ScalarReplAggregates.cpp revision 3aaf5d993365c803dad9a8815b6c9864505af5b6
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include "llvm/Support/IRBuilder.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/Compiler.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/StringExtras.h"
43using namespace llvm;
44
45STATISTIC(NumReplaced,  "Number of allocas broken up");
46STATISTIC(NumPromoted,  "Number of allocas promoted");
47STATISTIC(NumConverted, "Number of aggregates converted to scalar");
48STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
49
50namespace {
51  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
52    static char ID; // Pass identification, replacement for typeid
53    explicit SROA(signed T = -1) : FunctionPass(&ID) {
54      if (T == -1)
55        SRThreshold = 128;
56      else
57        SRThreshold = T;
58    }
59
60    bool runOnFunction(Function &F);
61
62    bool performScalarRepl(Function &F);
63    bool performPromotion(Function &F);
64
65    // getAnalysisUsage - This pass does not require any passes, but we know it
66    // will not alter the CFG, so say so.
67    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
68      AU.addRequired<DominatorTree>();
69      AU.addRequired<DominanceFrontier>();
70      AU.addRequired<TargetData>();
71      AU.setPreservesCFG();
72    }
73
74  private:
75    TargetData *TD;
76
77    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
78    /// information about the uses.  All these fields are initialized to false
79    /// and set to true when something is learned.
80    struct AllocaInfo {
81      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
82      bool isUnsafe : 1;
83
84      /// needsCleanup - This is set to true if there is some use of the alloca
85      /// that requires cleanup.
86      bool needsCleanup : 1;
87
88      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
89      bool isMemCpySrc : 1;
90
91      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
92      bool isMemCpyDst : 1;
93
94      AllocaInfo()
95        : isUnsafe(false), needsCleanup(false),
96          isMemCpySrc(false), isMemCpyDst(false) {}
97    };
98
99    unsigned SRThreshold;
100
101    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
102
103    int isSafeAllocaToScalarRepl(AllocationInst *AI);
104
105    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
106                               AllocaInfo &Info);
107    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
108                         AllocaInfo &Info);
109    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
110                                        unsigned OpNo, AllocaInfo &Info);
111    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
112                                        AllocaInfo &Info);
113
114    void DoScalarReplacement(AllocationInst *AI,
115                             std::vector<AllocationInst*> &WorkList);
116    void CleanupGEP(GetElementPtrInst *GEP);
117    void CleanupAllocaUsers(AllocationInst *AI);
118    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
119
120    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
121                                    SmallVector<AllocaInst*, 32> &NewElts);
122
123    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
124                                      AllocationInst *AI,
125                                      SmallVector<AllocaInst*, 32> &NewElts);
126    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
127                                       SmallVector<AllocaInst*, 32> &NewElts);
128    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
129                                      SmallVector<AllocaInst*, 32> &NewElts);
130
131    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
132                            bool &SawVec, uint64_t Offset, unsigned AllocaSize);
133    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
134    Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
135                                     uint64_t Offset, IRBuilder<> &Builder);
136    Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
137                                     uint64_t Offset, IRBuilder<> &Builder);
138    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
139  };
140}
141
142char SROA::ID = 0;
143static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
144
145// Public interface to the ScalarReplAggregates pass
146FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
147  return new SROA(Threshold);
148}
149
150
151bool SROA::runOnFunction(Function &F) {
152  TD = &getAnalysis<TargetData>();
153
154  bool Changed = performPromotion(F);
155  while (1) {
156    bool LocalChange = performScalarRepl(F);
157    if (!LocalChange) break;   // No need to repromote if no scalarrepl
158    Changed = true;
159    LocalChange = performPromotion(F);
160    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
161  }
162
163  return Changed;
164}
165
166
167bool SROA::performPromotion(Function &F) {
168  std::vector<AllocaInst*> Allocas;
169  DominatorTree         &DT = getAnalysis<DominatorTree>();
170  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
171
172  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
173
174  bool Changed = false;
175
176  while (1) {
177    Allocas.clear();
178
179    // Find allocas that are safe to promote, by looking at all instructions in
180    // the entry node
181    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
182      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
183        if (isAllocaPromotable(AI))
184          Allocas.push_back(AI);
185
186    if (Allocas.empty()) break;
187
188    PromoteMemToReg(Allocas, DT, DF);
189    NumPromoted += Allocas.size();
190    Changed = true;
191  }
192
193  return Changed;
194}
195
196/// getNumSAElements - Return the number of elements in the specific struct or
197/// array.
198static uint64_t getNumSAElements(const Type *T) {
199  if (const StructType *ST = dyn_cast<StructType>(T))
200    return ST->getNumElements();
201  return cast<ArrayType>(T)->getNumElements();
202}
203
204// performScalarRepl - This algorithm is a simple worklist driven algorithm,
205// which runs on all of the malloc/alloca instructions in the function, removing
206// them if they are only used by getelementptr instructions.
207//
208bool SROA::performScalarRepl(Function &F) {
209  std::vector<AllocationInst*> WorkList;
210
211  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
212  BasicBlock &BB = F.getEntryBlock();
213  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
214    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
215      WorkList.push_back(A);
216
217  // Process the worklist
218  bool Changed = false;
219  while (!WorkList.empty()) {
220    AllocationInst *AI = WorkList.back();
221    WorkList.pop_back();
222
223    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
224    // with unused elements.
225    if (AI->use_empty()) {
226      AI->eraseFromParent();
227      continue;
228    }
229
230    // If this alloca is impossible for us to promote, reject it early.
231    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
232      continue;
233
234    // Check to see if this allocation is only modified by a memcpy/memmove from
235    // a constant global.  If this is the case, we can change all users to use
236    // the constant global instead.  This is commonly produced by the CFE by
237    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
238    // is only subsequently read.
239    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
240      DOUT << "Found alloca equal to global: " << *AI;
241      DOUT << "  memcpy = " << *TheCopy;
242      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
243      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
244      TheCopy->eraseFromParent();  // Don't mutate the global.
245      AI->eraseFromParent();
246      ++NumGlobals;
247      Changed = true;
248      continue;
249    }
250
251    // Check to see if we can perform the core SROA transformation.  We cannot
252    // transform the allocation instruction if it is an array allocation
253    // (allocations OF arrays are ok though), and an allocation of a scalar
254    // value cannot be decomposed at all.
255    uint64_t AllocaSize = TD->getTypePaddedSize(AI->getAllocatedType());
256
257    // Do not promote any struct whose size is too big.
258    if (AllocaSize > SRThreshold) continue;
259
260    if ((isa<StructType>(AI->getAllocatedType()) ||
261         isa<ArrayType>(AI->getAllocatedType())) &&
262        // Do not promote any struct into more than "32" separate vars.
263        getNumSAElements(AI->getAllocatedType()) < SRThreshold/4) {
264      // Check that all of the users of the allocation are capable of being
265      // transformed.
266      switch (isSafeAllocaToScalarRepl(AI)) {
267      default: assert(0 && "Unexpected value!");
268      case 0:  // Not safe to scalar replace.
269        break;
270      case 1:  // Safe, but requires cleanup/canonicalizations first
271        CleanupAllocaUsers(AI);
272        // FALL THROUGH.
273      case 3:  // Safe to scalar replace.
274        DoScalarReplacement(AI, WorkList);
275        Changed = true;
276        continue;
277      }
278    }
279
280    // If we can turn this aggregate value (potentially with casts) into a
281    // simple scalar value that can be mem2reg'd into a register value.
282    // IsNotTrivial tracks whether this is something that mem2reg could have
283    // promoted itself.  If so, we don't want to transform it needlessly.  Note
284    // that we can't just check based on the type: the alloca may be of an i32
285    // but that has pointer arithmetic to set byte 3 of it or something.
286    bool IsNotTrivial = false;
287    const Type *VectorTy = 0;
288    bool HadAVector = false;
289    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
290                           0, unsigned(AllocaSize)) && IsNotTrivial) {
291      AllocaInst *NewAI;
292      // If we were able to find a vector type that can handle this with
293      // insert/extract elements, and if there was at least one use that had
294      // a vector type, promote this to a vector.  We don't want to promote
295      // random stuff that doesn't use vectors (e.g. <9 x double>) because then
296      // we just get a lot of insert/extracts.  If at least one vector is
297      // involved, then we probably really do have a union of vector/array.
298      if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
299        DOUT << "CONVERT TO VECTOR: " << *AI << "  TYPE = " << *VectorTy <<"\n";
300
301        // Create and insert the vector alloca.
302        NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
303        ConvertUsesToScalar(AI, NewAI, 0);
304      } else {
305        DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
306
307        // Create and insert the integer alloca.
308        const Type *NewTy = IntegerType::get(AllocaSize*8);
309        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
310        ConvertUsesToScalar(AI, NewAI, 0);
311      }
312      NewAI->takeName(AI);
313      AI->eraseFromParent();
314      ++NumConverted;
315      Changed = true;
316      continue;
317    }
318
319    // Otherwise, couldn't process this alloca.
320  }
321
322  return Changed;
323}
324
325/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
326/// predicate, do SROA now.
327void SROA::DoScalarReplacement(AllocationInst *AI,
328                               std::vector<AllocationInst*> &WorkList) {
329  DOUT << "Found inst to SROA: " << *AI;
330  SmallVector<AllocaInst*, 32> ElementAllocas;
331  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
332    ElementAllocas.reserve(ST->getNumContainedTypes());
333    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
334      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
335                                      AI->getAlignment(),
336                                      AI->getName() + "." + utostr(i), AI);
337      ElementAllocas.push_back(NA);
338      WorkList.push_back(NA);  // Add to worklist for recursive processing
339    }
340  } else {
341    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
342    ElementAllocas.reserve(AT->getNumElements());
343    const Type *ElTy = AT->getElementType();
344    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
345      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
346                                      AI->getName() + "." + utostr(i), AI);
347      ElementAllocas.push_back(NA);
348      WorkList.push_back(NA);  // Add to worklist for recursive processing
349    }
350  }
351
352  // Now that we have created the alloca instructions that we want to use,
353  // expand the getelementptr instructions to use them.
354  //
355  while (!AI->use_empty()) {
356    Instruction *User = cast<Instruction>(AI->use_back());
357    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
358      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
359      BCInst->eraseFromParent();
360      continue;
361    }
362
363    // Replace:
364    //   %res = load { i32, i32 }* %alloc
365    // with:
366    //   %load.0 = load i32* %alloc.0
367    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
368    //   %load.1 = load i32* %alloc.1
369    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
370    // (Also works for arrays instead of structs)
371    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
372      Value *Insert = UndefValue::get(LI->getType());
373      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
374        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
375        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
376      }
377      LI->replaceAllUsesWith(Insert);
378      LI->eraseFromParent();
379      continue;
380    }
381
382    // Replace:
383    //   store { i32, i32 } %val, { i32, i32 }* %alloc
384    // with:
385    //   %val.0 = extractvalue { i32, i32 } %val, 0
386    //   store i32 %val.0, i32* %alloc.0
387    //   %val.1 = extractvalue { i32, i32 } %val, 1
388    //   store i32 %val.1, i32* %alloc.1
389    // (Also works for arrays instead of structs)
390    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
391      Value *Val = SI->getOperand(0);
392      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
393        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
394        new StoreInst(Extract, ElementAllocas[i], SI);
395      }
396      SI->eraseFromParent();
397      continue;
398    }
399
400    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
401    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
402    unsigned Idx =
403       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
404
405    assert(Idx < ElementAllocas.size() && "Index out of range?");
406    AllocaInst *AllocaToUse = ElementAllocas[Idx];
407
408    Value *RepValue;
409    if (GEPI->getNumOperands() == 3) {
410      // Do not insert a new getelementptr instruction with zero indices, only
411      // to have it optimized out later.
412      RepValue = AllocaToUse;
413    } else {
414      // We are indexing deeply into the structure, so we still need a
415      // getelement ptr instruction to finish the indexing.  This may be
416      // expanded itself once the worklist is rerun.
417      //
418      SmallVector<Value*, 8> NewArgs;
419      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
420      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
421      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
422                                           NewArgs.end(), "", GEPI);
423      RepValue->takeName(GEPI);
424    }
425
426    // If this GEP is to the start of the aggregate, check for memcpys.
427    if (Idx == 0 && GEPI->hasAllZeroIndices())
428      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
429
430    // Move all of the users over to the new GEP.
431    GEPI->replaceAllUsesWith(RepValue);
432    // Delete the old GEP
433    GEPI->eraseFromParent();
434  }
435
436  // Finally, delete the Alloca instruction
437  AI->eraseFromParent();
438  NumReplaced++;
439}
440
441
442/// isSafeElementUse - Check to see if this use is an allowed use for a
443/// getelementptr instruction of an array aggregate allocation.  isFirstElt
444/// indicates whether Ptr is known to the start of the aggregate.
445///
446void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
447                            AllocaInfo &Info) {
448  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
449       I != E; ++I) {
450    Instruction *User = cast<Instruction>(*I);
451    switch (User->getOpcode()) {
452    case Instruction::Load:  break;
453    case Instruction::Store:
454      // Store is ok if storing INTO the pointer, not storing the pointer
455      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
456      break;
457    case Instruction::GetElementPtr: {
458      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
459      bool AreAllZeroIndices = isFirstElt;
460      if (GEP->getNumOperands() > 1) {
461        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
462            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
463          // Using pointer arithmetic to navigate the array.
464          return MarkUnsafe(Info);
465
466        if (AreAllZeroIndices)
467          AreAllZeroIndices = GEP->hasAllZeroIndices();
468      }
469      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
470      if (Info.isUnsafe) return;
471      break;
472    }
473    case Instruction::BitCast:
474      if (isFirstElt) {
475        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
476        if (Info.isUnsafe) return;
477        break;
478      }
479      DOUT << "  Transformation preventing inst: " << *User;
480      return MarkUnsafe(Info);
481    case Instruction::Call:
482      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
483        if (isFirstElt) {
484          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
485          if (Info.isUnsafe) return;
486          break;
487        }
488      }
489      DOUT << "  Transformation preventing inst: " << *User;
490      return MarkUnsafe(Info);
491    default:
492      DOUT << "  Transformation preventing inst: " << *User;
493      return MarkUnsafe(Info);
494    }
495  }
496  return;  // All users look ok :)
497}
498
499/// AllUsersAreLoads - Return true if all users of this value are loads.
500static bool AllUsersAreLoads(Value *Ptr) {
501  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
502       I != E; ++I)
503    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
504      return false;
505  return true;
506}
507
508/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
509/// aggregate allocation.
510///
511void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
512                                 AllocaInfo &Info) {
513  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
514    return isSafeUseOfBitCastedAllocation(C, AI, Info);
515
516  if (LoadInst *LI = dyn_cast<LoadInst>(User))
517    if (!LI->isVolatile())
518      return;// Loads (returning a first class aggregrate) are always rewritable
519
520  if (StoreInst *SI = dyn_cast<StoreInst>(User))
521    if (!SI->isVolatile() && SI->getOperand(0) != AI)
522      return;// Store is ok if storing INTO the pointer, not storing the pointer
523
524  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
525  if (GEPI == 0)
526    return MarkUnsafe(Info);
527
528  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
529
530  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
531  if (I == E ||
532      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
533    return MarkUnsafe(Info);
534  }
535
536  ++I;
537  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
538
539  bool IsAllZeroIndices = true;
540
541  // If the first index is a non-constant index into an array, see if we can
542  // handle it as a special case.
543  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
544    if (!isa<ConstantInt>(I.getOperand())) {
545      IsAllZeroIndices = 0;
546      uint64_t NumElements = AT->getNumElements();
547
548      // If this is an array index and the index is not constant, we cannot
549      // promote... that is unless the array has exactly one or two elements in
550      // it, in which case we CAN promote it, but we have to canonicalize this
551      // out if this is the only problem.
552      if ((NumElements == 1 || NumElements == 2) &&
553          AllUsersAreLoads(GEPI)) {
554        Info.needsCleanup = true;
555        return;  // Canonicalization required!
556      }
557      return MarkUnsafe(Info);
558    }
559  }
560
561  // Walk through the GEP type indices, checking the types that this indexes
562  // into.
563  for (; I != E; ++I) {
564    // Ignore struct elements, no extra checking needed for these.
565    if (isa<StructType>(*I))
566      continue;
567
568    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
569    if (!IdxVal) return MarkUnsafe(Info);
570
571    // Are all indices still zero?
572    IsAllZeroIndices &= IdxVal->isZero();
573
574    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
575      // This GEP indexes an array.  Verify that this is an in-range constant
576      // integer. Specifically, consider A[0][i]. We cannot know that the user
577      // isn't doing invalid things like allowing i to index an out-of-range
578      // subscript that accesses A[1].  Because of this, we have to reject SROA
579      // of any accesses into structs where any of the components are variables.
580      if (IdxVal->getZExtValue() >= AT->getNumElements())
581        return MarkUnsafe(Info);
582    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
583      if (IdxVal->getZExtValue() >= VT->getNumElements())
584        return MarkUnsafe(Info);
585    }
586  }
587
588  // If there are any non-simple uses of this getelementptr, make sure to reject
589  // them.
590  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
591}
592
593/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
594/// intrinsic can be promoted by SROA.  At this point, we know that the operand
595/// of the memintrinsic is a pointer to the beginning of the allocation.
596void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
597                                          unsigned OpNo, AllocaInfo &Info) {
598  // If not constant length, give up.
599  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
600  if (!Length) return MarkUnsafe(Info);
601
602  // If not the whole aggregate, give up.
603  if (Length->getZExtValue() !=
604      TD->getTypePaddedSize(AI->getType()->getElementType()))
605    return MarkUnsafe(Info);
606
607  // We only know about memcpy/memset/memmove.
608  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
609    return MarkUnsafe(Info);
610
611  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
612  // into or out of the aggregate.
613  if (OpNo == 1)
614    Info.isMemCpyDst = true;
615  else {
616    assert(OpNo == 2);
617    Info.isMemCpySrc = true;
618  }
619}
620
621/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
622/// are
623void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
624                                          AllocaInfo &Info) {
625  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
626       UI != E; ++UI) {
627    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
628      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
629    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
630      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
631    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
632      if (SI->isVolatile())
633        return MarkUnsafe(Info);
634
635      // If storing the entire alloca in one chunk through a bitcasted pointer
636      // to integer, we can transform it.  This happens (for example) when you
637      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
638      // memcpy case and occurs in various "byval" cases and emulated memcpys.
639      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
640          TD->getTypePaddedSize(SI->getOperand(0)->getType()) ==
641          TD->getTypePaddedSize(AI->getType()->getElementType())) {
642        Info.isMemCpyDst = true;
643        continue;
644      }
645      return MarkUnsafe(Info);
646    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
647      if (LI->isVolatile())
648        return MarkUnsafe(Info);
649
650      // If loading the entire alloca in one chunk through a bitcasted pointer
651      // to integer, we can transform it.  This happens (for example) when you
652      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
653      // memcpy case and occurs in various "byval" cases and emulated memcpys.
654      if (isa<IntegerType>(LI->getType()) &&
655          TD->getTypePaddedSize(LI->getType()) ==
656          TD->getTypePaddedSize(AI->getType()->getElementType())) {
657        Info.isMemCpySrc = true;
658        continue;
659      }
660      return MarkUnsafe(Info);
661    } else if (isa<DbgInfoIntrinsic>(UI)) {
662      // If one user is DbgInfoIntrinsic then check if all users are
663      // DbgInfoIntrinsics.
664      if (OnlyUsedByDbgInfoIntrinsics(BC)) {
665        Info.needsCleanup = true;
666        return;
667      }
668      else
669        MarkUnsafe(Info);
670    }
671    else {
672      return MarkUnsafe(Info);
673    }
674    if (Info.isUnsafe) return;
675  }
676}
677
678/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
679/// to its first element.  Transform users of the cast to use the new values
680/// instead.
681void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
682                                      SmallVector<AllocaInst*, 32> &NewElts) {
683  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
684  while (UI != UE) {
685    Instruction *User = cast<Instruction>(*UI++);
686    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
687      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
688      if (BCU->use_empty()) BCU->eraseFromParent();
689      continue;
690    }
691
692    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
693      // This must be memcpy/memmove/memset of the entire aggregate.
694      // Split into one per element.
695      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
696      continue;
697    }
698
699    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
700      // If this is a store of the entire alloca from an integer, rewrite it.
701      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
702      continue;
703    }
704
705    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
706      // If this is a load of the entire alloca to an integer, rewrite it.
707      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
708      continue;
709    }
710
711    // Otherwise it must be some other user of a gep of the first pointer.  Just
712    // leave these alone.
713    continue;
714  }
715}
716
717/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
718/// Rewrite it to copy or set the elements of the scalarized memory.
719void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
720                                        AllocationInst *AI,
721                                        SmallVector<AllocaInst*, 32> &NewElts) {
722
723  // If this is a memcpy/memmove, construct the other pointer as the
724  // appropriate type.
725  Value *OtherPtr = 0;
726  if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
727    if (BCInst == MCI->getRawDest())
728      OtherPtr = MCI->getRawSource();
729    else {
730      assert(BCInst == MCI->getRawSource());
731      OtherPtr = MCI->getRawDest();
732    }
733  } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
734    if (BCInst == MMI->getRawDest())
735      OtherPtr = MMI->getRawSource();
736    else {
737      assert(BCInst == MMI->getRawSource());
738      OtherPtr = MMI->getRawDest();
739    }
740  }
741
742  // If there is an other pointer, we want to convert it to the same pointer
743  // type as AI has, so we can GEP through it safely.
744  if (OtherPtr) {
745    // It is likely that OtherPtr is a bitcast, if so, remove it.
746    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
747      OtherPtr = BC->getOperand(0);
748    // All zero GEPs are effectively bitcasts.
749    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
750      if (GEP->hasAllZeroIndices())
751        OtherPtr = GEP->getOperand(0);
752
753    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
754      if (BCE->getOpcode() == Instruction::BitCast)
755        OtherPtr = BCE->getOperand(0);
756
757    // If the pointer is not the right type, insert a bitcast to the right
758    // type.
759    if (OtherPtr->getType() != AI->getType())
760      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
761                                 MI);
762  }
763
764  // Process each element of the aggregate.
765  Value *TheFn = MI->getOperand(0);
766  const Type *BytePtrTy = MI->getRawDest()->getType();
767  bool SROADest = MI->getRawDest() == BCInst;
768
769  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
770
771  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
772    // If this is a memcpy/memmove, emit a GEP of the other element address.
773    Value *OtherElt = 0;
774    if (OtherPtr) {
775      Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
776      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
777                                           OtherPtr->getNameStr()+"."+utostr(i),
778                                           MI);
779    }
780
781    Value *EltPtr = NewElts[i];
782    const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
783
784    // If we got down to a scalar, insert a load or store as appropriate.
785    if (EltTy->isSingleValueType()) {
786      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
787        Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
788                                  MI);
789        new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
790        continue;
791      }
792      assert(isa<MemSetInst>(MI));
793
794      // If the stored element is zero (common case), just store a null
795      // constant.
796      Constant *StoreVal;
797      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
798        if (CI->isZero()) {
799          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
800        } else {
801          // If EltTy is a vector type, get the element type.
802          const Type *ValTy = EltTy;
803          if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
804            ValTy = VTy->getElementType();
805
806          // Construct an integer with the right value.
807          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
808          APInt OneVal(EltSize, CI->getZExtValue());
809          APInt TotalVal(OneVal);
810          // Set each byte.
811          for (unsigned i = 0; 8*i < EltSize; ++i) {
812            TotalVal = TotalVal.shl(8);
813            TotalVal |= OneVal;
814          }
815
816          // Convert the integer value to the appropriate type.
817          StoreVal = ConstantInt::get(TotalVal);
818          if (isa<PointerType>(ValTy))
819            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
820          else if (ValTy->isFloatingPoint())
821            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
822          assert(StoreVal->getType() == ValTy && "Type mismatch!");
823
824          // If the requested value was a vector constant, create it.
825          if (EltTy != ValTy) {
826            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
827            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
828            StoreVal = ConstantVector::get(&Elts[0], NumElts);
829          }
830        }
831        new StoreInst(StoreVal, EltPtr, MI);
832        continue;
833      }
834      // Otherwise, if we're storing a byte variable, use a memset call for
835      // this element.
836    }
837
838    // Cast the element pointer to BytePtrTy.
839    if (EltPtr->getType() != BytePtrTy)
840      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
841
842    // Cast the other pointer (if we have one) to BytePtrTy.
843    if (OtherElt && OtherElt->getType() != BytePtrTy)
844      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
845                                 MI);
846
847    unsigned EltSize = TD->getTypePaddedSize(EltTy);
848
849    // Finally, insert the meminst for this element.
850    if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
851      Value *Ops[] = {
852        SROADest ? EltPtr : OtherElt,  // Dest ptr
853        SROADest ? OtherElt : EltPtr,  // Src ptr
854        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
855        Zero  // Align
856      };
857      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
858    } else {
859      assert(isa<MemSetInst>(MI));
860      Value *Ops[] = {
861        EltPtr, MI->getOperand(2),  // Dest, Value,
862        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
863        Zero  // Align
864      };
865      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
866    }
867  }
868  MI->eraseFromParent();
869}
870
871/// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
872/// overwrites the entire allocation.  Extract out the pieces of the stored
873/// integer and store them individually.
874void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
875                                         AllocationInst *AI,
876                                         SmallVector<AllocaInst*, 32> &NewElts){
877  // Extract each element out of the integer according to its structure offset
878  // and store the element value to the individual alloca.
879  Value *SrcVal = SI->getOperand(0);
880  const Type *AllocaEltTy = AI->getType()->getElementType();
881  uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
882
883  // If this isn't a store of an integer to the whole alloca, it may be a store
884  // to the first element.  Just ignore the store in this case and normal SROA
885  // will handle it.
886  if (!isa<IntegerType>(SrcVal->getType()) ||
887      TD->getTypePaddedSizeInBits(SrcVal->getType()) != AllocaSizeBits)
888    return;
889
890  DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
891
892  // There are two forms here: AI could be an array or struct.  Both cases
893  // have different ways to compute the element offset.
894  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
895    const StructLayout *Layout = TD->getStructLayout(EltSTy);
896
897    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
898      // Get the number of bits to shift SrcVal to get the value.
899      const Type *FieldTy = EltSTy->getElementType(i);
900      uint64_t Shift = Layout->getElementOffsetInBits(i);
901
902      if (TD->isBigEndian())
903        Shift = AllocaSizeBits-Shift-TD->getTypePaddedSizeInBits(FieldTy);
904
905      Value *EltVal = SrcVal;
906      if (Shift) {
907        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
908        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
909                                            "sroa.store.elt", SI);
910      }
911
912      // Truncate down to an integer of the right size.
913      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
914
915      // Ignore zero sized fields like {}, they obviously contain no data.
916      if (FieldSizeBits == 0) continue;
917
918      if (FieldSizeBits != AllocaSizeBits)
919        EltVal = new TruncInst(EltVal, IntegerType::get(FieldSizeBits), "", SI);
920      Value *DestField = NewElts[i];
921      if (EltVal->getType() == FieldTy) {
922        // Storing to an integer field of this size, just do it.
923      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
924        // Bitcast to the right element type (for fp/vector values).
925        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
926      } else {
927        // Otherwise, bitcast the dest pointer (for aggregates).
928        DestField = new BitCastInst(DestField,
929                                    PointerType::getUnqual(EltVal->getType()),
930                                    "", SI);
931      }
932      new StoreInst(EltVal, DestField, SI);
933    }
934
935  } else {
936    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
937    const Type *ArrayEltTy = ATy->getElementType();
938    uint64_t ElementOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
939    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
940
941    uint64_t Shift;
942
943    if (TD->isBigEndian())
944      Shift = AllocaSizeBits-ElementOffset;
945    else
946      Shift = 0;
947
948    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
949      // Ignore zero sized fields like {}, they obviously contain no data.
950      if (ElementSizeBits == 0) continue;
951
952      Value *EltVal = SrcVal;
953      if (Shift) {
954        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
955        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
956                                            "sroa.store.elt", SI);
957      }
958
959      // Truncate down to an integer of the right size.
960      if (ElementSizeBits != AllocaSizeBits)
961        EltVal = new TruncInst(EltVal, IntegerType::get(ElementSizeBits),"",SI);
962      Value *DestField = NewElts[i];
963      if (EltVal->getType() == ArrayEltTy) {
964        // Storing to an integer field of this size, just do it.
965      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
966        // Bitcast to the right element type (for fp/vector values).
967        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
968      } else {
969        // Otherwise, bitcast the dest pointer (for aggregates).
970        DestField = new BitCastInst(DestField,
971                                    PointerType::getUnqual(EltVal->getType()),
972                                    "", SI);
973      }
974      new StoreInst(EltVal, DestField, SI);
975
976      if (TD->isBigEndian())
977        Shift -= ElementOffset;
978      else
979        Shift += ElementOffset;
980    }
981  }
982
983  SI->eraseFromParent();
984}
985
986/// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
987/// an integer.  Load the individual pieces to form the aggregate value.
988void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
989                                        SmallVector<AllocaInst*, 32> &NewElts) {
990  // Extract each element out of the NewElts according to its structure offset
991  // and form the result value.
992  const Type *AllocaEltTy = AI->getType()->getElementType();
993  uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
994
995  // If this isn't a load of the whole alloca to an integer, it may be a load
996  // of the first element.  Just ignore the load in this case and normal SROA
997  // will handle it.
998  if (!isa<IntegerType>(LI->getType()) ||
999      TD->getTypePaddedSizeInBits(LI->getType()) != AllocaSizeBits)
1000    return;
1001
1002  DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
1003
1004  // There are two forms here: AI could be an array or struct.  Both cases
1005  // have different ways to compute the element offset.
1006  const StructLayout *Layout = 0;
1007  uint64_t ArrayEltBitOffset = 0;
1008  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1009    Layout = TD->getStructLayout(EltSTy);
1010  } else {
1011    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1012    ArrayEltBitOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
1013  }
1014
1015  Value *ResultVal = Constant::getNullValue(LI->getType());
1016
1017  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1018    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1019    // the pointer to an integer of the same size before doing the load.
1020    Value *SrcField = NewElts[i];
1021    const Type *FieldTy =
1022      cast<PointerType>(SrcField->getType())->getElementType();
1023    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1024
1025    // Ignore zero sized fields like {}, they obviously contain no data.
1026    if (FieldSizeBits == 0) continue;
1027
1028    const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits);
1029    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1030        !isa<VectorType>(FieldTy))
1031      SrcField = new BitCastInst(SrcField, PointerType::getUnqual(FieldIntTy),
1032                                 "", LI);
1033    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1034
1035    // If SrcField is a fp or vector of the right size but that isn't an
1036    // integer type, bitcast to an integer so we can shift it.
1037    if (SrcField->getType() != FieldIntTy)
1038      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1039
1040    // Zero extend the field to be the same size as the final alloca so that
1041    // we can shift and insert it.
1042    if (SrcField->getType() != ResultVal->getType())
1043      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1044
1045    // Determine the number of bits to shift SrcField.
1046    uint64_t Shift;
1047    if (Layout) // Struct case.
1048      Shift = Layout->getElementOffsetInBits(i);
1049    else  // Array case.
1050      Shift = i*ArrayEltBitOffset;
1051
1052    if (TD->isBigEndian())
1053      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1054
1055    if (Shift) {
1056      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1057      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1058    }
1059
1060    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1061  }
1062
1063  LI->replaceAllUsesWith(ResultVal);
1064  LI->eraseFromParent();
1065}
1066
1067
1068/// HasPadding - Return true if the specified type has any structure or
1069/// alignment padding, false otherwise.
1070static bool HasPadding(const Type *Ty, const TargetData &TD) {
1071  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1072    const StructLayout *SL = TD.getStructLayout(STy);
1073    unsigned PrevFieldBitOffset = 0;
1074    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1075      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1076
1077      // Padding in sub-elements?
1078      if (HasPadding(STy->getElementType(i), TD))
1079        return true;
1080
1081      // Check to see if there is any padding between this element and the
1082      // previous one.
1083      if (i) {
1084        unsigned PrevFieldEnd =
1085        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1086        if (PrevFieldEnd < FieldBitOffset)
1087          return true;
1088      }
1089
1090      PrevFieldBitOffset = FieldBitOffset;
1091    }
1092
1093    //  Check for tail padding.
1094    if (unsigned EltCount = STy->getNumElements()) {
1095      unsigned PrevFieldEnd = PrevFieldBitOffset +
1096                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1097      if (PrevFieldEnd < SL->getSizeInBits())
1098        return true;
1099    }
1100
1101  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1102    return HasPadding(ATy->getElementType(), TD);
1103  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1104    return HasPadding(VTy->getElementType(), TD);
1105  }
1106  return TD.getTypeSizeInBits(Ty) != TD.getTypePaddedSizeInBits(Ty);
1107}
1108
1109/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1110/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1111/// or 1 if safe after canonicalization has been performed.
1112///
1113int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
1114  // Loop over the use list of the alloca.  We can only transform it if all of
1115  // the users are safe to transform.
1116  AllocaInfo Info;
1117
1118  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1119       I != E; ++I) {
1120    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1121    if (Info.isUnsafe) {
1122      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
1123      return 0;
1124    }
1125  }
1126
1127  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1128  // source and destination, we have to be careful.  In particular, the memcpy
1129  // could be moving around elements that live in structure padding of the LLVM
1130  // types, but may actually be used.  In these cases, we refuse to promote the
1131  // struct.
1132  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1133      HasPadding(AI->getType()->getElementType(), *TD))
1134    return 0;
1135
1136  // If we require cleanup, return 1, otherwise return 3.
1137  return Info.needsCleanup ? 1 : 3;
1138}
1139
1140/// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
1141/// is canonicalized here.
1142void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
1143  gep_type_iterator I = gep_type_begin(GEPI);
1144  ++I;
1145
1146  const ArrayType *AT = dyn_cast<ArrayType>(*I);
1147  if (!AT)
1148    return;
1149
1150  uint64_t NumElements = AT->getNumElements();
1151
1152  if (isa<ConstantInt>(I.getOperand()))
1153    return;
1154
1155  if (NumElements == 1) {
1156    GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
1157    return;
1158  }
1159
1160  assert(NumElements == 2 && "Unhandled case!");
1161  // All users of the GEP must be loads.  At each use of the GEP, insert
1162  // two loads of the appropriate indexed GEP and select between them.
1163  Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
1164                              Constant::getNullValue(I.getOperand()->getType()),
1165                              "isone", GEPI);
1166  // Insert the new GEP instructions, which are properly indexed.
1167  SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1168  Indices[1] = Constant::getNullValue(Type::Int32Ty);
1169  Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1170                                             Indices.begin(),
1171                                             Indices.end(),
1172                                             GEPI->getName()+".0", GEPI);
1173  Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
1174  Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1175                                            Indices.begin(),
1176                                            Indices.end(),
1177                                            GEPI->getName()+".1", GEPI);
1178  // Replace all loads of the variable index GEP with loads from both
1179  // indexes and a select.
1180  while (!GEPI->use_empty()) {
1181    LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1182    Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1183    Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
1184    Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1185    LI->replaceAllUsesWith(R);
1186    LI->eraseFromParent();
1187  }
1188  GEPI->eraseFromParent();
1189}
1190
1191
1192/// CleanupAllocaUsers - If SROA reported that it can promote the specified
1193/// allocation, but only if cleaned up, perform the cleanups required.
1194void SROA::CleanupAllocaUsers(AllocationInst *AI) {
1195  // At this point, we know that the end result will be SROA'd and promoted, so
1196  // we can insert ugly code if required so long as sroa+mem2reg will clean it
1197  // up.
1198  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1199       UI != E; ) {
1200    User *U = *UI++;
1201    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
1202      CleanupGEP(GEPI);
1203    else if (Instruction *I = dyn_cast<Instruction>(U)) {
1204      SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1205      if (OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1206        // Safe to remove debug info uses.
1207        while (!DbgInUses.empty()) {
1208          DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1209          DI->eraseFromParent();
1210        }
1211        I->eraseFromParent();
1212      }
1213    }
1214  }
1215}
1216
1217/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1218/// the offset specified by Offset (which is specified in bytes).
1219///
1220/// There are two cases we handle here:
1221///   1) A union of vector types of the same size and potentially its elements.
1222///      Here we turn element accesses into insert/extract element operations.
1223///      This promotes a <4 x float> with a store of float to the third element
1224///      into a <4 x float> that uses insert element.
1225///   2) A fully general blob of memory, which we turn into some (potentially
1226///      large) integer type with extract and insert operations where the loads
1227///      and stores would mutate the memory.
1228static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1229                        unsigned AllocaSize, const TargetData &TD) {
1230  // If this could be contributing to a vector, analyze it.
1231  if (VecTy != Type::VoidTy) { // either null or a vector type.
1232
1233    // If the In type is a vector that is the same size as the alloca, see if it
1234    // matches the existing VecTy.
1235    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1236      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1237        // If we're storing/loading a vector of the right size, allow it as a
1238        // vector.  If this the first vector we see, remember the type so that
1239        // we know the element size.
1240        if (VecTy == 0)
1241          VecTy = VInTy;
1242        return;
1243      }
1244    } else if (In == Type::FloatTy || In == Type::DoubleTy ||
1245               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1246                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1247      // If we're accessing something that could be an element of a vector, see
1248      // if the implied vector agrees with what we already have and if Offset is
1249      // compatible with it.
1250      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1251      if (Offset % EltSize == 0 &&
1252          AllocaSize % EltSize == 0 &&
1253          (VecTy == 0 ||
1254           cast<VectorType>(VecTy)->getElementType()
1255                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1256        if (VecTy == 0)
1257          VecTy = VectorType::get(In, AllocaSize/EltSize);
1258        return;
1259      }
1260    }
1261  }
1262
1263  // Otherwise, we have a case that we can't handle with an optimized vector
1264  // form.  We can still turn this into a large integer.
1265  VecTy = Type::VoidTy;
1266}
1267
1268/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1269/// its accesses to use a to single vector type, return true, and set VecTy to
1270/// the new type.  If we could convert the alloca into a single promotable
1271/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
1272/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
1273/// is the current offset from the base of the alloca being analyzed.
1274///
1275/// If we see at least one access to the value that is as a vector type, set the
1276/// SawVec flag.
1277///
1278bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1279                              bool &SawVec, uint64_t Offset,
1280                              unsigned AllocaSize) {
1281  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1282    Instruction *User = cast<Instruction>(*UI);
1283
1284    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1285      // Don't break volatile loads.
1286      if (LI->isVolatile())
1287        return false;
1288      MergeInType(LI->getType(), Offset, VecTy, AllocaSize, *TD);
1289      SawVec |= isa<VectorType>(LI->getType());
1290      continue;
1291    }
1292
1293    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1294      // Storing the pointer, not into the value?
1295      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1296      MergeInType(SI->getOperand(0)->getType(), Offset, VecTy, AllocaSize, *TD);
1297      SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1298      continue;
1299    }
1300
1301    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1302      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1303                              AllocaSize))
1304        return false;
1305      IsNotTrivial = true;
1306      continue;
1307    }
1308
1309    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1310      // If this is a GEP with a variable indices, we can't handle it.
1311      if (!GEP->hasAllConstantIndices())
1312        return false;
1313
1314      // Compute the offset that this GEP adds to the pointer.
1315      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1316      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1317                                                &Indices[0], Indices.size());
1318      // See if all uses can be converted.
1319      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1320                              AllocaSize))
1321        return false;
1322      IsNotTrivial = true;
1323      continue;
1324    }
1325
1326    // If this is a constant sized memset of a constant value (e.g. 0) we can
1327    // handle it.
1328    if (isa<MemSetInst>(User) &&
1329        // Store of constant value.
1330        isa<ConstantInt>(User->getOperand(2)) &&
1331        // Store with constant size.
1332        isa<ConstantInt>(User->getOperand(3))) {
1333      VecTy = Type::VoidTy;
1334      IsNotTrivial = true;
1335      continue;
1336    }
1337
1338    // Otherwise, we cannot handle this!
1339    return false;
1340  }
1341
1342  return true;
1343}
1344
1345
1346/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1347/// directly.  This happens when we are converting an "integer union" to a
1348/// single integer scalar, or when we are converting a "vector union" to a
1349/// vector with insert/extractelement instructions.
1350///
1351/// Offset is an offset from the original alloca, in bits that need to be
1352/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1353void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1354  while (!Ptr->use_empty()) {
1355    Instruction *User = cast<Instruction>(Ptr->use_back());
1356
1357    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1358      ConvertUsesToScalar(CI, NewAI, Offset);
1359      CI->eraseFromParent();
1360      continue;
1361    }
1362
1363    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1364      // Compute the offset that this GEP adds to the pointer.
1365      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1366      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1367                                                &Indices[0], Indices.size());
1368      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1369      GEP->eraseFromParent();
1370      continue;
1371    }
1372
1373    IRBuilder<> Builder(User->getParent(), User);
1374
1375    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1376      // The load is a bit extract from NewAI shifted right by Offset bits.
1377      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1378      Value *NewLoadVal
1379        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1380      LI->replaceAllUsesWith(NewLoadVal);
1381      LI->eraseFromParent();
1382      continue;
1383    }
1384
1385    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1386      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1387      Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str());
1388      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1389                                             Builder);
1390      Builder.CreateStore(New, NewAI);
1391      SI->eraseFromParent();
1392      continue;
1393    }
1394
1395    // If this is a constant sized memset of a constant value (e.g. 0) we can
1396    // transform it into a store of the expanded constant value.
1397    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1398      assert(MSI->getRawDest() == Ptr && "Consistency error!");
1399      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1400      unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1401
1402      // Compute the value replicated the right number of times.
1403      APInt APVal(NumBytes*8, Val);
1404
1405      // Splat the value if non-zero.
1406      if (Val)
1407        for (unsigned i = 1; i != NumBytes; ++i)
1408          APVal |= APVal << 8;
1409
1410      Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str());
1411      Value *New = ConvertScalar_InsertValue(ConstantInt::get(APVal), Old,
1412                                             Offset, Builder);
1413      Builder.CreateStore(New, NewAI);
1414      MSI->eraseFromParent();
1415      continue;
1416    }
1417
1418
1419    assert(0 && "Unsupported operation!");
1420    abort();
1421  }
1422}
1423
1424/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1425/// or vector value FromVal, extracting the bits from the offset specified by
1426/// Offset.  This returns the value, which is of type ToType.
1427///
1428/// This happens when we are converting an "integer union" to a single
1429/// integer scalar, or when we are converting a "vector union" to a vector with
1430/// insert/extractelement instructions.
1431///
1432/// Offset is an offset from the original alloca, in bits that need to be
1433/// shifted to the right.
1434Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1435                                        uint64_t Offset, IRBuilder<> &Builder) {
1436  // If the load is of the whole new alloca, no conversion is needed.
1437  if (FromVal->getType() == ToType && Offset == 0)
1438    return FromVal;
1439
1440  // If the result alloca is a vector type, this is either an element
1441  // access or a bitcast to another vector type of the same size.
1442  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1443    if (isa<VectorType>(ToType))
1444      return Builder.CreateBitCast(FromVal, ToType, "tmp");
1445
1446    // Otherwise it must be an element access.
1447    unsigned Elt = 0;
1448    if (Offset) {
1449      unsigned EltSize = TD->getTypePaddedSizeInBits(VTy->getElementType());
1450      Elt = Offset/EltSize;
1451      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1452    }
1453    // Return the element extracted out of it.
1454    Value *V = Builder.CreateExtractElement(FromVal,
1455                                            ConstantInt::get(Type::Int32Ty,Elt),
1456                                            "tmp");
1457    if (V->getType() != ToType)
1458      V = Builder.CreateBitCast(V, ToType, "tmp");
1459    return V;
1460  }
1461
1462  // If ToType is a first class aggregate, extract out each of the pieces and
1463  // use insertvalue's to form the FCA.
1464  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1465    const StructLayout &Layout = *TD->getStructLayout(ST);
1466    Value *Res = UndefValue::get(ST);
1467    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1468      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1469                                        Offset+Layout.getElementOffsetInBits(i),
1470                                              Builder);
1471      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1472    }
1473    return Res;
1474  }
1475
1476  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1477    uint64_t EltSize = TD->getTypePaddedSizeInBits(AT->getElementType());
1478    Value *Res = UndefValue::get(AT);
1479    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1480      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1481                                              Offset+i*EltSize, Builder);
1482      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1483    }
1484    return Res;
1485  }
1486
1487  // Otherwise, this must be a union that was converted to an integer value.
1488  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1489
1490  // If this is a big-endian system and the load is narrower than the
1491  // full alloca type, we need to do a shift to get the right bits.
1492  int ShAmt = 0;
1493  if (TD->isBigEndian()) {
1494    // On big-endian machines, the lowest bit is stored at the bit offset
1495    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1496    // integers with a bitwidth that is not a multiple of 8.
1497    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1498            TD->getTypeStoreSizeInBits(ToType) - Offset;
1499  } else {
1500    ShAmt = Offset;
1501  }
1502
1503  // Note: we support negative bitwidths (with shl) which are not defined.
1504  // We do this to support (f.e.) loads off the end of a structure where
1505  // only some bits are used.
1506  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1507    FromVal = Builder.CreateLShr(FromVal, ConstantInt::get(FromVal->getType(),
1508                                                           ShAmt), "tmp");
1509  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1510    FromVal = Builder.CreateShl(FromVal, ConstantInt::get(FromVal->getType(),
1511                                                          -ShAmt), "tmp");
1512
1513  // Finally, unconditionally truncate the integer to the right width.
1514  unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1515  if (LIBitWidth < NTy->getBitWidth())
1516    FromVal = Builder.CreateTrunc(FromVal, IntegerType::get(LIBitWidth), "tmp");
1517  else if (LIBitWidth > NTy->getBitWidth())
1518    FromVal = Builder.CreateZExt(FromVal, IntegerType::get(LIBitWidth), "tmp");
1519
1520  // If the result is an integer, this is a trunc or bitcast.
1521  if (isa<IntegerType>(ToType)) {
1522    // Should be done.
1523  } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1524    // Just do a bitcast, we know the sizes match up.
1525    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1526  } else {
1527    // Otherwise must be a pointer.
1528    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1529  }
1530  assert(FromVal->getType() == ToType && "Didn't convert right?");
1531  return FromVal;
1532}
1533
1534
1535/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1536/// or vector value "Old" at the offset specified by Offset.
1537///
1538/// This happens when we are converting an "integer union" to a
1539/// single integer scalar, or when we are converting a "vector union" to a
1540/// vector with insert/extractelement instructions.
1541///
1542/// Offset is an offset from the original alloca, in bits that need to be
1543/// shifted to the right.
1544Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1545                                       uint64_t Offset, IRBuilder<> &Builder) {
1546
1547  // Convert the stored type to the actual type, shift it left to insert
1548  // then 'or' into place.
1549  const Type *AllocaType = Old->getType();
1550
1551  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1552    // If the result alloca is a vector type, this is either an element
1553    // access or a bitcast to another vector type.
1554    if (isa<VectorType>(SV->getType())) {
1555      SV = Builder.CreateBitCast(SV, AllocaType, "tmp");
1556    } else {
1557      // Must be an element insertion.
1558      unsigned Elt = Offset/TD->getTypePaddedSizeInBits(VTy->getElementType());
1559
1560      if (SV->getType() != VTy->getElementType())
1561        SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1562
1563      SV = Builder.CreateInsertElement(Old, SV,
1564                                       ConstantInt::get(Type::Int32Ty, Elt),
1565                                       "tmp");
1566    }
1567    return SV;
1568  }
1569
1570  // If SV is a first-class aggregate value, insert each value recursively.
1571  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1572    const StructLayout &Layout = *TD->getStructLayout(ST);
1573    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1574      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1575      Old = ConvertScalar_InsertValue(Elt, Old,
1576                                      Offset+Layout.getElementOffsetInBits(i),
1577                                      Builder);
1578    }
1579    return Old;
1580  }
1581
1582  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1583    uint64_t EltSize = TD->getTypePaddedSizeInBits(AT->getElementType());
1584    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1585      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1586      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1587    }
1588    return Old;
1589  }
1590
1591  // If SV is a float, convert it to the appropriate integer type.
1592  // If it is a pointer, do the same.
1593  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1594  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1595  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1596  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1597  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1598    SV = Builder.CreateBitCast(SV, IntegerType::get(SrcWidth), "tmp");
1599  else if (isa<PointerType>(SV->getType()))
1600    SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(), "tmp");
1601
1602  // Zero extend or truncate the value if needed.
1603  if (SV->getType() != AllocaType) {
1604    if (SV->getType()->getPrimitiveSizeInBits() <
1605             AllocaType->getPrimitiveSizeInBits())
1606      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1607    else {
1608      // Truncation may be needed if storing more than the alloca can hold
1609      // (undefined behavior).
1610      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1611      SrcWidth = DestWidth;
1612      SrcStoreWidth = DestStoreWidth;
1613    }
1614  }
1615
1616  // If this is a big-endian system and the store is narrower than the
1617  // full alloca type, we need to do a shift to get the right bits.
1618  int ShAmt = 0;
1619  if (TD->isBigEndian()) {
1620    // On big-endian machines, the lowest bit is stored at the bit offset
1621    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1622    // integers with a bitwidth that is not a multiple of 8.
1623    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1624  } else {
1625    ShAmt = Offset;
1626  }
1627
1628  // Note: we support negative bitwidths (with shr) which are not defined.
1629  // We do this to support (f.e.) stores off the end of a structure where
1630  // only some bits in the structure are set.
1631  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1632  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1633    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt), "tmp");
1634    Mask <<= ShAmt;
1635  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1636    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt), "tmp");
1637    Mask = Mask.lshr(-ShAmt);
1638  }
1639
1640  // Mask out the bits we are about to insert from the old value, and or
1641  // in the new bits.
1642  if (SrcWidth != DestWidth) {
1643    assert(DestWidth > SrcWidth);
1644    Old = Builder.CreateAnd(Old, ConstantInt::get(~Mask), "mask");
1645    SV = Builder.CreateOr(Old, SV, "ins");
1646  }
1647  return SV;
1648}
1649
1650
1651
1652/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1653/// some part of a constant global variable.  This intentionally only accepts
1654/// constant expressions because we don't can't rewrite arbitrary instructions.
1655static bool PointsToConstantGlobal(Value *V) {
1656  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1657    return GV->isConstant();
1658  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1659    if (CE->getOpcode() == Instruction::BitCast ||
1660        CE->getOpcode() == Instruction::GetElementPtr)
1661      return PointsToConstantGlobal(CE->getOperand(0));
1662  return false;
1663}
1664
1665/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1666/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1667/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1668/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1669/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1670/// the alloca, and if the source pointer is a pointer to a constant  global, we
1671/// can optimize this.
1672static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1673                                           bool isOffset) {
1674  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1675    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1676      // Ignore non-volatile loads, they are always ok.
1677      if (!LI->isVolatile())
1678        continue;
1679
1680    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1681      // If uses of the bitcast are ok, we are ok.
1682      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1683        return false;
1684      continue;
1685    }
1686    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1687      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1688      // doesn't, it does.
1689      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1690                                         isOffset || !GEP->hasAllZeroIndices()))
1691        return false;
1692      continue;
1693    }
1694
1695    // If this is isn't our memcpy/memmove, reject it as something we can't
1696    // handle.
1697    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1698      return false;
1699
1700    // If we already have seen a copy, reject the second one.
1701    if (TheCopy) return false;
1702
1703    // If the pointer has been offset from the start of the alloca, we can't
1704    // safely handle this.
1705    if (isOffset) return false;
1706
1707    // If the memintrinsic isn't using the alloca as the dest, reject it.
1708    if (UI.getOperandNo() != 1) return false;
1709
1710    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1711
1712    // If the source of the memcpy/move is not a constant global, reject it.
1713    if (!PointsToConstantGlobal(MI->getOperand(2)))
1714      return false;
1715
1716    // Otherwise, the transform is safe.  Remember the copy instruction.
1717    TheCopy = MI;
1718  }
1719  return true;
1720}
1721
1722/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1723/// modified by a copy from a constant global.  If we can prove this, we can
1724/// replace any uses of the alloca with uses of the global directly.
1725Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1726  Instruction *TheCopy = 0;
1727  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1728    return TheCopy;
1729  return 0;
1730}
1731