ScalarReplAggregates.cpp revision 3c3af5d15569d708d2dc8f13351bc77056b4d70d
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/PromoteMemToReg.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/IRBuilder.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/Statistic.h"
44using namespace llvm;
45
46STATISTIC(NumReplaced,  "Number of allocas broken up");
47STATISTIC(NumPromoted,  "Number of allocas promoted");
48STATISTIC(NumConverted, "Number of aggregates converted to scalar");
49STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
50
51namespace {
52  struct SROA : public FunctionPass {
53    static char ID; // Pass identification, replacement for typeid
54    explicit SROA(signed T = -1) : FunctionPass(&ID) {
55      if (T == -1)
56        SRThreshold = 128;
57      else
58        SRThreshold = T;
59    }
60
61    bool runOnFunction(Function &F);
62
63    bool performScalarRepl(Function &F);
64    bool performPromotion(Function &F);
65
66    // getAnalysisUsage - This pass does not require any passes, but we know it
67    // will not alter the CFG, so say so.
68    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69      AU.addRequired<DominatorTree>();
70      AU.addRequired<DominanceFrontier>();
71      AU.setPreservesCFG();
72    }
73
74  private:
75    TargetData *TD;
76
77    /// DeadInsts - Keep track of instructions we have made dead, so that
78    /// we can remove them after we are done working.
79    SmallVector<Value*, 32> DeadInsts;
80
81    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
82    /// information about the uses.  All these fields are initialized to false
83    /// and set to true when something is learned.
84    struct AllocaInfo {
85      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
86      bool isUnsafe : 1;
87
88      /// needsCleanup - This is set to true if there is some use of the alloca
89      /// that requires cleanup.
90      bool needsCleanup : 1;
91
92      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
93      bool isMemCpySrc : 1;
94
95      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
96      bool isMemCpyDst : 1;
97
98      AllocaInfo()
99        : isUnsafe(false), needsCleanup(false),
100          isMemCpySrc(false), isMemCpyDst(false) {}
101    };
102
103    unsigned SRThreshold;
104
105    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
106
107    int isSafeAllocaToScalarRepl(AllocaInst *AI);
108
109    void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
110                             AllocaInfo &Info);
111    void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
112                   AllocaInfo &Info);
113    void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
114                         const Type *MemOpType, bool isStore, AllocaInfo &Info);
115    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
116    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
117                                  const Type *&IdxTy);
118
119    void DoScalarReplacement(AllocaInst *AI,
120                             std::vector<AllocaInst*> &WorkList);
121    void DeleteDeadInstructions();
122    void CleanupAllocaUsers(Value *V);
123    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocaInst *Base);
124
125    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
126                              SmallVector<AllocaInst*, 32> &NewElts);
127    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
128                        SmallVector<AllocaInst*, 32> &NewElts);
129    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
130                    SmallVector<AllocaInst*, 32> &NewElts);
131    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
132                                      AllocaInst *AI,
133                                      SmallVector<AllocaInst*, 32> &NewElts);
134    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
135                                       SmallVector<AllocaInst*, 32> &NewElts);
136    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
137                                      SmallVector<AllocaInst*, 32> &NewElts);
138
139    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
140                            bool &SawVec, uint64_t Offset, unsigned AllocaSize);
141    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
142    Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
143                                     uint64_t Offset, IRBuilder<> &Builder);
144    Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
145                                     uint64_t Offset, IRBuilder<> &Builder);
146    static Instruction *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
147  };
148}
149
150char SROA::ID = 0;
151static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
152
153// Public interface to the ScalarReplAggregates pass
154FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
155  return new SROA(Threshold);
156}
157
158
159bool SROA::runOnFunction(Function &F) {
160  TD = getAnalysisIfAvailable<TargetData>();
161
162  bool Changed = performPromotion(F);
163
164  // FIXME: ScalarRepl currently depends on TargetData more than it
165  // theoretically needs to. It should be refactored in order to support
166  // target-independent IR. Until this is done, just skip the actual
167  // scalar-replacement portion of this pass.
168  if (!TD) return Changed;
169
170  while (1) {
171    bool LocalChange = performScalarRepl(F);
172    if (!LocalChange) break;   // No need to repromote if no scalarrepl
173    Changed = true;
174    LocalChange = performPromotion(F);
175    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
176  }
177
178  return Changed;
179}
180
181
182bool SROA::performPromotion(Function &F) {
183  std::vector<AllocaInst*> Allocas;
184  DominatorTree         &DT = getAnalysis<DominatorTree>();
185  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
186
187  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
188
189  bool Changed = false;
190
191  while (1) {
192    Allocas.clear();
193
194    // Find allocas that are safe to promote, by looking at all instructions in
195    // the entry node
196    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
197      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
198        if (isAllocaPromotable(AI))
199          Allocas.push_back(AI);
200
201    if (Allocas.empty()) break;
202
203    PromoteMemToReg(Allocas, DT, DF);
204    NumPromoted += Allocas.size();
205    Changed = true;
206  }
207
208  return Changed;
209}
210
211/// getNumSAElements - Return the number of elements in the specific struct or
212/// array.
213static uint64_t getNumSAElements(const Type *T) {
214  if (const StructType *ST = dyn_cast<StructType>(T))
215    return ST->getNumElements();
216  return cast<ArrayType>(T)->getNumElements();
217}
218
219// performScalarRepl - This algorithm is a simple worklist driven algorithm,
220// which runs on all of the malloc/alloca instructions in the function, removing
221// them if they are only used by getelementptr instructions.
222//
223bool SROA::performScalarRepl(Function &F) {
224  std::vector<AllocaInst*> WorkList;
225
226  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
227  BasicBlock &BB = F.getEntryBlock();
228  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
229    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
230      WorkList.push_back(A);
231
232  // Process the worklist
233  bool Changed = false;
234  while (!WorkList.empty()) {
235    AllocaInst *AI = WorkList.back();
236    WorkList.pop_back();
237
238    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
239    // with unused elements.
240    if (AI->use_empty()) {
241      AI->eraseFromParent();
242      continue;
243    }
244
245    // If this alloca is impossible for us to promote, reject it early.
246    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
247      continue;
248
249    // Check to see if this allocation is only modified by a memcpy/memmove from
250    // a constant global.  If this is the case, we can change all users to use
251    // the constant global instead.  This is commonly produced by the CFE by
252    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
253    // is only subsequently read.
254    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
255      DEBUG(errs() << "Found alloca equal to global: " << *AI << '\n');
256      DEBUG(errs() << "  memcpy = " << *TheCopy << '\n');
257      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
258      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
259      TheCopy->eraseFromParent();  // Don't mutate the global.
260      AI->eraseFromParent();
261      ++NumGlobals;
262      Changed = true;
263      continue;
264    }
265
266    // Check to see if we can perform the core SROA transformation.  We cannot
267    // transform the allocation instruction if it is an array allocation
268    // (allocations OF arrays are ok though), and an allocation of a scalar
269    // value cannot be decomposed at all.
270    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
271
272    // Do not promote [0 x %struct].
273    if (AllocaSize == 0) continue;
274
275    // Do not promote any struct whose size is too big.
276    if (AllocaSize > SRThreshold) continue;
277
278    if ((isa<StructType>(AI->getAllocatedType()) ||
279         isa<ArrayType>(AI->getAllocatedType())) &&
280        // Do not promote any struct into more than "32" separate vars.
281        getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
282      // Check that all of the users of the allocation are capable of being
283      // transformed.
284      switch (isSafeAllocaToScalarRepl(AI)) {
285      default: llvm_unreachable("Unexpected value!");
286      case 0:  // Not safe to scalar replace.
287        break;
288      case 1:  // Safe, but requires cleanup/canonicalizations first
289        CleanupAllocaUsers(AI);
290        // FALL THROUGH.
291      case 3:  // Safe to scalar replace.
292        DoScalarReplacement(AI, WorkList);
293        Changed = true;
294        continue;
295      }
296    }
297
298    // If we can turn this aggregate value (potentially with casts) into a
299    // simple scalar value that can be mem2reg'd into a register value.
300    // IsNotTrivial tracks whether this is something that mem2reg could have
301    // promoted itself.  If so, we don't want to transform it needlessly.  Note
302    // that we can't just check based on the type: the alloca may be of an i32
303    // but that has pointer arithmetic to set byte 3 of it or something.
304    bool IsNotTrivial = false;
305    const Type *VectorTy = 0;
306    bool HadAVector = false;
307    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
308                           0, unsigned(AllocaSize)) && IsNotTrivial) {
309      AllocaInst *NewAI;
310      // If we were able to find a vector type that can handle this with
311      // insert/extract elements, and if there was at least one use that had
312      // a vector type, promote this to a vector.  We don't want to promote
313      // random stuff that doesn't use vectors (e.g. <9 x double>) because then
314      // we just get a lot of insert/extracts.  If at least one vector is
315      // involved, then we probably really do have a union of vector/array.
316      if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
317        DEBUG(errs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
318                     << *VectorTy << '\n');
319
320        // Create and insert the vector alloca.
321        NewAI = new AllocaInst(VectorTy, 0, "",  AI->getParent()->begin());
322        ConvertUsesToScalar(AI, NewAI, 0);
323      } else {
324        DEBUG(errs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
325
326        // Create and insert the integer alloca.
327        const Type *NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
328        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
329        ConvertUsesToScalar(AI, NewAI, 0);
330      }
331      NewAI->takeName(AI);
332      AI->eraseFromParent();
333      ++NumConverted;
334      Changed = true;
335      continue;
336    }
337
338    // Otherwise, couldn't process this alloca.
339  }
340
341  return Changed;
342}
343
344/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
345/// predicate, do SROA now.
346void SROA::DoScalarReplacement(AllocaInst *AI,
347                               std::vector<AllocaInst*> &WorkList) {
348  DEBUG(errs() << "Found inst to SROA: " << *AI << '\n');
349  SmallVector<AllocaInst*, 32> ElementAllocas;
350  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
351    ElementAllocas.reserve(ST->getNumContainedTypes());
352    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
353      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
354                                      AI->getAlignment(),
355                                      AI->getName() + "." + Twine(i), AI);
356      ElementAllocas.push_back(NA);
357      WorkList.push_back(NA);  // Add to worklist for recursive processing
358    }
359  } else {
360    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
361    ElementAllocas.reserve(AT->getNumElements());
362    const Type *ElTy = AT->getElementType();
363    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
364      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
365                                      AI->getName() + "." + Twine(i), AI);
366      ElementAllocas.push_back(NA);
367      WorkList.push_back(NA);  // Add to worklist for recursive processing
368    }
369  }
370
371  // Now that we have created the new alloca instructions, rewrite all the
372  // uses of the old alloca.
373  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
374
375  // Now erase any instructions that were made dead while rewriting the alloca.
376  DeleteDeadInstructions();
377  AI->eraseFromParent();
378
379  NumReplaced++;
380}
381
382/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
383/// recursively including all their operands that become trivially dead.
384void SROA::DeleteDeadInstructions() {
385  while (!DeadInsts.empty()) {
386    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
387
388    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
389      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
390        // Zero out the operand and see if it becomes trivially dead.
391        // (But, don't add allocas to the dead instruction list -- they are
392        // already on the worklist and will be deleted separately.)
393        *OI = 0;
394        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
395          DeadInsts.push_back(U);
396      }
397
398    I->eraseFromParent();
399  }
400}
401
402/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
403/// performing scalar replacement of alloca AI.  The results are flagged in
404/// the Info parameter.  Offset indicates the position within AI that is
405/// referenced by this instruction.
406void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
407                               AllocaInfo &Info) {
408  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
409    Instruction *User = cast<Instruction>(*UI);
410
411    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
412      isSafeForScalarRepl(BC, AI, Offset, Info);
413    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
414      uint64_t GEPOffset = Offset;
415      isSafeGEP(GEPI, AI, GEPOffset, Info);
416      if (!Info.isUnsafe)
417        isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
418    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
419      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
420      if (Length)
421        isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
422                        UI.getOperandNo() == 1, Info);
423      else
424        MarkUnsafe(Info);
425    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
426      if (!LI->isVolatile()) {
427        const Type *LIType = LI->getType();
428        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
429                        LIType, false, Info);
430      } else
431        MarkUnsafe(Info);
432    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
433      // Store is ok if storing INTO the pointer, not storing the pointer
434      if (!SI->isVolatile() && SI->getOperand(0) != I) {
435        const Type *SIType = SI->getOperand(0)->getType();
436        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
437                        SIType, true, Info);
438      } else
439        MarkUnsafe(Info);
440    } else if (isa<DbgInfoIntrinsic>(UI)) {
441      // If one user is DbgInfoIntrinsic then check if all users are
442      // DbgInfoIntrinsics.
443      if (OnlyUsedByDbgInfoIntrinsics(I)) {
444        Info.needsCleanup = true;
445        return;
446      }
447      MarkUnsafe(Info);
448    } else {
449      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
450      MarkUnsafe(Info);
451    }
452    if (Info.isUnsafe) return;
453  }
454}
455
456/// isSafeGEP - Check if a GEP instruction can be handled for scalar
457/// replacement.  It is safe when all the indices are constant, in-bounds
458/// references, and when the resulting offset corresponds to an element within
459/// the alloca type.  The results are flagged in the Info parameter.  Upon
460/// return, Offset is adjusted as specified by the GEP indices.
461void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
462                     uint64_t &Offset, AllocaInfo &Info) {
463  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
464  if (GEPIt == E)
465    return;
466
467  // The first GEP index must be zero.
468  if (!isa<ConstantInt>(GEPIt.getOperand()) ||
469      !cast<ConstantInt>(GEPIt.getOperand())->isZero())
470    return MarkUnsafe(Info);
471  if (++GEPIt == E)
472    return;
473
474  // Walk through the GEP type indices, checking the types that this indexes
475  // into.
476  for (; GEPIt != E; ++GEPIt) {
477    // Ignore struct elements, no extra checking needed for these.
478    if (isa<StructType>(*GEPIt))
479      continue;
480
481    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
482    if (!IdxVal)
483      return MarkUnsafe(Info);
484
485    if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
486      // This GEP indexes an array.  Verify that this is an in-range constant
487      // integer. Specifically, consider A[0][i]. We cannot know that the user
488      // isn't doing invalid things like allowing i to index an out-of-range
489      // subscript that accesses A[1].  Because of this, we have to reject SROA
490      // of any accesses into structs where any of the components are variables.
491      if (IdxVal->getZExtValue() >= AT->getNumElements())
492        return MarkUnsafe(Info);
493    } else {
494      const VectorType *VT = cast<VectorType>(*GEPIt);
495      if (IdxVal->getZExtValue() >= VT->getNumElements())
496        return MarkUnsafe(Info);
497    }
498  }
499
500  // All the indices are safe.  Now compute the offset due to this GEP and
501  // check if the alloca has a component element at that offset.
502  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
503  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
504                                 &Indices[0], Indices.size());
505  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
506    MarkUnsafe(Info);
507}
508
509/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
510/// alloca or has an offset and size that corresponds to a component element
511/// within it.  The offset checked here may have been formed from a GEP with a
512/// pointer bitcasted to a different type.
513void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
514                           const Type *MemOpType, bool isStore,
515                           AllocaInfo &Info) {
516  // Check if this is a load/store of the entire alloca.
517  if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
518    bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
519    // This is safe for MemIntrinsics (where MemOpType is 0), integer types
520    // (which are essentially the same as the MemIntrinsics, especially with
521    // regard to copying padding between elements), or references using the
522    // aggregate type of the alloca.
523    if (!MemOpType || isa<IntegerType>(MemOpType) || UsesAggregateType) {
524      if (!UsesAggregateType) {
525        if (isStore)
526          Info.isMemCpyDst = true;
527        else
528          Info.isMemCpySrc = true;
529      }
530      return;
531    }
532  }
533  // Check if the offset/size correspond to a component within the alloca type.
534  const Type *T = AI->getAllocatedType();
535  if (TypeHasComponent(T, Offset, MemSize))
536    return;
537
538  return MarkUnsafe(Info);
539}
540
541/// TypeHasComponent - Return true if T has a component type with the
542/// specified offset and size.  If Size is zero, do not check the size.
543bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
544  const Type *EltTy;
545  uint64_t EltSize;
546  if (const StructType *ST = dyn_cast<StructType>(T)) {
547    const StructLayout *Layout = TD->getStructLayout(ST);
548    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
549    EltTy = ST->getContainedType(EltIdx);
550    EltSize = TD->getTypeAllocSize(EltTy);
551    Offset -= Layout->getElementOffset(EltIdx);
552  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
553    EltTy = AT->getElementType();
554    EltSize = TD->getTypeAllocSize(EltTy);
555    Offset %= EltSize;
556  } else {
557    return false;
558  }
559  if (Offset == 0 && (Size == 0 || EltSize == Size))
560    return true;
561  // Check if the component spans multiple elements.
562  if (Offset + Size > EltSize)
563    return false;
564  return TypeHasComponent(EltTy, Offset, Size);
565}
566
567/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
568/// the instruction I, which references it, to use the separate elements.
569/// Offset indicates the position within AI that is referenced by this
570/// instruction.
571void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
572                                SmallVector<AllocaInst*, 32> &NewElts) {
573  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
574    Instruction *User = cast<Instruction>(*UI);
575
576    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
577      RewriteBitCast(BC, AI, Offset, NewElts);
578    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
579      RewriteGEP(GEPI, AI, Offset, NewElts);
580    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
581      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
582      uint64_t MemSize = Length->getZExtValue();
583      if (Offset == 0 &&
584          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
585        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
586      // Otherwise the intrinsic can only touch a single element and the
587      // address operand will be updated, so nothing else needs to be done.
588    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
589      const Type *LIType = LI->getType();
590      if (LIType == AI->getAllocatedType()) {
591        // Replace:
592        //   %res = load { i32, i32 }* %alloc
593        // with:
594        //   %load.0 = load i32* %alloc.0
595        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
596        //   %load.1 = load i32* %alloc.1
597        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
598        // (Also works for arrays instead of structs)
599        Value *Insert = UndefValue::get(LIType);
600        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
601          Value *Load = new LoadInst(NewElts[i], "load", LI);
602          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
603        }
604        LI->replaceAllUsesWith(Insert);
605        DeadInsts.push_back(LI);
606      } else if (isa<IntegerType>(LIType) &&
607                 TD->getTypeAllocSize(LIType) ==
608                 TD->getTypeAllocSize(AI->getAllocatedType())) {
609        // If this is a load of the entire alloca to an integer, rewrite it.
610        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
611      }
612    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
613      Value *Val = SI->getOperand(0);
614      const Type *SIType = Val->getType();
615      if (SIType == AI->getAllocatedType()) {
616        // Replace:
617        //   store { i32, i32 } %val, { i32, i32 }* %alloc
618        // with:
619        //   %val.0 = extractvalue { i32, i32 } %val, 0
620        //   store i32 %val.0, i32* %alloc.0
621        //   %val.1 = extractvalue { i32, i32 } %val, 1
622        //   store i32 %val.1, i32* %alloc.1
623        // (Also works for arrays instead of structs)
624        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
625          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
626          new StoreInst(Extract, NewElts[i], SI);
627        }
628        DeadInsts.push_back(SI);
629      } else if (isa<IntegerType>(SIType) &&
630                 TD->getTypeAllocSize(SIType) ==
631                 TD->getTypeAllocSize(AI->getAllocatedType())) {
632        // If this is a store of the entire alloca from an integer, rewrite it.
633        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
634      }
635    }
636  }
637}
638
639/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
640/// and recursively continue updating all of its uses.
641void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
642                          SmallVector<AllocaInst*, 32> &NewElts) {
643  RewriteForScalarRepl(BC, AI, Offset, NewElts);
644  if (BC->getOperand(0) != AI)
645    return;
646
647  // The bitcast references the original alloca.  Replace its uses with
648  // references to the first new element alloca.
649  Instruction *Val = NewElts[0];
650  if (Val->getType() != BC->getDestTy()) {
651    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
652    Val->takeName(BC);
653  }
654  BC->replaceAllUsesWith(Val);
655  DeadInsts.push_back(BC);
656}
657
658/// FindElementAndOffset - Return the index of the element containing Offset
659/// within the specified type, which must be either a struct or an array.
660/// Sets T to the type of the element and Offset to the offset within that
661/// element.  IdxTy is set to the type of the index result to be used in a
662/// GEP instruction.
663uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
664                                    const Type *&IdxTy) {
665  uint64_t Idx = 0;
666  if (const StructType *ST = dyn_cast<StructType>(T)) {
667    const StructLayout *Layout = TD->getStructLayout(ST);
668    Idx = Layout->getElementContainingOffset(Offset);
669    T = ST->getContainedType(Idx);
670    Offset -= Layout->getElementOffset(Idx);
671    IdxTy = Type::getInt32Ty(T->getContext());
672    return Idx;
673  }
674  const ArrayType *AT = cast<ArrayType>(T);
675  T = AT->getElementType();
676  uint64_t EltSize = TD->getTypeAllocSize(T);
677  Idx = Offset / EltSize;
678  Offset -= Idx * EltSize;
679  IdxTy = Type::getInt64Ty(T->getContext());
680  return Idx;
681}
682
683/// RewriteGEP - Check if this GEP instruction moves the pointer across
684/// elements of the alloca that are being split apart, and if so, rewrite
685/// the GEP to be relative to the new element.
686void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
687                      SmallVector<AllocaInst*, 32> &NewElts) {
688  uint64_t OldOffset = Offset;
689  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
690  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
691                                 &Indices[0], Indices.size());
692
693  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
694
695  const Type *T = AI->getAllocatedType();
696  const Type *IdxTy;
697  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
698  if (GEPI->getOperand(0) == AI)
699    OldIdx = ~0ULL; // Force the GEP to be rewritten.
700
701  T = AI->getAllocatedType();
702  uint64_t EltOffset = Offset;
703  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
704
705  // If this GEP does not move the pointer across elements of the alloca
706  // being split, then it does not needs to be rewritten.
707  if (Idx == OldIdx)
708    return;
709
710  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
711  SmallVector<Value*, 8> NewArgs;
712  NewArgs.push_back(Constant::getNullValue(i32Ty));
713  while (EltOffset != 0) {
714    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
715    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
716  }
717  Instruction *Val = NewElts[Idx];
718  if (NewArgs.size() > 1) {
719    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
720                                            NewArgs.end(), "", GEPI);
721    Val->takeName(GEPI);
722  }
723  if (Val->getType() != GEPI->getType())
724    Val = new BitCastInst(Val, GEPI->getType(), Val->getNameStr(), GEPI);
725  GEPI->replaceAllUsesWith(Val);
726  DeadInsts.push_back(GEPI);
727}
728
729/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
730/// Rewrite it to copy or set the elements of the scalarized memory.
731void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
732                                        AllocaInst *AI,
733                                        SmallVector<AllocaInst*, 32> &NewElts) {
734  // If this is a memcpy/memmove, construct the other pointer as the
735  // appropriate type.  The "Other" pointer is the pointer that goes to memory
736  // that doesn't have anything to do with the alloca that we are promoting. For
737  // memset, this Value* stays null.
738  Value *OtherPtr = 0;
739  LLVMContext &Context = MI->getContext();
740  unsigned MemAlignment = MI->getAlignment();
741  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
742    if (Inst == MTI->getRawDest())
743      OtherPtr = MTI->getRawSource();
744    else {
745      assert(Inst == MTI->getRawSource());
746      OtherPtr = MTI->getRawDest();
747    }
748  }
749
750  // If there is an other pointer, we want to convert it to the same pointer
751  // type as AI has, so we can GEP through it safely.
752  if (OtherPtr) {
753
754    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
755    // optimization, but it's also required to detect the corner case where
756    // both pointer operands are referencing the same memory, and where
757    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
758    // function is only called for mem intrinsics that access the whole
759    // aggregate, so non-zero GEPs are not an issue here.)
760    while (1) {
761      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr)) {
762        OtherPtr = BC->getOperand(0);
763        continue;
764      }
765      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr)) {
766        // All zero GEPs are effectively bitcasts.
767        if (GEP->hasAllZeroIndices()) {
768          OtherPtr = GEP->getOperand(0);
769          continue;
770        }
771      }
772      break;
773    }
774    // If OtherPtr has already been rewritten, this intrinsic will be dead.
775    if (OtherPtr == NewElts[0])
776      return;
777
778    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
779      if (BCE->getOpcode() == Instruction::BitCast)
780        OtherPtr = BCE->getOperand(0);
781
782    // If the pointer is not the right type, insert a bitcast to the right
783    // type.
784    if (OtherPtr->getType() != AI->getType())
785      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
786                                 MI);
787  }
788
789  // Process each element of the aggregate.
790  Value *TheFn = MI->getOperand(0);
791  const Type *BytePtrTy = MI->getRawDest()->getType();
792  bool SROADest = MI->getRawDest() == Inst;
793
794  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
795
796  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
797    // If this is a memcpy/memmove, emit a GEP of the other element address.
798    Value *OtherElt = 0;
799    unsigned OtherEltAlign = MemAlignment;
800
801    if (OtherPtr == AI) {
802      OtherElt = NewElts[i];
803      OtherEltAlign = 0;
804    } else if (OtherPtr) {
805      Value *Idx[2] = { Zero,
806                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
807      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
808                                           OtherPtr->getNameStr()+"."+Twine(i),
809                                                   MI);
810      uint64_t EltOffset;
811      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
812      if (const StructType *ST =
813            dyn_cast<StructType>(OtherPtrTy->getElementType())) {
814        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
815      } else {
816        const Type *EltTy =
817          cast<SequentialType>(OtherPtr->getType())->getElementType();
818        EltOffset = TD->getTypeAllocSize(EltTy)*i;
819      }
820
821      // The alignment of the other pointer is the guaranteed alignment of the
822      // element, which is affected by both the known alignment of the whole
823      // mem intrinsic and the alignment of the element.  If the alignment of
824      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
825      // known alignment is just 4 bytes.
826      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
827    }
828
829    Value *EltPtr = NewElts[i];
830    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
831
832    // If we got down to a scalar, insert a load or store as appropriate.
833    if (EltTy->isSingleValueType()) {
834      if (isa<MemTransferInst>(MI)) {
835        if (SROADest) {
836          // From Other to Alloca.
837          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
838          new StoreInst(Elt, EltPtr, MI);
839        } else {
840          // From Alloca to Other.
841          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
842          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
843        }
844        continue;
845      }
846      assert(isa<MemSetInst>(MI));
847
848      // If the stored element is zero (common case), just store a null
849      // constant.
850      Constant *StoreVal;
851      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
852        if (CI->isZero()) {
853          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
854        } else {
855          // If EltTy is a vector type, get the element type.
856          const Type *ValTy = EltTy->getScalarType();
857
858          // Construct an integer with the right value.
859          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
860          APInt OneVal(EltSize, CI->getZExtValue());
861          APInt TotalVal(OneVal);
862          // Set each byte.
863          for (unsigned i = 0; 8*i < EltSize; ++i) {
864            TotalVal = TotalVal.shl(8);
865            TotalVal |= OneVal;
866          }
867
868          // Convert the integer value to the appropriate type.
869          StoreVal = ConstantInt::get(Context, TotalVal);
870          if (isa<PointerType>(ValTy))
871            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
872          else if (ValTy->isFloatingPoint())
873            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
874          assert(StoreVal->getType() == ValTy && "Type mismatch!");
875
876          // If the requested value was a vector constant, create it.
877          if (EltTy != ValTy) {
878            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
879            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
880            StoreVal = ConstantVector::get(&Elts[0], NumElts);
881          }
882        }
883        new StoreInst(StoreVal, EltPtr, MI);
884        continue;
885      }
886      // Otherwise, if we're storing a byte variable, use a memset call for
887      // this element.
888    }
889
890    // Cast the element pointer to BytePtrTy.
891    if (EltPtr->getType() != BytePtrTy)
892      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
893
894    // Cast the other pointer (if we have one) to BytePtrTy.
895    if (OtherElt && OtherElt->getType() != BytePtrTy)
896      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
897                                 MI);
898
899    unsigned EltSize = TD->getTypeAllocSize(EltTy);
900
901    // Finally, insert the meminst for this element.
902    if (isa<MemTransferInst>(MI)) {
903      Value *Ops[] = {
904        SROADest ? EltPtr : OtherElt,  // Dest ptr
905        SROADest ? OtherElt : EltPtr,  // Src ptr
906        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
907        // Align
908        ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign)
909      };
910      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
911    } else {
912      assert(isa<MemSetInst>(MI));
913      Value *Ops[] = {
914        EltPtr, MI->getOperand(2),  // Dest, Value,
915        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
916        Zero  // Align
917      };
918      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
919    }
920  }
921  DeadInsts.push_back(MI);
922}
923
924/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
925/// overwrites the entire allocation.  Extract out the pieces of the stored
926/// integer and store them individually.
927void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
928                                         SmallVector<AllocaInst*, 32> &NewElts){
929  // Extract each element out of the integer according to its structure offset
930  // and store the element value to the individual alloca.
931  Value *SrcVal = SI->getOperand(0);
932  const Type *AllocaEltTy = AI->getAllocatedType();
933  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
934
935  // Handle tail padding by extending the operand
936  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
937    SrcVal = new ZExtInst(SrcVal,
938                          IntegerType::get(SI->getContext(), AllocaSizeBits),
939                          "", SI);
940
941  DEBUG(errs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
942               << '\n');
943
944  // There are two forms here: AI could be an array or struct.  Both cases
945  // have different ways to compute the element offset.
946  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
947    const StructLayout *Layout = TD->getStructLayout(EltSTy);
948
949    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
950      // Get the number of bits to shift SrcVal to get the value.
951      const Type *FieldTy = EltSTy->getElementType(i);
952      uint64_t Shift = Layout->getElementOffsetInBits(i);
953
954      if (TD->isBigEndian())
955        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
956
957      Value *EltVal = SrcVal;
958      if (Shift) {
959        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
960        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
961                                            "sroa.store.elt", SI);
962      }
963
964      // Truncate down to an integer of the right size.
965      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
966
967      // Ignore zero sized fields like {}, they obviously contain no data.
968      if (FieldSizeBits == 0) continue;
969
970      if (FieldSizeBits != AllocaSizeBits)
971        EltVal = new TruncInst(EltVal,
972                             IntegerType::get(SI->getContext(), FieldSizeBits),
973                              "", SI);
974      Value *DestField = NewElts[i];
975      if (EltVal->getType() == FieldTy) {
976        // Storing to an integer field of this size, just do it.
977      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
978        // Bitcast to the right element type (for fp/vector values).
979        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
980      } else {
981        // Otherwise, bitcast the dest pointer (for aggregates).
982        DestField = new BitCastInst(DestField,
983                              PointerType::getUnqual(EltVal->getType()),
984                                    "", SI);
985      }
986      new StoreInst(EltVal, DestField, SI);
987    }
988
989  } else {
990    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
991    const Type *ArrayEltTy = ATy->getElementType();
992    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
993    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
994
995    uint64_t Shift;
996
997    if (TD->isBigEndian())
998      Shift = AllocaSizeBits-ElementOffset;
999    else
1000      Shift = 0;
1001
1002    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1003      // Ignore zero sized fields like {}, they obviously contain no data.
1004      if (ElementSizeBits == 0) continue;
1005
1006      Value *EltVal = SrcVal;
1007      if (Shift) {
1008        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1009        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1010                                            "sroa.store.elt", SI);
1011      }
1012
1013      // Truncate down to an integer of the right size.
1014      if (ElementSizeBits != AllocaSizeBits)
1015        EltVal = new TruncInst(EltVal,
1016                               IntegerType::get(SI->getContext(),
1017                                                ElementSizeBits),"",SI);
1018      Value *DestField = NewElts[i];
1019      if (EltVal->getType() == ArrayEltTy) {
1020        // Storing to an integer field of this size, just do it.
1021      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
1022        // Bitcast to the right element type (for fp/vector values).
1023        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1024      } else {
1025        // Otherwise, bitcast the dest pointer (for aggregates).
1026        DestField = new BitCastInst(DestField,
1027                              PointerType::getUnqual(EltVal->getType()),
1028                                    "", SI);
1029      }
1030      new StoreInst(EltVal, DestField, SI);
1031
1032      if (TD->isBigEndian())
1033        Shift -= ElementOffset;
1034      else
1035        Shift += ElementOffset;
1036    }
1037  }
1038
1039  DeadInsts.push_back(SI);
1040}
1041
1042/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
1043/// an integer.  Load the individual pieces to form the aggregate value.
1044void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1045                                        SmallVector<AllocaInst*, 32> &NewElts) {
1046  // Extract each element out of the NewElts according to its structure offset
1047  // and form the result value.
1048  const Type *AllocaEltTy = AI->getAllocatedType();
1049  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1050
1051  DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1052               << '\n');
1053
1054  // There are two forms here: AI could be an array or struct.  Both cases
1055  // have different ways to compute the element offset.
1056  const StructLayout *Layout = 0;
1057  uint64_t ArrayEltBitOffset = 0;
1058  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1059    Layout = TD->getStructLayout(EltSTy);
1060  } else {
1061    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1062    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1063  }
1064
1065  Value *ResultVal =
1066    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1067
1068  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1069    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1070    // the pointer to an integer of the same size before doing the load.
1071    Value *SrcField = NewElts[i];
1072    const Type *FieldTy =
1073      cast<PointerType>(SrcField->getType())->getElementType();
1074    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1075
1076    // Ignore zero sized fields like {}, they obviously contain no data.
1077    if (FieldSizeBits == 0) continue;
1078
1079    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1080                                                     FieldSizeBits);
1081    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1082        !isa<VectorType>(FieldTy))
1083      SrcField = new BitCastInst(SrcField,
1084                                 PointerType::getUnqual(FieldIntTy),
1085                                 "", LI);
1086    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1087
1088    // If SrcField is a fp or vector of the right size but that isn't an
1089    // integer type, bitcast to an integer so we can shift it.
1090    if (SrcField->getType() != FieldIntTy)
1091      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1092
1093    // Zero extend the field to be the same size as the final alloca so that
1094    // we can shift and insert it.
1095    if (SrcField->getType() != ResultVal->getType())
1096      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1097
1098    // Determine the number of bits to shift SrcField.
1099    uint64_t Shift;
1100    if (Layout) // Struct case.
1101      Shift = Layout->getElementOffsetInBits(i);
1102    else  // Array case.
1103      Shift = i*ArrayEltBitOffset;
1104
1105    if (TD->isBigEndian())
1106      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1107
1108    if (Shift) {
1109      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1110      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1111    }
1112
1113    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1114  }
1115
1116  // Handle tail padding by truncating the result
1117  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1118    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1119
1120  LI->replaceAllUsesWith(ResultVal);
1121  DeadInsts.push_back(LI);
1122}
1123
1124/// HasPadding - Return true if the specified type has any structure or
1125/// alignment padding, false otherwise.
1126static bool HasPadding(const Type *Ty, const TargetData &TD) {
1127  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1128    const StructLayout *SL = TD.getStructLayout(STy);
1129    unsigned PrevFieldBitOffset = 0;
1130    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1131      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1132
1133      // Padding in sub-elements?
1134      if (HasPadding(STy->getElementType(i), TD))
1135        return true;
1136
1137      // Check to see if there is any padding between this element and the
1138      // previous one.
1139      if (i) {
1140        unsigned PrevFieldEnd =
1141        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1142        if (PrevFieldEnd < FieldBitOffset)
1143          return true;
1144      }
1145
1146      PrevFieldBitOffset = FieldBitOffset;
1147    }
1148
1149    //  Check for tail padding.
1150    if (unsigned EltCount = STy->getNumElements()) {
1151      unsigned PrevFieldEnd = PrevFieldBitOffset +
1152                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1153      if (PrevFieldEnd < SL->getSizeInBits())
1154        return true;
1155    }
1156
1157  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1158    return HasPadding(ATy->getElementType(), TD);
1159  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1160    return HasPadding(VTy->getElementType(), TD);
1161  }
1162  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1163}
1164
1165/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1166/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1167/// or 1 if safe after canonicalization has been performed.
1168int SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1169  // Loop over the use list of the alloca.  We can only transform it if all of
1170  // the users are safe to transform.
1171  AllocaInfo Info;
1172
1173  isSafeForScalarRepl(AI, AI, 0, Info);
1174  if (Info.isUnsafe) {
1175    DEBUG(errs() << "Cannot transform: " << *AI << '\n');
1176    return 0;
1177  }
1178
1179  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1180  // source and destination, we have to be careful.  In particular, the memcpy
1181  // could be moving around elements that live in structure padding of the LLVM
1182  // types, but may actually be used.  In these cases, we refuse to promote the
1183  // struct.
1184  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1185      HasPadding(AI->getAllocatedType(), *TD))
1186    return 0;
1187
1188  // If we require cleanup, return 1, otherwise return 3.
1189  return Info.needsCleanup ? 1 : 3;
1190}
1191
1192/// CleanupAllocaUsers - If SROA reported that it can promote the specified
1193/// allocation, but only if cleaned up, perform the cleanups required.
1194void SROA::CleanupAllocaUsers(Value *V) {
1195  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
1196       UI != E; ) {
1197    User *U = *UI++;
1198    Instruction *I = cast<Instruction>(U);
1199    SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1200    if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1201      // Safe to remove debug info uses.
1202      while (!DbgInUses.empty()) {
1203        DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1204        DI->eraseFromParent();
1205      }
1206      I->eraseFromParent();
1207    }
1208  }
1209}
1210
1211/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1212/// the offset specified by Offset (which is specified in bytes).
1213///
1214/// There are two cases we handle here:
1215///   1) A union of vector types of the same size and potentially its elements.
1216///      Here we turn element accesses into insert/extract element operations.
1217///      This promotes a <4 x float> with a store of float to the third element
1218///      into a <4 x float> that uses insert element.
1219///   2) A fully general blob of memory, which we turn into some (potentially
1220///      large) integer type with extract and insert operations where the loads
1221///      and stores would mutate the memory.
1222static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1223                        unsigned AllocaSize, const TargetData &TD,
1224                        LLVMContext &Context) {
1225  // If this could be contributing to a vector, analyze it.
1226  if (VecTy != Type::getVoidTy(Context)) { // either null or a vector type.
1227
1228    // If the In type is a vector that is the same size as the alloca, see if it
1229    // matches the existing VecTy.
1230    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1231      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1232        // If we're storing/loading a vector of the right size, allow it as a
1233        // vector.  If this the first vector we see, remember the type so that
1234        // we know the element size.
1235        if (VecTy == 0)
1236          VecTy = VInTy;
1237        return;
1238      }
1239    } else if (In->isFloatTy() || In->isDoubleTy() ||
1240               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1241                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1242      // If we're accessing something that could be an element of a vector, see
1243      // if the implied vector agrees with what we already have and if Offset is
1244      // compatible with it.
1245      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1246      if (Offset % EltSize == 0 &&
1247          AllocaSize % EltSize == 0 &&
1248          (VecTy == 0 ||
1249           cast<VectorType>(VecTy)->getElementType()
1250                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1251        if (VecTy == 0)
1252          VecTy = VectorType::get(In, AllocaSize/EltSize);
1253        return;
1254      }
1255    }
1256  }
1257
1258  // Otherwise, we have a case that we can't handle with an optimized vector
1259  // form.  We can still turn this into a large integer.
1260  VecTy = Type::getVoidTy(Context);
1261}
1262
1263/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1264/// its accesses to a single vector type, return true and set VecTy to
1265/// the new type.  If we could convert the alloca into a single promotable
1266/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
1267/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
1268/// is the current offset from the base of the alloca being analyzed.
1269///
1270/// If we see at least one access to the value that is as a vector type, set the
1271/// SawVec flag.
1272bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1273                              bool &SawVec, uint64_t Offset,
1274                              unsigned AllocaSize) {
1275  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1276    Instruction *User = cast<Instruction>(*UI);
1277
1278    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1279      // Don't break volatile loads.
1280      if (LI->isVolatile())
1281        return false;
1282      MergeInType(LI->getType(), Offset, VecTy,
1283                  AllocaSize, *TD, V->getContext());
1284      SawVec |= isa<VectorType>(LI->getType());
1285      continue;
1286    }
1287
1288    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1289      // Storing the pointer, not into the value?
1290      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1291      MergeInType(SI->getOperand(0)->getType(), Offset,
1292                  VecTy, AllocaSize, *TD, V->getContext());
1293      SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1294      continue;
1295    }
1296
1297    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1298      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1299                              AllocaSize))
1300        return false;
1301      IsNotTrivial = true;
1302      continue;
1303    }
1304
1305    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1306      // If this is a GEP with a variable indices, we can't handle it.
1307      if (!GEP->hasAllConstantIndices())
1308        return false;
1309
1310      // Compute the offset that this GEP adds to the pointer.
1311      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1312      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
1313                                                &Indices[0], Indices.size());
1314      // See if all uses can be converted.
1315      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1316                              AllocaSize))
1317        return false;
1318      IsNotTrivial = true;
1319      continue;
1320    }
1321
1322    // If this is a constant sized memset of a constant value (e.g. 0) we can
1323    // handle it.
1324    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1325      // Store of constant value and constant size.
1326      if (isa<ConstantInt>(MSI->getValue()) &&
1327          isa<ConstantInt>(MSI->getLength())) {
1328        IsNotTrivial = true;
1329        continue;
1330      }
1331    }
1332
1333    // If this is a memcpy or memmove into or out of the whole allocation, we
1334    // can handle it like a load or store of the scalar type.
1335    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1336      if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
1337        if (Len->getZExtValue() == AllocaSize && Offset == 0) {
1338          IsNotTrivial = true;
1339          continue;
1340        }
1341    }
1342
1343    // Ignore dbg intrinsic.
1344    if (isa<DbgInfoIntrinsic>(User))
1345      continue;
1346
1347    // Otherwise, we cannot handle this!
1348    return false;
1349  }
1350
1351  return true;
1352}
1353
1354/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1355/// directly.  This happens when we are converting an "integer union" to a
1356/// single integer scalar, or when we are converting a "vector union" to a
1357/// vector with insert/extractelement instructions.
1358///
1359/// Offset is an offset from the original alloca, in bits that need to be
1360/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1361void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1362  while (!Ptr->use_empty()) {
1363    Instruction *User = cast<Instruction>(Ptr->use_back());
1364
1365    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1366      ConvertUsesToScalar(CI, NewAI, Offset);
1367      CI->eraseFromParent();
1368      continue;
1369    }
1370
1371    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1372      // Compute the offset that this GEP adds to the pointer.
1373      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1374      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
1375                                                &Indices[0], Indices.size());
1376      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1377      GEP->eraseFromParent();
1378      continue;
1379    }
1380
1381    IRBuilder<> Builder(User->getParent(), User);
1382
1383    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1384      // The load is a bit extract from NewAI shifted right by Offset bits.
1385      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1386      Value *NewLoadVal
1387        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1388      LI->replaceAllUsesWith(NewLoadVal);
1389      LI->eraseFromParent();
1390      continue;
1391    }
1392
1393    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1394      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1395      // FIXME: Remove once builder has Twine API.
1396      Value *Old = Builder.CreateLoad(NewAI,
1397                                      (NewAI->getName()+".in").str().c_str());
1398      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1399                                             Builder);
1400      Builder.CreateStore(New, NewAI);
1401      SI->eraseFromParent();
1402      continue;
1403    }
1404
1405    // If this is a constant sized memset of a constant value (e.g. 0) we can
1406    // transform it into a store of the expanded constant value.
1407    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1408      assert(MSI->getRawDest() == Ptr && "Consistency error!");
1409      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1410      if (NumBytes != 0) {
1411        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1412
1413        // Compute the value replicated the right number of times.
1414        APInt APVal(NumBytes*8, Val);
1415
1416        // Splat the value if non-zero.
1417        if (Val)
1418          for (unsigned i = 1; i != NumBytes; ++i)
1419            APVal |= APVal << 8;
1420
1421        // FIXME: Remove once builder has Twine API.
1422        Value *Old = Builder.CreateLoad(NewAI,
1423                                        (NewAI->getName()+".in").str().c_str());
1424        Value *New = ConvertScalar_InsertValue(
1425                                    ConstantInt::get(User->getContext(), APVal),
1426                                               Old, Offset, Builder);
1427        Builder.CreateStore(New, NewAI);
1428      }
1429      MSI->eraseFromParent();
1430      continue;
1431    }
1432
1433    // If this is a memcpy or memmove into or out of the whole allocation, we
1434    // can handle it like a load or store of the scalar type.
1435    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1436      assert(Offset == 0 && "must be store to start of alloca");
1437
1438      // If the source and destination are both to the same alloca, then this is
1439      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
1440      // as appropriate.
1441      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
1442
1443      if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
1444        // Dest must be OrigAI, change this to be a load from the original
1445        // pointer (bitcasted), then a store to our new alloca.
1446        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
1447        Value *SrcPtr = MTI->getSource();
1448        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
1449
1450        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
1451        SrcVal->setAlignment(MTI->getAlignment());
1452        Builder.CreateStore(SrcVal, NewAI);
1453      } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
1454        // Src must be OrigAI, change this to be a load from NewAI then a store
1455        // through the original dest pointer (bitcasted).
1456        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
1457        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
1458
1459        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
1460        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
1461        NewStore->setAlignment(MTI->getAlignment());
1462      } else {
1463        // Noop transfer. Src == Dst
1464      }
1465
1466
1467      MTI->eraseFromParent();
1468      continue;
1469    }
1470
1471    // If user is a dbg info intrinsic then it is safe to remove it.
1472    if (isa<DbgInfoIntrinsic>(User)) {
1473      User->eraseFromParent();
1474      continue;
1475    }
1476
1477    llvm_unreachable("Unsupported operation!");
1478  }
1479}
1480
1481/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1482/// or vector value FromVal, extracting the bits from the offset specified by
1483/// Offset.  This returns the value, which is of type ToType.
1484///
1485/// This happens when we are converting an "integer union" to a single
1486/// integer scalar, or when we are converting a "vector union" to a vector with
1487/// insert/extractelement instructions.
1488///
1489/// Offset is an offset from the original alloca, in bits that need to be
1490/// shifted to the right.
1491Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1492                                        uint64_t Offset, IRBuilder<> &Builder) {
1493  // If the load is of the whole new alloca, no conversion is needed.
1494  if (FromVal->getType() == ToType && Offset == 0)
1495    return FromVal;
1496
1497  // If the result alloca is a vector type, this is either an element
1498  // access or a bitcast to another vector type of the same size.
1499  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1500    if (isa<VectorType>(ToType))
1501      return Builder.CreateBitCast(FromVal, ToType, "tmp");
1502
1503    // Otherwise it must be an element access.
1504    unsigned Elt = 0;
1505    if (Offset) {
1506      unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1507      Elt = Offset/EltSize;
1508      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1509    }
1510    // Return the element extracted out of it.
1511    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
1512                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
1513    if (V->getType() != ToType)
1514      V = Builder.CreateBitCast(V, ToType, "tmp");
1515    return V;
1516  }
1517
1518  // If ToType is a first class aggregate, extract out each of the pieces and
1519  // use insertvalue's to form the FCA.
1520  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1521    const StructLayout &Layout = *TD->getStructLayout(ST);
1522    Value *Res = UndefValue::get(ST);
1523    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1524      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1525                                        Offset+Layout.getElementOffsetInBits(i),
1526                                              Builder);
1527      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1528    }
1529    return Res;
1530  }
1531
1532  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1533    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1534    Value *Res = UndefValue::get(AT);
1535    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1536      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1537                                              Offset+i*EltSize, Builder);
1538      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1539    }
1540    return Res;
1541  }
1542
1543  // Otherwise, this must be a union that was converted to an integer value.
1544  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1545
1546  // If this is a big-endian system and the load is narrower than the
1547  // full alloca type, we need to do a shift to get the right bits.
1548  int ShAmt = 0;
1549  if (TD->isBigEndian()) {
1550    // On big-endian machines, the lowest bit is stored at the bit offset
1551    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1552    // integers with a bitwidth that is not a multiple of 8.
1553    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1554            TD->getTypeStoreSizeInBits(ToType) - Offset;
1555  } else {
1556    ShAmt = Offset;
1557  }
1558
1559  // Note: we support negative bitwidths (with shl) which are not defined.
1560  // We do this to support (f.e.) loads off the end of a structure where
1561  // only some bits are used.
1562  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1563    FromVal = Builder.CreateLShr(FromVal,
1564                                 ConstantInt::get(FromVal->getType(),
1565                                                           ShAmt), "tmp");
1566  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1567    FromVal = Builder.CreateShl(FromVal,
1568                                ConstantInt::get(FromVal->getType(),
1569                                                          -ShAmt), "tmp");
1570
1571  // Finally, unconditionally truncate the integer to the right width.
1572  unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1573  if (LIBitWidth < NTy->getBitWidth())
1574    FromVal =
1575      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
1576                                                    LIBitWidth), "tmp");
1577  else if (LIBitWidth > NTy->getBitWidth())
1578    FromVal =
1579       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
1580                                                    LIBitWidth), "tmp");
1581
1582  // If the result is an integer, this is a trunc or bitcast.
1583  if (isa<IntegerType>(ToType)) {
1584    // Should be done.
1585  } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1586    // Just do a bitcast, we know the sizes match up.
1587    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1588  } else {
1589    // Otherwise must be a pointer.
1590    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1591  }
1592  assert(FromVal->getType() == ToType && "Didn't convert right?");
1593  return FromVal;
1594}
1595
1596/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1597/// or vector value "Old" at the offset specified by Offset.
1598///
1599/// This happens when we are converting an "integer union" to a
1600/// single integer scalar, or when we are converting a "vector union" to a
1601/// vector with insert/extractelement instructions.
1602///
1603/// Offset is an offset from the original alloca, in bits that need to be
1604/// shifted to the right.
1605Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1606                                       uint64_t Offset, IRBuilder<> &Builder) {
1607
1608  // Convert the stored type to the actual type, shift it left to insert
1609  // then 'or' into place.
1610  const Type *AllocaType = Old->getType();
1611  LLVMContext &Context = Old->getContext();
1612
1613  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1614    uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
1615    uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
1616
1617    // Changing the whole vector with memset or with an access of a different
1618    // vector type?
1619    if (ValSize == VecSize)
1620      return Builder.CreateBitCast(SV, AllocaType, "tmp");
1621
1622    uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1623
1624    // Must be an element insertion.
1625    unsigned Elt = Offset/EltSize;
1626
1627    if (SV->getType() != VTy->getElementType())
1628      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1629
1630    SV = Builder.CreateInsertElement(Old, SV,
1631                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
1632                                     "tmp");
1633    return SV;
1634  }
1635
1636  // If SV is a first-class aggregate value, insert each value recursively.
1637  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1638    const StructLayout &Layout = *TD->getStructLayout(ST);
1639    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1640      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1641      Old = ConvertScalar_InsertValue(Elt, Old,
1642                                      Offset+Layout.getElementOffsetInBits(i),
1643                                      Builder);
1644    }
1645    return Old;
1646  }
1647
1648  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1649    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1650    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1651      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1652      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1653    }
1654    return Old;
1655  }
1656
1657  // If SV is a float, convert it to the appropriate integer type.
1658  // If it is a pointer, do the same.
1659  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1660  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1661  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1662  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1663  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1664    SV = Builder.CreateBitCast(SV,
1665                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
1666  else if (isa<PointerType>(SV->getType()))
1667    SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(SV->getContext()), "tmp");
1668
1669  // Zero extend or truncate the value if needed.
1670  if (SV->getType() != AllocaType) {
1671    if (SV->getType()->getPrimitiveSizeInBits() <
1672             AllocaType->getPrimitiveSizeInBits())
1673      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1674    else {
1675      // Truncation may be needed if storing more than the alloca can hold
1676      // (undefined behavior).
1677      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1678      SrcWidth = DestWidth;
1679      SrcStoreWidth = DestStoreWidth;
1680    }
1681  }
1682
1683  // If this is a big-endian system and the store is narrower than the
1684  // full alloca type, we need to do a shift to get the right bits.
1685  int ShAmt = 0;
1686  if (TD->isBigEndian()) {
1687    // On big-endian machines, the lowest bit is stored at the bit offset
1688    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1689    // integers with a bitwidth that is not a multiple of 8.
1690    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1691  } else {
1692    ShAmt = Offset;
1693  }
1694
1695  // Note: we support negative bitwidths (with shr) which are not defined.
1696  // We do this to support (f.e.) stores off the end of a structure where
1697  // only some bits in the structure are set.
1698  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1699  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1700    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1701                           ShAmt), "tmp");
1702    Mask <<= ShAmt;
1703  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1704    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1705                            -ShAmt), "tmp");
1706    Mask = Mask.lshr(-ShAmt);
1707  }
1708
1709  // Mask out the bits we are about to insert from the old value, and or
1710  // in the new bits.
1711  if (SrcWidth != DestWidth) {
1712    assert(DestWidth > SrcWidth);
1713    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1714    SV = Builder.CreateOr(Old, SV, "ins");
1715  }
1716  return SV;
1717}
1718
1719
1720
1721/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1722/// some part of a constant global variable.  This intentionally only accepts
1723/// constant expressions because we don't can't rewrite arbitrary instructions.
1724static bool PointsToConstantGlobal(Value *V) {
1725  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1726    return GV->isConstant();
1727  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1728    if (CE->getOpcode() == Instruction::BitCast ||
1729        CE->getOpcode() == Instruction::GetElementPtr)
1730      return PointsToConstantGlobal(CE->getOperand(0));
1731  return false;
1732}
1733
1734/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1735/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1736/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1737/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1738/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1739/// the alloca, and if the source pointer is a pointer to a constant  global, we
1740/// can optimize this.
1741static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1742                                           bool isOffset) {
1743  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1744    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1745      // Ignore non-volatile loads, they are always ok.
1746      if (!LI->isVolatile())
1747        continue;
1748
1749    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1750      // If uses of the bitcast are ok, we are ok.
1751      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1752        return false;
1753      continue;
1754    }
1755    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1756      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1757      // doesn't, it does.
1758      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1759                                         isOffset || !GEP->hasAllZeroIndices()))
1760        return false;
1761      continue;
1762    }
1763
1764    // If this is isn't our memcpy/memmove, reject it as something we can't
1765    // handle.
1766    if (!isa<MemTransferInst>(*UI))
1767      return false;
1768
1769    // If we already have seen a copy, reject the second one.
1770    if (TheCopy) return false;
1771
1772    // If the pointer has been offset from the start of the alloca, we can't
1773    // safely handle this.
1774    if (isOffset) return false;
1775
1776    // If the memintrinsic isn't using the alloca as the dest, reject it.
1777    if (UI.getOperandNo() != 1) return false;
1778
1779    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1780
1781    // If the source of the memcpy/move is not a constant global, reject it.
1782    if (!PointsToConstantGlobal(MI->getOperand(2)))
1783      return false;
1784
1785    // Otherwise, the transform is safe.  Remember the copy instruction.
1786    TheCopy = MI;
1787  }
1788  return true;
1789}
1790
1791/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1792/// modified by a copy from a constant global.  If we can prove this, we can
1793/// replace any uses of the alloca with uses of the global directly.
1794Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1795  Instruction *TheCopy = 0;
1796  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1797    return TheCopy;
1798  return 0;
1799}
1800