just do a bitcast, we know the sizes match up.
1668    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1669  } else {
1670    // Otherwise must be a pointer.
1671    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1672  }
1673  assert(FromVal->getType() == ToType && "Didn't convert right?");
1674  return FromVal;
1675}
1676
1677/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1678/// or vector value "Old" at the offset specified by Offset.
1679///
1680/// This happens when we are converting an "integer union" to a
1681/// single integer scalar, or when we are converting a "vector union" to a
1682/// vector with insert/extractelement instructions.
1683///
1684/// Offset is an offset from the original alloca, in bits that need to be
1685/// shifted to the right.
1686Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1687                                       uint64_t Offset, IRBuilder<> &Builder) {
1688
1689  // Convert the stored type to the actual type, shift it left to insert
1690  // then 'or' into place.
1691  const Type *AllocaType = Old->getType();
1692  LLVMContext &Context = Old->getContext();
1693
1694  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1695    uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
1696    uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
1697
1698    // Changing the whole vector with memset or with an access of a different
1699    // vector type?
1700    if (ValSize == VecSize)
1701      return Builder.CreateBitCast(SV, AllocaType, "tmp");
1702
1703    uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1704
1705    // Must be an element insertion.
1706    unsigned Elt = Offset/EltSize;
1707
1708    if (SV->getType() != VTy->getElementType())
1709      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1710
1711    SV = Builder.CreateInsertElement(Old, SV,
1712                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
1713                                     "tmp");
1714    return SV;
1715  }
1716
1717  // If SV is a first-class aggregate value, insert each value recursively.
1718  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1719    const StructLayout &Layout = *TD->getStructLayout(ST);
1720    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1721      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1722      Old = ConvertScalar_InsertValue(Elt, Old,
1723                                      Offset+Layout.getElementOffsetInBits(i),
1724                                      Builder);
1725    }
1726    return Old;
1727  }
1728
1729  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1730    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1731    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1732      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1733      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1734    }
1735    return Old;
1736  }
1737
1738  // If SV is a float, convert it to the appropriate integer type.
1739  // If it is a pointer, do the same.
1740  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1741  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1742  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1743  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1744  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1745    SV = Builder.CreateBitCast(SV,
1746                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
1747  else if (isa<PointerType>(SV->getType()))
1748    SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(SV->getContext()), "tmp");
1749
1750  // Zero extend or truncate the value if needed.
1751  if (SV->getType() != AllocaType) {
1752    if (SV->getType()->getPrimitiveSizeInBits() <
1753             AllocaType->getPrimitiveSizeInBits())
1754      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1755    else {
1756      // Truncation may be needed if storing more than the alloca can hold
1757      // (undefined behavior).
1758      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1759      SrcWidth = DestWidth;
1760      SrcStoreWidth = DestStoreWidth;
1761    }
1762  }
1763
1764  // If this is a big-endian system and the store is narrower than the
1765  // full alloca type, we need to do a shift to get the right bits.
1766  int ShAmt = 0;
1767  if (TD->isBigEndian()) {
1768    // On big-endian machines, the lowest bit is stored at the bit offset
1769    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1770    // integers with a bitwidth that is not a multiple of 8.
1771    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1772  } else {
1773    ShAmt = Offset;
1774  }
1775
1776  // Note: we support negative bitwidths (with shr) which are not defined.
1777  // We do this to support (f.e.) stores off the end of a structure where
1778  // only some bits in the structure are set.
1779  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1780  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1781    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1782                           ShAmt), "tmp");
1783    Mask <<= ShAmt;
1784  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1785    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1786                            -ShAmt), "tmp");
1787    Mask = Mask.lshr(-ShAmt);
1788  }
1789
1790  // Mask out the bits we are about to insert from the old value, and or
1791  // in the new bits.
1792  if (SrcWidth != DestWidth) {
1793    assert(DestWidth > SrcWidth);
1794    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1795    SV = Builder.CreateOr(Old, SV, "ins");
1796  }
1797  return SV;
1798}
1799
1800
1801
1802/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1803/// some part of a constant global variable.  This intentionally only accepts
1804/// constant expressions because we don't can't rewrite arbitrary instructions.
1805static bool PointsToConstantGlobal(Value *V) {
1806  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1807    return GV->isConstant();
1808  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1809    if (CE->getOpcode() == Instruction::BitCast ||
1810        CE->getOpcode() == Instruction::GetElementPtr)
1811      return PointsToConstantGlobal(CE->getOperand(0));
1812  return false;
1813}
1814
1815/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1816/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1817/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1818/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1819/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1820/// the alloca, and if the source pointer is a pointer to a constant  global, we
1821/// can optimize this.
1822static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1823                                           bool isOffset) {
1824  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1825    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1826      // Ignore non-volatile loads, they are always ok.
1827      if (!LI->isVolatile())
1828        continue;
1829
1830    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1831      // If uses of the bitcast are ok, we are ok.
1832      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1833        return false;
1834      continue;
1835    }
1836    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1837      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1838      // doesn't, it does.
1839      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1840                                         isOffset || !GEP->hasAllZeroIndices()))
1841        return false;
1842      continue;
1843    }
1844
1845    // If this is isn't our memcpy/memmove, reject it as something we can't
1846    // handle.
1847    if (!isa<MemTransferInst>(*UI))
1848      return false;
1849
1850    // If we already have seen a copy, reject the second one.
1851    if (TheCopy) return false;
1852
1853    // If the pointer has been offset from the start of the alloca, we can't
1854    // safely handle this.
1855    if (isOffset) return false;
1856
1857    // If the memintrinsic isn't using the alloca as the dest, reject it.
1858    if (UI.getOperandNo() != 1) return false;
1859
1860    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1861
1862    // If the source of the memcpy/move is not a constant global, reject it.
1863    if (!PointsToConstantGlobal(MI->getOperand(2)))
1864      return false;
1865
1866    // Otherwise, the transform is safe.  Remember the copy instruction.
1867    TheCopy = MI;
1868  }
1869  return true;
1870}
1871
1872/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1873/// modified by a copy from a constant global.  If we can prove this, we can
1874/// replace any uses of the alloca with uses of the global directly.
1875Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1876  Instruction *TheCopy = 0;
1877  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1878    return TheCopy;
1879  return 0;
1880}
1881