ScalarReplAggregates.cpp revision 3d730f7453af5ecb1be4b8c5d48843ad5637de37
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced,  "Number of allocas broken up");
44STATISTIC(NumPromoted,  "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
47
48namespace {
49  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50    static char ID; // Pass identification, replacement for typeid
51    explicit SROA(signed T = -1) : FunctionPass(&ID) {
52      if (T == -1)
53        SRThreshold = 128;
54      else
55        SRThreshold = T;
56    }
57
58    bool runOnFunction(Function &F);
59
60    bool performScalarRepl(Function &F);
61    bool performPromotion(Function &F);
62
63    // getAnalysisUsage - This pass does not require any passes, but we know it
64    // will not alter the CFG, so say so.
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequired<DominatorTree>();
67      AU.addRequired<DominanceFrontier>();
68      AU.addRequired<TargetData>();
69      AU.setPreservesCFG();
70    }
71
72  private:
73    TargetData *TD;
74
75    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
76    /// information about the uses.  All these fields are initialized to false
77    /// and set to true when something is learned.
78    struct AllocaInfo {
79      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
80      bool isUnsafe : 1;
81
82      /// needsCanon - This is set to true if there is some use of the alloca
83      /// that requires canonicalization.
84      bool needsCanon : 1;
85
86      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
87      bool isMemCpySrc : 1;
88
89      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
90      bool isMemCpyDst : 1;
91
92      AllocaInfo()
93        : isUnsafe(false), needsCanon(false),
94          isMemCpySrc(false), isMemCpyDst(false) {}
95    };
96
97    unsigned SRThreshold;
98
99    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
100
101    int isSafeAllocaToScalarRepl(AllocationInst *AI);
102
103    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
104                               AllocaInfo &Info);
105    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
106                         AllocaInfo &Info);
107    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
108                                        unsigned OpNo, AllocaInfo &Info);
109    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
110                                        AllocaInfo &Info);
111
112    void DoScalarReplacement(AllocationInst *AI,
113                             std::vector<AllocationInst*> &WorkList);
114    void CanonicalizeAllocaUsers(AllocationInst *AI);
115    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
116
117    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
118                                    SmallVector<AllocaInst*, 32> &NewElts);
119
120    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
121                                      AllocationInst *AI,
122                                      SmallVector<AllocaInst*, 32> &NewElts);
123    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
124                                       SmallVector<AllocaInst*, 32> &NewElts);
125    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
126                                      SmallVector<AllocaInst*, 32> &NewElts);
127
128    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
129                            uint64_t Offset, unsigned AllocaSize);
130    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
131    Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
132                                     uint64_t Offset);
133    Value *ConvertUsesOfStoreToScalar(Value *StoredVal, AllocaInst *NewAI,
134                                      uint64_t Offset, Instruction *InsertPt);
135    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
136  };
137}
138
139char SROA::ID = 0;
140static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
141
142// Public interface to the ScalarReplAggregates pass
143FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
144  return new SROA(Threshold);
145}
146
147
148bool SROA::runOnFunction(Function &F) {
149  TD = &getAnalysis<TargetData>();
150
151  bool Changed = performPromotion(F);
152  while (1) {
153    bool LocalChange = performScalarRepl(F);
154    if (!LocalChange) break;   // No need to repromote if no scalarrepl
155    Changed = true;
156    LocalChange = performPromotion(F);
157    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
158  }
159
160  return Changed;
161}
162
163
164bool SROA::performPromotion(Function &F) {
165  std::vector<AllocaInst*> Allocas;
166  DominatorTree         &DT = getAnalysis<DominatorTree>();
167  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
168
169  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
170
171  bool Changed = false;
172
173  while (1) {
174    Allocas.clear();
175
176    // Find allocas that are safe to promote, by looking at all instructions in
177    // the entry node
178    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
179      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
180        if (isAllocaPromotable(AI))
181          Allocas.push_back(AI);
182
183    if (Allocas.empty()) break;
184
185    PromoteMemToReg(Allocas, DT, DF);
186    NumPromoted += Allocas.size();
187    Changed = true;
188  }
189
190  return Changed;
191}
192
193/// getNumSAElements - Return the number of elements in the specific struct or
194/// array.
195static uint64_t getNumSAElements(const Type *T) {
196  if (const StructType *ST = dyn_cast<StructType>(T))
197    return ST->getNumElements();
198  return cast<ArrayType>(T)->getNumElements();
199}
200
201// performScalarRepl - This algorithm is a simple worklist driven algorithm,
202// which runs on all of the malloc/alloca instructions in the function, removing
203// them if they are only used by getelementptr instructions.
204//
205bool SROA::performScalarRepl(Function &F) {
206  std::vector<AllocationInst*> WorkList;
207
208  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
209  BasicBlock &BB = F.getEntryBlock();
210  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
211    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
212      WorkList.push_back(A);
213
214  // Process the worklist
215  bool Changed = false;
216  while (!WorkList.empty()) {
217    AllocationInst *AI = WorkList.back();
218    WorkList.pop_back();
219
220    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
221    // with unused elements.
222    if (AI->use_empty()) {
223      AI->eraseFromParent();
224      continue;
225    }
226
227    // If this alloca is impossible for us to promote, reject it early.
228    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
229      continue;
230
231    // Check to see if this allocation is only modified by a memcpy/memmove from
232    // a constant global.  If this is the case, we can change all users to use
233    // the constant global instead.  This is commonly produced by the CFE by
234    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
235    // is only subsequently read.
236    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
237      DOUT << "Found alloca equal to global: " << *AI;
238      DOUT << "  memcpy = " << *TheCopy;
239      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
240      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
241      TheCopy->eraseFromParent();  // Don't mutate the global.
242      AI->eraseFromParent();
243      ++NumGlobals;
244      Changed = true;
245      continue;
246    }
247
248    // Check to see if we can perform the core SROA transformation.  We cannot
249    // transform the allocation instruction if it is an array allocation
250    // (allocations OF arrays are ok though), and an allocation of a scalar
251    // value cannot be decomposed at all.
252    uint64_t AllocaSize = TD->getTypePaddedSize(AI->getAllocatedType());
253
254    if ((isa<StructType>(AI->getAllocatedType()) ||
255         isa<ArrayType>(AI->getAllocatedType())) &&
256        // Do not promote any struct whose size is too big.
257        AllocaSize < SRThreshold &&
258        // Do not promote any struct into more than "32" separate vars.
259        getNumSAElements(AI->getAllocatedType()) < SRThreshold/4) {
260      // Check that all of the users of the allocation are capable of being
261      // transformed.
262      switch (isSafeAllocaToScalarRepl(AI)) {
263      default: assert(0 && "Unexpected value!");
264      case 0:  // Not safe to scalar replace.
265        break;
266      case 1:  // Safe, but requires cleanup/canonicalizations first
267        CanonicalizeAllocaUsers(AI);
268        // FALL THROUGH.
269      case 3:  // Safe to scalar replace.
270        DoScalarReplacement(AI, WorkList);
271        Changed = true;
272        continue;
273      }
274    }
275
276    // If we can turn this aggregate value (potentially with casts) into a
277    // simple scalar value that can be mem2reg'd into a register value.
278    // IsNotTrivial tracks whether this is something that mem2reg could have
279    // promoted itself.  If so, we don't want to transform it needlessly.  Note
280    // that we can't just check based on the type: the alloca may be of an i32
281    // but that has pointer arithmetic to set byte 3 of it or something.
282    bool IsNotTrivial = false;
283    const Type *VectorTy = 0;
284    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy,
285                           0, unsigned(AllocaSize)) && IsNotTrivial) {
286      AllocaInst *NewAI;
287      if (VectorTy && isa<VectorType>(VectorTy)) {
288        DOUT << "CONVERT TO VECTOR: " << *AI << "  TYPE = " << *VectorTy <<"\n";
289
290        // Create and insert the vector alloca.
291        NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
292        ConvertUsesToScalar(AI, NewAI, 0);
293      } else {
294        DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
295
296        // Create and insert the integer alloca.
297        const Type *NewTy = IntegerType::get(AllocaSize*8);
298        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
299        ConvertUsesToScalar(AI, NewAI, 0);
300      }
301      NewAI->takeName(AI);
302      AI->eraseFromParent();
303      ++NumConverted;
304      Changed = true;
305      continue;
306    }
307
308    // Otherwise, couldn't process this alloca.
309  }
310
311  return Changed;
312}
313
314/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
315/// predicate, do SROA now.
316void SROA::DoScalarReplacement(AllocationInst *AI,
317                               std::vector<AllocationInst*> &WorkList) {
318  DOUT << "Found inst to SROA: " << *AI;
319  SmallVector<AllocaInst*, 32> ElementAllocas;
320  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
321    ElementAllocas.reserve(ST->getNumContainedTypes());
322    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
323      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
324                                      AI->getAlignment(),
325                                      AI->getName() + "." + utostr(i), AI);
326      ElementAllocas.push_back(NA);
327      WorkList.push_back(NA);  // Add to worklist for recursive processing
328    }
329  } else {
330    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
331    ElementAllocas.reserve(AT->getNumElements());
332    const Type *ElTy = AT->getElementType();
333    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
334      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
335                                      AI->getName() + "." + utostr(i), AI);
336      ElementAllocas.push_back(NA);
337      WorkList.push_back(NA);  // Add to worklist for recursive processing
338    }
339  }
340
341  // Now that we have created the alloca instructions that we want to use,
342  // expand the getelementptr instructions to use them.
343  //
344  while (!AI->use_empty()) {
345    Instruction *User = cast<Instruction>(AI->use_back());
346    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
347      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
348      BCInst->eraseFromParent();
349      continue;
350    }
351
352    // Replace:
353    //   %res = load { i32, i32 }* %alloc
354    // with:
355    //   %load.0 = load i32* %alloc.0
356    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
357    //   %load.1 = load i32* %alloc.1
358    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
359    // (Also works for arrays instead of structs)
360    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
361      Value *Insert = UndefValue::get(LI->getType());
362      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
363        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
364        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
365      }
366      LI->replaceAllUsesWith(Insert);
367      LI->eraseFromParent();
368      continue;
369    }
370
371    // Replace:
372    //   store { i32, i32 } %val, { i32, i32 }* %alloc
373    // with:
374    //   %val.0 = extractvalue { i32, i32 } %val, 0
375    //   store i32 %val.0, i32* %alloc.0
376    //   %val.1 = extractvalue { i32, i32 } %val, 1
377    //   store i32 %val.1, i32* %alloc.1
378    // (Also works for arrays instead of structs)
379    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
380      Value *Val = SI->getOperand(0);
381      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
382        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
383        new StoreInst(Extract, ElementAllocas[i], SI);
384      }
385      SI->eraseFromParent();
386      continue;
387    }
388
389    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
390    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
391    unsigned Idx =
392       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
393
394    assert(Idx < ElementAllocas.size() && "Index out of range?");
395    AllocaInst *AllocaToUse = ElementAllocas[Idx];
396
397    Value *RepValue;
398    if (GEPI->getNumOperands() == 3) {
399      // Do not insert a new getelementptr instruction with zero indices, only
400      // to have it optimized out later.
401      RepValue = AllocaToUse;
402    } else {
403      // We are indexing deeply into the structure, so we still need a
404      // getelement ptr instruction to finish the indexing.  This may be
405      // expanded itself once the worklist is rerun.
406      //
407      SmallVector<Value*, 8> NewArgs;
408      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
409      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
410      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
411                                           NewArgs.end(), "", GEPI);
412      RepValue->takeName(GEPI);
413    }
414
415    // If this GEP is to the start of the aggregate, check for memcpys.
416    if (Idx == 0 && GEPI->hasAllZeroIndices())
417      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
418
419    // Move all of the users over to the new GEP.
420    GEPI->replaceAllUsesWith(RepValue);
421    // Delete the old GEP
422    GEPI->eraseFromParent();
423  }
424
425  // Finally, delete the Alloca instruction
426  AI->eraseFromParent();
427  NumReplaced++;
428}
429
430
431/// isSafeElementUse - Check to see if this use is an allowed use for a
432/// getelementptr instruction of an array aggregate allocation.  isFirstElt
433/// indicates whether Ptr is known to the start of the aggregate.
434///
435void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
436                            AllocaInfo &Info) {
437  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
438       I != E; ++I) {
439    Instruction *User = cast<Instruction>(*I);
440    switch (User->getOpcode()) {
441    case Instruction::Load:  break;
442    case Instruction::Store:
443      // Store is ok if storing INTO the pointer, not storing the pointer
444      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
445      break;
446    case Instruction::GetElementPtr: {
447      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
448      bool AreAllZeroIndices = isFirstElt;
449      if (GEP->getNumOperands() > 1) {
450        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
451            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
452          // Using pointer arithmetic to navigate the array.
453          return MarkUnsafe(Info);
454
455        if (AreAllZeroIndices)
456          AreAllZeroIndices = GEP->hasAllZeroIndices();
457      }
458      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
459      if (Info.isUnsafe) return;
460      break;
461    }
462    case Instruction::BitCast:
463      if (isFirstElt) {
464        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
465        if (Info.isUnsafe) return;
466        break;
467      }
468      DOUT << "  Transformation preventing inst: " << *User;
469      return MarkUnsafe(Info);
470    case Instruction::Call:
471      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
472        if (isFirstElt) {
473          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
474          if (Info.isUnsafe) return;
475          break;
476        }
477      }
478      DOUT << "  Transformation preventing inst: " << *User;
479      return MarkUnsafe(Info);
480    default:
481      DOUT << "  Transformation preventing inst: " << *User;
482      return MarkUnsafe(Info);
483    }
484  }
485  return;  // All users look ok :)
486}
487
488/// AllUsersAreLoads - Return true if all users of this value are loads.
489static bool AllUsersAreLoads(Value *Ptr) {
490  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
491       I != E; ++I)
492    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
493      return false;
494  return true;
495}
496
497/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
498/// aggregate allocation.
499///
500void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
501                                 AllocaInfo &Info) {
502  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
503    return isSafeUseOfBitCastedAllocation(C, AI, Info);
504
505  if (LoadInst *LI = dyn_cast<LoadInst>(User))
506    if (!LI->isVolatile())
507      return;// Loads (returning a first class aggregrate) are always rewritable
508
509  if (StoreInst *SI = dyn_cast<StoreInst>(User))
510    if (!SI->isVolatile() && SI->getOperand(0) != AI)
511      return;// Store is ok if storing INTO the pointer, not storing the pointer
512
513  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
514  if (GEPI == 0)
515    return MarkUnsafe(Info);
516
517  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
518
519  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
520  if (I == E ||
521      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
522    return MarkUnsafe(Info);
523  }
524
525  ++I;
526  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
527
528  bool IsAllZeroIndices = true;
529
530  // If the first index is a non-constant index into an array, see if we can
531  // handle it as a special case.
532  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
533    if (!isa<ConstantInt>(I.getOperand())) {
534      IsAllZeroIndices = 0;
535      uint64_t NumElements = AT->getNumElements();
536
537      // If this is an array index and the index is not constant, we cannot
538      // promote... that is unless the array has exactly one or two elements in
539      // it, in which case we CAN promote it, but we have to canonicalize this
540      // out if this is the only problem.
541      if ((NumElements == 1 || NumElements == 2) &&
542          AllUsersAreLoads(GEPI)) {
543        Info.needsCanon = true;
544        return;  // Canonicalization required!
545      }
546      return MarkUnsafe(Info);
547    }
548  }
549
550  // Walk through the GEP type indices, checking the types that this indexes
551  // into.
552  for (; I != E; ++I) {
553    // Ignore struct elements, no extra checking needed for these.
554    if (isa<StructType>(*I))
555      continue;
556
557    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
558    if (!IdxVal) return MarkUnsafe(Info);
559
560    // Are all indices still zero?
561    IsAllZeroIndices &= IdxVal->isZero();
562
563    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
564      // This GEP indexes an array.  Verify that this is an in-range constant
565      // integer. Specifically, consider A[0][i]. We cannot know that the user
566      // isn't doing invalid things like allowing i to index an out-of-range
567      // subscript that accesses A[1].  Because of this, we have to reject SROA
568      // of any accesses into structs where any of the components are variables.
569      if (IdxVal->getZExtValue() >= AT->getNumElements())
570        return MarkUnsafe(Info);
571    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
572      if (IdxVal->getZExtValue() >= VT->getNumElements())
573        return MarkUnsafe(Info);
574    }
575  }
576
577  // If there are any non-simple uses of this getelementptr, make sure to reject
578  // them.
579  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
580}
581
582/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
583/// intrinsic can be promoted by SROA.  At this point, we know that the operand
584/// of the memintrinsic is a pointer to the beginning of the allocation.
585void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
586                                          unsigned OpNo, AllocaInfo &Info) {
587  // If not constant length, give up.
588  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
589  if (!Length) return MarkUnsafe(Info);
590
591  // If not the whole aggregate, give up.
592  if (Length->getZExtValue() !=
593      TD->getTypePaddedSize(AI->getType()->getElementType()))
594    return MarkUnsafe(Info);
595
596  // We only know about memcpy/memset/memmove.
597  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
598    return MarkUnsafe(Info);
599
600  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
601  // into or out of the aggregate.
602  if (OpNo == 1)
603    Info.isMemCpyDst = true;
604  else {
605    assert(OpNo == 2);
606    Info.isMemCpySrc = true;
607  }
608}
609
610/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
611/// are
612void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
613                                          AllocaInfo &Info) {
614  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
615       UI != E; ++UI) {
616    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
617      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
618    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
619      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
620    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
621      if (SI->isVolatile())
622        return MarkUnsafe(Info);
623
624      // If storing the entire alloca in one chunk through a bitcasted pointer
625      // to integer, we can transform it.  This happens (for example) when you
626      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
627      // memcpy case and occurs in various "byval" cases and emulated memcpys.
628      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
629          TD->getTypePaddedSize(SI->getOperand(0)->getType()) ==
630          TD->getTypePaddedSize(AI->getType()->getElementType())) {
631        Info.isMemCpyDst = true;
632        continue;
633      }
634      return MarkUnsafe(Info);
635    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
636      if (LI->isVolatile())
637        return MarkUnsafe(Info);
638
639      // If loading the entire alloca in one chunk through a bitcasted pointer
640      // to integer, we can transform it.  This happens (for example) when you
641      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
642      // memcpy case and occurs in various "byval" cases and emulated memcpys.
643      if (isa<IntegerType>(LI->getType()) &&
644          TD->getTypePaddedSize(LI->getType()) ==
645          TD->getTypePaddedSize(AI->getType()->getElementType())) {
646        Info.isMemCpySrc = true;
647        continue;
648      }
649      return MarkUnsafe(Info);
650    } else {
651      return MarkUnsafe(Info);
652    }
653    if (Info.isUnsafe) return;
654  }
655}
656
657/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
658/// to its first element.  Transform users of the cast to use the new values
659/// instead.
660void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
661                                      SmallVector<AllocaInst*, 32> &NewElts) {
662  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
663  while (UI != UE) {
664    Instruction *User = cast<Instruction>(*UI++);
665    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
666      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
667      if (BCU->use_empty()) BCU->eraseFromParent();
668      continue;
669    }
670
671    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
672      // This must be memcpy/memmove/memset of the entire aggregate.
673      // Split into one per element.
674      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
675      continue;
676    }
677
678    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
679      // If this is a store of the entire alloca from an integer, rewrite it.
680      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
681      continue;
682    }
683
684    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
685      // If this is a load of the entire alloca to an integer, rewrite it.
686      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
687      continue;
688    }
689
690    // Otherwise it must be some other user of a gep of the first pointer.  Just
691    // leave these alone.
692    continue;
693  }
694}
695
696/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
697/// Rewrite it to copy or set the elements of the scalarized memory.
698void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
699                                        AllocationInst *AI,
700                                        SmallVector<AllocaInst*, 32> &NewElts) {
701
702  // If this is a memcpy/memmove, construct the other pointer as the
703  // appropriate type.
704  Value *OtherPtr = 0;
705  if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
706    if (BCInst == MCI->getRawDest())
707      OtherPtr = MCI->getRawSource();
708    else {
709      assert(BCInst == MCI->getRawSource());
710      OtherPtr = MCI->getRawDest();
711    }
712  } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
713    if (BCInst == MMI->getRawDest())
714      OtherPtr = MMI->getRawSource();
715    else {
716      assert(BCInst == MMI->getRawSource());
717      OtherPtr = MMI->getRawDest();
718    }
719  }
720
721  // If there is an other pointer, we want to convert it to the same pointer
722  // type as AI has, so we can GEP through it safely.
723  if (OtherPtr) {
724    // It is likely that OtherPtr is a bitcast, if so, remove it.
725    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
726      OtherPtr = BC->getOperand(0);
727    // All zero GEPs are effectively bitcasts.
728    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
729      if (GEP->hasAllZeroIndices())
730        OtherPtr = GEP->getOperand(0);
731
732    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
733      if (BCE->getOpcode() == Instruction::BitCast)
734        OtherPtr = BCE->getOperand(0);
735
736    // If the pointer is not the right type, insert a bitcast to the right
737    // type.
738    if (OtherPtr->getType() != AI->getType())
739      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
740                                 MI);
741  }
742
743  // Process each element of the aggregate.
744  Value *TheFn = MI->getOperand(0);
745  const Type *BytePtrTy = MI->getRawDest()->getType();
746  bool SROADest = MI->getRawDest() == BCInst;
747
748  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
749
750  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
751    // If this is a memcpy/memmove, emit a GEP of the other element address.
752    Value *OtherElt = 0;
753    if (OtherPtr) {
754      Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
755      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
756                                           OtherPtr->getNameStr()+"."+utostr(i),
757                                           MI);
758    }
759
760    Value *EltPtr = NewElts[i];
761    const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
762
763    // If we got down to a scalar, insert a load or store as appropriate.
764    if (EltTy->isSingleValueType()) {
765      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
766        Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
767                                  MI);
768        new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
769        continue;
770      }
771      assert(isa<MemSetInst>(MI));
772
773      // If the stored element is zero (common case), just store a null
774      // constant.
775      Constant *StoreVal;
776      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
777        if (CI->isZero()) {
778          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
779        } else {
780          // If EltTy is a vector type, get the element type.
781          const Type *ValTy = EltTy;
782          if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
783            ValTy = VTy->getElementType();
784
785          // Construct an integer with the right value.
786          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
787          APInt OneVal(EltSize, CI->getZExtValue());
788          APInt TotalVal(OneVal);
789          // Set each byte.
790          for (unsigned i = 0; 8*i < EltSize; ++i) {
791            TotalVal = TotalVal.shl(8);
792            TotalVal |= OneVal;
793          }
794
795          // Convert the integer value to the appropriate type.
796          StoreVal = ConstantInt::get(TotalVal);
797          if (isa<PointerType>(ValTy))
798            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
799          else if (ValTy->isFloatingPoint())
800            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
801          assert(StoreVal->getType() == ValTy && "Type mismatch!");
802
803          // If the requested value was a vector constant, create it.
804          if (EltTy != ValTy) {
805            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
806            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
807            StoreVal = ConstantVector::get(&Elts[0], NumElts);
808          }
809        }
810        new StoreInst(StoreVal, EltPtr, MI);
811        continue;
812      }
813      // Otherwise, if we're storing a byte variable, use a memset call for
814      // this element.
815    }
816
817    // Cast the element pointer to BytePtrTy.
818    if (EltPtr->getType() != BytePtrTy)
819      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
820
821    // Cast the other pointer (if we have one) to BytePtrTy.
822    if (OtherElt && OtherElt->getType() != BytePtrTy)
823      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
824                                 MI);
825
826    unsigned EltSize = TD->getTypePaddedSize(EltTy);
827
828    // Finally, insert the meminst for this element.
829    if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
830      Value *Ops[] = {
831        SROADest ? EltPtr : OtherElt,  // Dest ptr
832        SROADest ? OtherElt : EltPtr,  // Src ptr
833        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
834        Zero  // Align
835      };
836      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
837    } else {
838      assert(isa<MemSetInst>(MI));
839      Value *Ops[] = {
840        EltPtr, MI->getOperand(2),  // Dest, Value,
841        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
842        Zero  // Align
843      };
844      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
845    }
846  }
847  MI->eraseFromParent();
848}
849
850/// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
851/// overwrites the entire allocation.  Extract out the pieces of the stored
852/// integer and store them individually.
853void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
854                                         AllocationInst *AI,
855                                         SmallVector<AllocaInst*, 32> &NewElts){
856  // Extract each element out of the integer according to its structure offset
857  // and store the element value to the individual alloca.
858  Value *SrcVal = SI->getOperand(0);
859  const Type *AllocaEltTy = AI->getType()->getElementType();
860  uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
861
862  // If this isn't a store of an integer to the whole alloca, it may be a store
863  // to the first element.  Just ignore the store in this case and normal SROA
864  // will handle it.
865  if (!isa<IntegerType>(SrcVal->getType()) ||
866      TD->getTypePaddedSizeInBits(SrcVal->getType()) != AllocaSizeBits)
867    return;
868
869  DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
870
871  // There are two forms here: AI could be an array or struct.  Both cases
872  // have different ways to compute the element offset.
873  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
874    const StructLayout *Layout = TD->getStructLayout(EltSTy);
875
876    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
877      // Get the number of bits to shift SrcVal to get the value.
878      const Type *FieldTy = EltSTy->getElementType(i);
879      uint64_t Shift = Layout->getElementOffsetInBits(i);
880
881      if (TD->isBigEndian())
882        Shift = AllocaSizeBits-Shift-TD->getTypePaddedSizeInBits(FieldTy);
883
884      Value *EltVal = SrcVal;
885      if (Shift) {
886        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
887        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
888                                            "sroa.store.elt", SI);
889      }
890
891      // Truncate down to an integer of the right size.
892      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
893
894      // Ignore zero sized fields like {}, they obviously contain no data.
895      if (FieldSizeBits == 0) continue;
896
897      if (FieldSizeBits != AllocaSizeBits)
898        EltVal = new TruncInst(EltVal, IntegerType::get(FieldSizeBits), "", SI);
899      Value *DestField = NewElts[i];
900      if (EltVal->getType() == FieldTy) {
901        // Storing to an integer field of this size, just do it.
902      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
903        // Bitcast to the right element type (for fp/vector values).
904        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
905      } else {
906        // Otherwise, bitcast the dest pointer (for aggregates).
907        DestField = new BitCastInst(DestField,
908                                    PointerType::getUnqual(EltVal->getType()),
909                                    "", SI);
910      }
911      new StoreInst(EltVal, DestField, SI);
912    }
913
914  } else {
915    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
916    const Type *ArrayEltTy = ATy->getElementType();
917    uint64_t ElementOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
918    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
919
920    uint64_t Shift;
921
922    if (TD->isBigEndian())
923      Shift = AllocaSizeBits-ElementOffset;
924    else
925      Shift = 0;
926
927    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
928      // Ignore zero sized fields like {}, they obviously contain no data.
929      if (ElementSizeBits == 0) continue;
930
931      Value *EltVal = SrcVal;
932      if (Shift) {
933        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
934        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
935                                            "sroa.store.elt", SI);
936      }
937
938      // Truncate down to an integer of the right size.
939      if (ElementSizeBits != AllocaSizeBits)
940        EltVal = new TruncInst(EltVal, IntegerType::get(ElementSizeBits),"",SI);
941      Value *DestField = NewElts[i];
942      if (EltVal->getType() == ArrayEltTy) {
943        // Storing to an integer field of this size, just do it.
944      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
945        // Bitcast to the right element type (for fp/vector values).
946        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
947      } else {
948        // Otherwise, bitcast the dest pointer (for aggregates).
949        DestField = new BitCastInst(DestField,
950                                    PointerType::getUnqual(EltVal->getType()),
951                                    "", SI);
952      }
953      new StoreInst(EltVal, DestField, SI);
954
955      if (TD->isBigEndian())
956        Shift -= ElementOffset;
957      else
958        Shift += ElementOffset;
959    }
960  }
961
962  SI->eraseFromParent();
963}
964
965/// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
966/// an integer.  Load the individual pieces to form the aggregate value.
967void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
968                                        SmallVector<AllocaInst*, 32> &NewElts) {
969  // Extract each element out of the NewElts according to its structure offset
970  // and form the result value.
971  const Type *AllocaEltTy = AI->getType()->getElementType();
972  uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
973
974  // If this isn't a load of the whole alloca to an integer, it may be a load
975  // of the first element.  Just ignore the load in this case and normal SROA
976  // will handle it.
977  if (!isa<IntegerType>(LI->getType()) ||
978      TD->getTypePaddedSizeInBits(LI->getType()) != AllocaSizeBits)
979    return;
980
981  DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
982
983  // There are two forms here: AI could be an array or struct.  Both cases
984  // have different ways to compute the element offset.
985  const StructLayout *Layout = 0;
986  uint64_t ArrayEltBitOffset = 0;
987  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
988    Layout = TD->getStructLayout(EltSTy);
989  } else {
990    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
991    ArrayEltBitOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
992  }
993
994  Value *ResultVal = Constant::getNullValue(LI->getType());
995
996  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
997    // Load the value from the alloca.  If the NewElt is an aggregate, cast
998    // the pointer to an integer of the same size before doing the load.
999    Value *SrcField = NewElts[i];
1000    const Type *FieldTy =
1001      cast<PointerType>(SrcField->getType())->getElementType();
1002    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1003
1004    // Ignore zero sized fields like {}, they obviously contain no data.
1005    if (FieldSizeBits == 0) continue;
1006
1007    const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits);
1008    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1009        !isa<VectorType>(FieldTy))
1010      SrcField = new BitCastInst(SrcField, PointerType::getUnqual(FieldIntTy),
1011                                 "", LI);
1012    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1013
1014    // If SrcField is a fp or vector of the right size but that isn't an
1015    // integer type, bitcast to an integer so we can shift it.
1016    if (SrcField->getType() != FieldIntTy)
1017      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1018
1019    // Zero extend the field to be the same size as the final alloca so that
1020    // we can shift and insert it.
1021    if (SrcField->getType() != ResultVal->getType())
1022      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1023
1024    // Determine the number of bits to shift SrcField.
1025    uint64_t Shift;
1026    if (Layout) // Struct case.
1027      Shift = Layout->getElementOffsetInBits(i);
1028    else  // Array case.
1029      Shift = i*ArrayEltBitOffset;
1030
1031    if (TD->isBigEndian())
1032      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1033
1034    if (Shift) {
1035      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1036      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1037    }
1038
1039    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1040  }
1041
1042  LI->replaceAllUsesWith(ResultVal);
1043  LI->eraseFromParent();
1044}
1045
1046
1047/// HasPadding - Return true if the specified type has any structure or
1048/// alignment padding, false otherwise.
1049static bool HasPadding(const Type *Ty, const TargetData &TD) {
1050  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1051    const StructLayout *SL = TD.getStructLayout(STy);
1052    unsigned PrevFieldBitOffset = 0;
1053    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1054      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1055
1056      // Padding in sub-elements?
1057      if (HasPadding(STy->getElementType(i), TD))
1058        return true;
1059
1060      // Check to see if there is any padding between this element and the
1061      // previous one.
1062      if (i) {
1063        unsigned PrevFieldEnd =
1064        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1065        if (PrevFieldEnd < FieldBitOffset)
1066          return true;
1067      }
1068
1069      PrevFieldBitOffset = FieldBitOffset;
1070    }
1071
1072    //  Check for tail padding.
1073    if (unsigned EltCount = STy->getNumElements()) {
1074      unsigned PrevFieldEnd = PrevFieldBitOffset +
1075                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1076      if (PrevFieldEnd < SL->getSizeInBits())
1077        return true;
1078    }
1079
1080  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1081    return HasPadding(ATy->getElementType(), TD);
1082  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1083    return HasPadding(VTy->getElementType(), TD);
1084  }
1085  return TD.getTypeSizeInBits(Ty) != TD.getTypePaddedSizeInBits(Ty);
1086}
1087
1088/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1089/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1090/// or 1 if safe after canonicalization has been performed.
1091///
1092int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
1093  // Loop over the use list of the alloca.  We can only transform it if all of
1094  // the users are safe to transform.
1095  AllocaInfo Info;
1096
1097  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1098       I != E; ++I) {
1099    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1100    if (Info.isUnsafe) {
1101      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
1102      return 0;
1103    }
1104  }
1105
1106  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1107  // source and destination, we have to be careful.  In particular, the memcpy
1108  // could be moving around elements that live in structure padding of the LLVM
1109  // types, but may actually be used.  In these cases, we refuse to promote the
1110  // struct.
1111  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1112      HasPadding(AI->getType()->getElementType(), *TD))
1113    return 0;
1114
1115  // If we require cleanup, return 1, otherwise return 3.
1116  return Info.needsCanon ? 1 : 3;
1117}
1118
1119/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
1120/// allocation, but only if cleaned up, perform the cleanups required.
1121void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
1122  // At this point, we know that the end result will be SROA'd and promoted, so
1123  // we can insert ugly code if required so long as sroa+mem2reg will clean it
1124  // up.
1125  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1126       UI != E; ) {
1127    GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
1128    if (!GEPI) continue;
1129    gep_type_iterator I = gep_type_begin(GEPI);
1130    ++I;
1131
1132    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
1133      uint64_t NumElements = AT->getNumElements();
1134
1135      if (!isa<ConstantInt>(I.getOperand())) {
1136        if (NumElements == 1) {
1137          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
1138        } else {
1139          assert(NumElements == 2 && "Unhandled case!");
1140          // All users of the GEP must be loads.  At each use of the GEP, insert
1141          // two loads of the appropriate indexed GEP and select between them.
1142          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
1143                              Constant::getNullValue(I.getOperand()->getType()),
1144             "isone", GEPI);
1145          // Insert the new GEP instructions, which are properly indexed.
1146          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1147          Indices[1] = Constant::getNullValue(Type::Int32Ty);
1148          Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1149                                                     Indices.begin(),
1150                                                     Indices.end(),
1151                                                     GEPI->getName()+".0", GEPI);
1152          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
1153          Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1154                                                    Indices.begin(),
1155                                                    Indices.end(),
1156                                                    GEPI->getName()+".1", GEPI);
1157          // Replace all loads of the variable index GEP with loads from both
1158          // indexes and a select.
1159          while (!GEPI->use_empty()) {
1160            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1161            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1162            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
1163            Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1164            LI->replaceAllUsesWith(R);
1165            LI->eraseFromParent();
1166          }
1167          GEPI->eraseFromParent();
1168        }
1169      }
1170    }
1171  }
1172}
1173
1174/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1175/// the offset specified by Offset (which is specified in bytes).
1176///
1177/// There are two cases we handle here:
1178///   1) A union of vector types of the same size and potentially its elements.
1179///      Here we turn element accesses into insert/extract element operations.
1180///      This promotes a <4 x float> with a store of float to the third element
1181///      into a <4 x float> that uses insert element.
1182///   2) A fully general blob of memory, which we turn into some (potentially
1183///      large) integer type with extract and insert operations where the loads
1184///      and stores would mutate the memory.
1185static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1186                        unsigned AllocaSize, const TargetData &TD) {
1187  // If this could be contributing to a vector, analyze it.
1188  if (VecTy != Type::VoidTy) { // either null or a vector type.
1189
1190    // If the In type is a vector that is the same size as the alloca, see if it
1191    // matches the existing VecTy.
1192    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1193      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1194        // If we're storing/loading a vector of the right size, allow it as a
1195        // vector.  If this the first vector we see, remember the type so that
1196        // we know the element size.
1197        if (VecTy == 0)
1198          VecTy = VInTy;
1199        return;
1200      }
1201    } else if (In == Type::FloatTy || In == Type::DoubleTy ||
1202               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1203                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1204      // If we're accessing something that could be an element of a vector, see
1205      // if the implied vector agrees with what we already have and if Offset is
1206      // compatible with it.
1207      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1208      if (Offset % EltSize == 0 &&
1209          AllocaSize % EltSize == 0 &&
1210          (VecTy == 0 ||
1211           cast<VectorType>(VecTy)->getElementType()
1212                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1213        if (VecTy == 0)
1214          VecTy = VectorType::get(In, AllocaSize/EltSize);
1215        return;
1216      }
1217    }
1218  }
1219
1220  // Otherwise, we have a case that we can't handle with an optimized vector
1221  // form.  We can still turn this into a large integer.
1222  VecTy = Type::VoidTy;
1223}
1224
1225/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1226/// its accesses to use a to single vector type, return true, and set VecTy to
1227/// the new type.  If we could convert the alloca into a single promotable
1228/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
1229/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
1230/// is the current offset from the base of the alloca being analyzed.
1231///
1232bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial,
1233                              const Type *&VecTy, uint64_t Offset,
1234                              unsigned AllocaSize) {
1235  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1236    Instruction *User = cast<Instruction>(*UI);
1237
1238    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1239      // Don't break volatile loads.
1240      if (LI->isVolatile())
1241        return false;
1242      MergeInType(LI->getType(), Offset, VecTy, AllocaSize, *TD);
1243      continue;
1244    }
1245
1246    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1247      // Storing the pointer, not into the value?
1248      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1249      MergeInType(SI->getOperand(0)->getType(), Offset, VecTy, AllocaSize, *TD);
1250      continue;
1251    }
1252
1253    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1254      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, Offset, AllocaSize))
1255        return false;
1256      IsNotTrivial = true;
1257      continue;
1258    }
1259
1260    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1261      // If this is a GEP with a variable indices, we can't handle it.
1262      if (!GEP->hasAllConstantIndices())
1263        return false;
1264
1265      // Compute the offset that this GEP adds to the pointer.
1266      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1267      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1268                                                &Indices[0], Indices.size());
1269      // See if all uses can be converted.
1270      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, Offset+GEPOffset,
1271                              AllocaSize))
1272        return false;
1273      IsNotTrivial = true;
1274      continue;
1275    }
1276
1277    // If this is a constant sized memset of a constant value (e.g. 0) we can
1278    // handle it.
1279    if (isa<MemSetInst>(User) &&
1280        // Store of constant value.
1281        isa<ConstantInt>(User->getOperand(2)) &&
1282        // Store with constant size.
1283        isa<ConstantInt>(User->getOperand(3))) {
1284      VecTy = Type::VoidTy;
1285      IsNotTrivial = true;
1286      continue;
1287    }
1288
1289    // Otherwise, we cannot handle this!
1290    return false;
1291  }
1292
1293  return true;
1294}
1295
1296
1297/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1298/// directly.  This happens when we are converting an "integer union" to a
1299/// single integer scalar, or when we are converting a "vector union" to a
1300/// vector with insert/extractelement instructions.
1301///
1302/// Offset is an offset from the original alloca, in bits that need to be
1303/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1304void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1305  while (!Ptr->use_empty()) {
1306    Instruction *User = cast<Instruction>(Ptr->use_back());
1307
1308    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1309      LI->replaceAllUsesWith(ConvertUsesOfLoadToScalar(LI, NewAI, Offset));
1310      LI->eraseFromParent();
1311      continue;
1312    }
1313
1314    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1315      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1316      new StoreInst(ConvertUsesOfStoreToScalar(SI->getOperand(0), NewAI,
1317                                               Offset, SI), NewAI, SI);
1318      SI->eraseFromParent();
1319      continue;
1320    }
1321
1322    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1323      ConvertUsesToScalar(CI, NewAI, Offset);
1324      CI->eraseFromParent();
1325      continue;
1326    }
1327
1328    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1329      // Compute the offset that this GEP adds to the pointer.
1330      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1331      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1332                                                &Indices[0], Indices.size());
1333      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1334      GEP->eraseFromParent();
1335      continue;
1336    }
1337
1338    // If this is a constant sized memset of a constant value (e.g. 0) we can
1339    // transform it into a store of the expanded constant value.
1340    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1341      assert(MSI->getRawDest() == Ptr && "Consistency error!");
1342      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1343      unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1344
1345      // Compute the value replicated the right number of times.
1346      APInt APVal(NumBytes*8, Val);
1347
1348      // Splat the value if non-zero.
1349      if (Val)
1350        for (unsigned i = 1; i != NumBytes; ++i)
1351          APVal |= APVal << 8;
1352
1353      new StoreInst(ConvertUsesOfStoreToScalar(ConstantInt::get(APVal), NewAI,
1354                                               Offset, MSI), NewAI, MSI);
1355      MSI->eraseFromParent();
1356      continue;
1357    }
1358
1359
1360    assert(0 && "Unsupported operation!");
1361    abort();
1362  }
1363}
1364
1365/// ConvertUsesOfLoadToScalar - Convert all of the users of the specified load
1366/// to use the new alloca directly, returning the value that should replace the
1367/// load.  This happens when we are converting an "integer union" to a single
1368/// integer scalar, or when we are converting a "vector union" to a vector with
1369/// insert/extractelement instructions.
1370///
1371/// Offset is an offset from the original alloca, in bits that need to be
1372/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1373Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
1374                                       uint64_t Offset) {
1375  // The load is a bit extract from NewAI shifted right by Offset bits.
1376  Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1377
1378  // If the load is of the whole new alloca, no conversion is needed.
1379  if (NV->getType() == LI->getType() && Offset == 0)
1380    return NV;
1381
1382  // If the result alloca is a vector type, this is either an element
1383  // access or a bitcast to another vector type of the same size.
1384  if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) {
1385    if (isa<VectorType>(LI->getType()))
1386      return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1387
1388    // Otherwise it must be an element access.
1389    unsigned Elt = 0;
1390    if (Offset) {
1391      unsigned EltSize = TD->getTypePaddedSizeInBits(VTy->getElementType());
1392      Elt = Offset/EltSize;
1393      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1394    }
1395    // Return the element extracted out of it.
1396    Value *V = new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
1397                                      "tmp", LI);
1398    if (V->getType() != LI->getType())
1399      V = new BitCastInst(V, LI->getType(), "tmp", LI);
1400    return V;
1401  }
1402
1403  // Otherwise, this must be a union that was converted to an integer value.
1404  const IntegerType *NTy = cast<IntegerType>(NV->getType());
1405
1406  // If this is a big-endian system and the load is narrower than the
1407  // full alloca type, we need to do a shift to get the right bits.
1408  int ShAmt = 0;
1409  if (TD->isBigEndian()) {
1410    // On big-endian machines, the lowest bit is stored at the bit offset
1411    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1412    // integers with a bitwidth that is not a multiple of 8.
1413    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1414            TD->getTypeStoreSizeInBits(LI->getType()) - Offset;
1415  } else {
1416    ShAmt = Offset;
1417  }
1418
1419  // Note: we support negative bitwidths (with shl) which are not defined.
1420  // We do this to support (f.e.) loads off the end of a structure where
1421  // only some bits are used.
1422  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1423    NV = BinaryOperator::CreateLShr(NV,
1424                                    ConstantInt::get(NV->getType(), ShAmt),
1425                                    LI->getName(), LI);
1426  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1427    NV = BinaryOperator::CreateShl(NV,
1428                                   ConstantInt::get(NV->getType(), -ShAmt),
1429                                   LI->getName(), LI);
1430
1431  // Finally, unconditionally truncate the integer to the right width.
1432  unsigned LIBitWidth = TD->getTypeSizeInBits(LI->getType());
1433  if (LIBitWidth < NTy->getBitWidth())
1434    NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
1435                       LI->getName(), LI);
1436
1437  // If the result is an integer, this is a trunc or bitcast.
1438  if (isa<IntegerType>(LI->getType())) {
1439    // Should be done.
1440  } else if (LI->getType()->isFloatingPoint() ||
1441             isa<VectorType>(LI->getType())) {
1442    // Just do a bitcast, we know the sizes match up.
1443    NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1444  } else {
1445    // Otherwise must be a pointer.
1446    NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1447  }
1448  assert(NV->getType() == LI->getType() && "Didn't convert right?");
1449  return NV;
1450}
1451
1452
1453/// ConvertUsesOfStoreToScalar - Convert the specified store to a load+store
1454/// pair of the new alloca directly, returning the value that should be stored
1455/// to the alloca.  This happens when we are converting an "integer union" to a
1456/// single integer scalar, or when we are converting a "vector union" to a
1457/// vector with insert/extractelement instructions.
1458///
1459/// Offset is an offset from the original alloca, in bits that need to be
1460/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1461Value *SROA::ConvertUsesOfStoreToScalar(Value *SV, AllocaInst *NewAI,
1462                                        uint64_t Offset, Instruction *IP) {
1463
1464  // Convert the stored type to the actual type, shift it left to insert
1465  // then 'or' into place.
1466  const Type *AllocaType = NewAI->getType()->getElementType();
1467  if (SV->getType() == AllocaType && Offset == 0)
1468    return SV;
1469
1470  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1471    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", IP);
1472
1473    // If the result alloca is a vector type, this is either an element
1474    // access or a bitcast to another vector type.
1475    if (isa<VectorType>(SV->getType())) {
1476      SV = new BitCastInst(SV, AllocaType, SV->getName(), IP);
1477    } else {
1478      // Must be an element insertion.
1479      unsigned Elt = Offset/TD->getTypePaddedSizeInBits(VTy->getElementType());
1480
1481      if (SV->getType() != VTy->getElementType())
1482        SV = new BitCastInst(SV, VTy->getElementType(), "tmp", IP);
1483
1484      SV = InsertElementInst::Create(Old, SV,
1485                                     ConstantInt::get(Type::Int32Ty, Elt),
1486                                     "tmp", IP);
1487    }
1488    return SV;
1489  }
1490
1491
1492  Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", IP);
1493
1494  // If SV is a float, convert it to the appropriate integer type.
1495  // If it is a pointer, do the same, and also handle ptr->ptr casts
1496  // here.
1497  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1498  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1499  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1500  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1501  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1502    SV = new BitCastInst(SV, IntegerType::get(SrcWidth), SV->getName(), IP);
1503  else if (isa<PointerType>(SV->getType()))
1504    SV = new PtrToIntInst(SV, TD->getIntPtrType(), SV->getName(), IP);
1505
1506  // Zero extend or truncate the value if needed.
1507  if (SV->getType() != AllocaType) {
1508    if (SV->getType()->getPrimitiveSizeInBits() <
1509             AllocaType->getPrimitiveSizeInBits())
1510      SV = new ZExtInst(SV, AllocaType, SV->getName(), IP);
1511    else {
1512      // Truncation may be needed if storing more than the alloca can hold
1513      // (undefined behavior).
1514      SV = new TruncInst(SV, AllocaType, SV->getName(), IP);
1515      SrcWidth = DestWidth;
1516      SrcStoreWidth = DestStoreWidth;
1517    }
1518  }
1519
1520  // If this is a big-endian system and the store is narrower than the
1521  // full alloca type, we need to do a shift to get the right bits.
1522  int ShAmt = 0;
1523  if (TD->isBigEndian()) {
1524    // On big-endian machines, the lowest bit is stored at the bit offset
1525    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1526    // integers with a bitwidth that is not a multiple of 8.
1527    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1528  } else {
1529    ShAmt = Offset;
1530  }
1531
1532  // Note: we support negative bitwidths (with shr) which are not defined.
1533  // We do this to support (f.e.) stores off the end of a structure where
1534  // only some bits in the structure are set.
1535  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1536  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1537    SV = BinaryOperator::CreateShl(SV,
1538                                   ConstantInt::get(SV->getType(), ShAmt),
1539                                   SV->getName(), IP);
1540    Mask <<= ShAmt;
1541  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1542    SV = BinaryOperator::CreateLShr(SV,
1543                                    ConstantInt::get(SV->getType(), -ShAmt),
1544                                    SV->getName(), IP);
1545    Mask = Mask.lshr(-ShAmt);
1546  }
1547
1548  // Mask out the bits we are about to insert from the old value, and or
1549  // in the new bits.
1550  if (SrcWidth != DestWidth) {
1551    assert(DestWidth > SrcWidth);
1552    Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
1553                                    Old->getName()+".mask", IP);
1554    SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", IP);
1555  }
1556  return SV;
1557}
1558
1559
1560
1561/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1562/// some part of a constant global variable.  This intentionally only accepts
1563/// constant expressions because we don't can't rewrite arbitrary instructions.
1564static bool PointsToConstantGlobal(Value *V) {
1565  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1566    return GV->isConstant();
1567  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1568    if (CE->getOpcode() == Instruction::BitCast ||
1569        CE->getOpcode() == Instruction::GetElementPtr)
1570      return PointsToConstantGlobal(CE->getOperand(0));
1571  return false;
1572}
1573
1574/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1575/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1576/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1577/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1578/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1579/// the alloca, and if the source pointer is a pointer to a constant  global, we
1580/// can optimize this.
1581static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1582                                           bool isOffset) {
1583  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1584    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1585      // Ignore non-volatile loads, they are always ok.
1586      if (!LI->isVolatile())
1587        continue;
1588
1589    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1590      // If uses of the bitcast are ok, we are ok.
1591      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1592        return false;
1593      continue;
1594    }
1595    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1596      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1597      // doesn't, it does.
1598      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1599                                         isOffset || !GEP->hasAllZeroIndices()))
1600        return false;
1601      continue;
1602    }
1603
1604    // If this is isn't our memcpy/memmove, reject it as something we can't
1605    // handle.
1606    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1607      return false;
1608
1609    // If we already have seen a copy, reject the second one.
1610    if (TheCopy) return false;
1611
1612    // If the pointer has been offset from the start of the alloca, we can't
1613    // safely handle this.
1614    if (isOffset) return false;
1615
1616    // If the memintrinsic isn't using the alloca as the dest, reject it.
1617    if (UI.getOperandNo() != 1) return false;
1618
1619    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1620
1621    // If the source of the memcpy/move is not a constant global, reject it.
1622    if (!PointsToConstantGlobal(MI->getOperand(2)))
1623      return false;
1624
1625    // Otherwise, the transform is safe.  Remember the copy instruction.
1626    TheCopy = MI;
1627  }
1628  return true;
1629}
1630
1631/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1632/// modified by a copy from a constant global.  If we can prove this, we can
1633/// replace any uses of the alloca with uses of the global directly.
1634Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1635  Instruction *TheCopy = 0;
1636  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1637    return TheCopy;
1638  return 0;
1639}
1640