ScalarReplAggregates.cpp revision 856e13ddace4174ad1b07f65ebb18b2fd835ed57
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DebugInfo.h"
34#include "llvm/Analysis/DIBuilder.h"
35#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/Loads.h"
37#include "llvm/Analysis/ValueTracking.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Transforms/Utils/PromoteMemToReg.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include "llvm/Transforms/Utils/SSAUpdater.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/GetElementPtrTypeIterator.h"
46#include "llvm/Support/IRBuilder.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/SetVector.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/Statistic.h"
52using namespace llvm;
53
54STATISTIC(NumReplaced,  "Number of allocas broken up");
55STATISTIC(NumPromoted,  "Number of allocas promoted");
56STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
57STATISTIC(NumConverted, "Number of aggregates converted to scalar");
58STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
59
60namespace {
61  struct SROA : public FunctionPass {
62    SROA(int T, bool hasDT, char &ID)
63      : FunctionPass(ID), HasDomTree(hasDT) {
64      if (T == -1)
65        SRThreshold = 128;
66      else
67        SRThreshold = T;
68    }
69
70    bool runOnFunction(Function &F);
71
72    bool performScalarRepl(Function &F);
73    bool performPromotion(Function &F);
74
75  private:
76    bool HasDomTree;
77    TargetData *TD;
78
79    /// DeadInsts - Keep track of instructions we have made dead, so that
80    /// we can remove them after we are done working.
81    SmallVector<Value*, 32> DeadInsts;
82
83    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
84    /// information about the uses.  All these fields are initialized to false
85    /// and set to true when something is learned.
86    struct AllocaInfo {
87      /// The alloca to promote.
88      AllocaInst *AI;
89
90      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
91      /// looping and avoid redundant work.
92      SmallPtrSet<PHINode*, 8> CheckedPHIs;
93
94      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
95      bool isUnsafe : 1;
96
97      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
98      bool isMemCpySrc : 1;
99
100      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
101      bool isMemCpyDst : 1;
102
103      /// hasSubelementAccess - This is true if a subelement of the alloca is
104      /// ever accessed, or false if the alloca is only accessed with mem
105      /// intrinsics or load/store that only access the entire alloca at once.
106      bool hasSubelementAccess : 1;
107
108      /// hasALoadOrStore - This is true if there are any loads or stores to it.
109      /// The alloca may just be accessed with memcpy, for example, which would
110      /// not set this.
111      bool hasALoadOrStore : 1;
112
113      explicit AllocaInfo(AllocaInst *ai)
114        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
115          hasSubelementAccess(false), hasALoadOrStore(false) {}
116    };
117
118    unsigned SRThreshold;
119
120    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
121      I.isUnsafe = true;
122      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
123    }
124
125    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
126
127    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
128    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
129                                         AllocaInfo &Info);
130    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
131    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
132                         Type *MemOpType, bool isStore, AllocaInfo &Info,
133                         Instruction *TheAccess, bool AllowWholeAccess);
134    bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
135    uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
136                                  Type *&IdxTy);
137
138    void DoScalarReplacement(AllocaInst *AI,
139                             std::vector<AllocaInst*> &WorkList);
140    void DeleteDeadInstructions();
141
142    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
143                              SmallVector<AllocaInst*, 32> &NewElts);
144    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
145                        SmallVector<AllocaInst*, 32> &NewElts);
146    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
147                    SmallVector<AllocaInst*, 32> &NewElts);
148    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
149                                      AllocaInst *AI,
150                                      SmallVector<AllocaInst*, 32> &NewElts);
151    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
152                                       SmallVector<AllocaInst*, 32> &NewElts);
153    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
154                                      SmallVector<AllocaInst*, 32> &NewElts);
155
156    static MemTransferInst *isOnlyCopiedFromConstantGlobal(
157        AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete);
158  };
159
160  // SROA_DT - SROA that uses DominatorTree.
161  struct SROA_DT : public SROA {
162    static char ID;
163  public:
164    SROA_DT(int T = -1) : SROA(T, true, ID) {
165      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
166    }
167
168    // getAnalysisUsage - This pass does not require any passes, but we know it
169    // will not alter the CFG, so say so.
170    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
171      AU.addRequired<DominatorTree>();
172      AU.setPreservesCFG();
173    }
174  };
175
176  // SROA_SSAUp - SROA that uses SSAUpdater.
177  struct SROA_SSAUp : public SROA {
178    static char ID;
179  public:
180    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
181      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
182    }
183
184    // getAnalysisUsage - This pass does not require any passes, but we know it
185    // will not alter the CFG, so say so.
186    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
187      AU.setPreservesCFG();
188    }
189  };
190
191}
192
193char SROA_DT::ID = 0;
194char SROA_SSAUp::ID = 0;
195
196INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
197                "Scalar Replacement of Aggregates (DT)", false, false)
198INITIALIZE_PASS_DEPENDENCY(DominatorTree)
199INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
200                "Scalar Replacement of Aggregates (DT)", false, false)
201
202INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
203                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
204INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
205                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
206
207// Public interface to the ScalarReplAggregates pass
208FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
209                                                   bool UseDomTree) {
210  if (UseDomTree)
211    return new SROA_DT(Threshold);
212  return new SROA_SSAUp(Threshold);
213}
214
215
216//===----------------------------------------------------------------------===//
217// Convert To Scalar Optimization.
218//===----------------------------------------------------------------------===//
219
220namespace {
221/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
222/// optimization, which scans the uses of an alloca and determines if it can
223/// rewrite it in terms of a single new alloca that can be mem2reg'd.
224class ConvertToScalarInfo {
225  /// AllocaSize - The size of the alloca being considered in bytes.
226  unsigned AllocaSize;
227  const TargetData &TD;
228
229  /// IsNotTrivial - This is set to true if there is some access to the object
230  /// which means that mem2reg can't promote it.
231  bool IsNotTrivial;
232
233  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
234  /// computed based on the uses of the alloca rather than the LLVM type system.
235  enum {
236    Unknown,
237
238    // Accesses via GEPs that are consistent with element access of a vector
239    // type. This will not be converted into a vector unless there is a later
240    // access using an actual vector type.
241    ImplicitVector,
242
243    // Accesses via vector operations and GEPs that are consistent with the
244    // layout of a vector type.
245    Vector,
246
247    // An integer bag-of-bits with bitwise operations for insertion and
248    // extraction. Any combination of types can be converted into this kind
249    // of scalar.
250    Integer
251  } ScalarKind;
252
253  /// VectorTy - This tracks the type that we should promote the vector to if
254  /// it is possible to turn it into a vector.  This starts out null, and if it
255  /// isn't possible to turn into a vector type, it gets set to VoidTy.
256  VectorType *VectorTy;
257
258  /// HadNonMemTransferAccess - True if there is at least one access to the
259  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
260  /// large integers unless there is some potential for optimization.
261  bool HadNonMemTransferAccess;
262
263public:
264  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
265    : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
266      VectorTy(0), HadNonMemTransferAccess(false) { }
267
268  AllocaInst *TryConvert(AllocaInst *AI);
269
270private:
271  bool CanConvertToScalar(Value *V, uint64_t Offset);
272  void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
273  bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
274  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
275
276  Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
277                                    uint64_t Offset, IRBuilder<> &Builder);
278  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
279                                   uint64_t Offset, IRBuilder<> &Builder);
280};
281} // end anonymous namespace.
282
283
284/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
285/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
286/// alloca if possible or null if not.
287AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
288  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
289  // out.
290  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
291    return 0;
292
293  // If an alloca has only memset / memcpy uses, it may still have an Unknown
294  // ScalarKind. Treat it as an Integer below.
295  if (ScalarKind == Unknown)
296    ScalarKind = Integer;
297
298  // FIXME: It should be possible to promote the vector type up to the alloca's
299  // size.
300  if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
301    ScalarKind = Integer;
302
303  // If we were able to find a vector type that can handle this with
304  // insert/extract elements, and if there was at least one use that had
305  // a vector type, promote this to a vector.  We don't want to promote
306  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
307  // we just get a lot of insert/extracts.  If at least one vector is
308  // involved, then we probably really do have a union of vector/array.
309  Type *NewTy;
310  if (ScalarKind == Vector) {
311    assert(VectorTy && "Missing type for vector scalar.");
312    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
313          << *VectorTy << '\n');
314    NewTy = VectorTy;  // Use the vector type.
315  } else {
316    unsigned BitWidth = AllocaSize * 8;
317    if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
318        !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
319      return 0;
320
321    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
322    // Create and insert the integer alloca.
323    NewTy = IntegerType::get(AI->getContext(), BitWidth);
324  }
325  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
326  ConvertUsesToScalar(AI, NewAI, 0);
327  return NewAI;
328}
329
330/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
331/// (VectorTy) so far at the offset specified by Offset (which is specified in
332/// bytes).
333///
334/// There are three cases we handle here:
335///   1) A union of vector types of the same size and potentially its elements.
336///      Here we turn element accesses into insert/extract element operations.
337///      This promotes a <4 x float> with a store of float to the third element
338///      into a <4 x float> that uses insert element.
339///   2) A union of vector types with power-of-2 size differences, e.g. a float,
340///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
341///      and extract element operations, and <2 x float> accesses into a cast to
342///      <2 x double>, an extract, and a cast back to <2 x float>.
343///   3) A fully general blob of memory, which we turn into some (potentially
344///      large) integer type with extract and insert operations where the loads
345///      and stores would mutate the memory.  We mark this by setting VectorTy
346///      to VoidTy.
347void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
348                                                    uint64_t Offset) {
349  // If we already decided to turn this into a blob of integer memory, there is
350  // nothing to be done.
351  if (ScalarKind == Integer)
352    return;
353
354  // If this could be contributing to a vector, analyze it.
355
356  // If the In type is a vector that is the same size as the alloca, see if it
357  // matches the existing VecTy.
358  if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
359    if (MergeInVectorType(VInTy, Offset))
360      return;
361  } else if (In->isFloatTy() || In->isDoubleTy() ||
362             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
363              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
364    // Full width accesses can be ignored, because they can always be turned
365    // into bitcasts.
366    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
367    if (EltSize == AllocaSize)
368      return;
369
370    // If we're accessing something that could be an element of a vector, see
371    // if the implied vector agrees with what we already have and if Offset is
372    // compatible with it.
373    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
374        (!VectorTy || Offset * 8 < VectorTy->getPrimitiveSizeInBits())) {
375      if (!VectorTy) {
376        ScalarKind = ImplicitVector;
377        VectorTy = VectorType::get(In, AllocaSize/EltSize);
378        return;
379      }
380
381      unsigned CurrentEltSize = VectorTy->getElementType()
382                                ->getPrimitiveSizeInBits()/8;
383      if (EltSize == CurrentEltSize)
384        return;
385
386      if (In->isIntegerTy() && isPowerOf2_32(AllocaSize / EltSize))
387        return;
388    }
389  }
390
391  // Otherwise, we have a case that we can't handle with an optimized vector
392  // form.  We can still turn this into a large integer.
393  ScalarKind = Integer;
394}
395
396/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
397/// returning true if the type was successfully merged and false otherwise.
398bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
399                                            uint64_t Offset) {
400  // TODO: Support nonzero offsets?
401  if (Offset != 0)
402    return false;
403
404  // Only allow vectors that are a power-of-2 away from the size of the alloca.
405  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
406    return false;
407
408  // If this the first vector we see, remember the type so that we know the
409  // element size.
410  if (!VectorTy) {
411    ScalarKind = Vector;
412    VectorTy = VInTy;
413    return true;
414  }
415
416  unsigned BitWidth = VectorTy->getBitWidth();
417  unsigned InBitWidth = VInTy->getBitWidth();
418
419  // Vectors of the same size can be converted using a simple bitcast.
420  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8)) {
421    ScalarKind = Vector;
422    return true;
423  }
424
425  Type *ElementTy = VectorTy->getElementType();
426  Type *InElementTy = VInTy->getElementType();
427
428  // If they're the same alloc size, we'll be attempting to convert between
429  // them with a vector shuffle, which requires the element types to match.
430  if (TD.getTypeAllocSize(VectorTy) == TD.getTypeAllocSize(VInTy) &&
431      ElementTy != InElementTy)
432    return false;
433
434  // Do not allow mixed integer and floating-point accesses from vectors of
435  // different sizes.
436  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
437    return false;
438
439  if (ElementTy->isFloatingPointTy()) {
440    // Only allow floating-point vectors of different sizes if they have the
441    // same element type.
442    // TODO: This could be loosened a bit, but would anything benefit?
443    if (ElementTy != InElementTy)
444      return false;
445
446    // There are no arbitrary-precision floating-point types, which limits the
447    // number of legal vector types with larger element types that we can form
448    // to bitcast and extract a subvector.
449    // TODO: We could support some more cases with mixed fp128 and double here.
450    if (!(BitWidth == 64 || BitWidth == 128) ||
451        !(InBitWidth == 64 || InBitWidth == 128))
452      return false;
453  } else {
454    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
455                                       "or floating-point.");
456    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
457    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
458
459    // Do not allow integer types smaller than a byte or types whose widths are
460    // not a multiple of a byte.
461    if (BitWidth < 8 || InBitWidth < 8 ||
462        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
463      return false;
464  }
465
466  // Pick the largest of the two vector types.
467  ScalarKind = Vector;
468  if (InBitWidth > BitWidth)
469    VectorTy = VInTy;
470
471  return true;
472}
473
474/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
475/// its accesses to a single vector type, return true and set VecTy to
476/// the new type.  If we could convert the alloca into a single promotable
477/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
478/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
479/// is the current offset from the base of the alloca being analyzed.
480///
481/// If we see at least one access to the value that is as a vector type, set the
482/// SawVec flag.
483bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
484  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
485    Instruction *User = cast<Instruction>(*UI);
486
487    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
488      // Don't break volatile loads.
489      if (LI->isVolatile())
490        return false;
491      // Don't touch MMX operations.
492      if (LI->getType()->isX86_MMXTy())
493        return false;
494      HadNonMemTransferAccess = true;
495      MergeInTypeForLoadOrStore(LI->getType(), Offset);
496      continue;
497    }
498
499    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
500      // Storing the pointer, not into the value?
501      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
502      // Don't touch MMX operations.
503      if (SI->getOperand(0)->getType()->isX86_MMXTy())
504        return false;
505      HadNonMemTransferAccess = true;
506      MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
507      continue;
508    }
509
510    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
511      IsNotTrivial = true;  // Can't be mem2reg'd.
512      if (!CanConvertToScalar(BCI, Offset))
513        return false;
514      continue;
515    }
516
517    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
518      // If this is a GEP with a variable indices, we can't handle it.
519      if (!GEP->hasAllConstantIndices())
520        return false;
521
522      // Compute the offset that this GEP adds to the pointer.
523      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
524      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
525                                               Indices);
526      // See if all uses can be converted.
527      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
528        return false;
529      IsNotTrivial = true;  // Can't be mem2reg'd.
530      HadNonMemTransferAccess = true;
531      continue;
532    }
533
534    // If this is a constant sized memset of a constant value (e.g. 0) we can
535    // handle it.
536    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
537      // Store of constant value.
538      if (!isa<ConstantInt>(MSI->getValue()))
539        return false;
540
541      // Store of constant size.
542      ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
543      if (!Len)
544        return false;
545
546      // If the size differs from the alloca, we can only convert the alloca to
547      // an integer bag-of-bits.
548      // FIXME: This should handle all of the cases that are currently accepted
549      // as vector element insertions.
550      if (Len->getZExtValue() != AllocaSize || Offset != 0)
551        ScalarKind = Integer;
552
553      IsNotTrivial = true;  // Can't be mem2reg'd.
554      HadNonMemTransferAccess = true;
555      continue;
556    }
557
558    // If this is a memcpy or memmove into or out of the whole allocation, we
559    // can handle it like a load or store of the scalar type.
560    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
561      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
562      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
563        return false;
564
565      IsNotTrivial = true;  // Can't be mem2reg'd.
566      continue;
567    }
568
569    // Otherwise, we cannot handle this!
570    return false;
571  }
572
573  return true;
574}
575
576/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
577/// directly.  This happens when we are converting an "integer union" to a
578/// single integer scalar, or when we are converting a "vector union" to a
579/// vector with insert/extractelement instructions.
580///
581/// Offset is an offset from the original alloca, in bits that need to be
582/// shifted to the right.  By the end of this, there should be no uses of Ptr.
583void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
584                                              uint64_t Offset) {
585  while (!Ptr->use_empty()) {
586    Instruction *User = cast<Instruction>(Ptr->use_back());
587
588    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
589      ConvertUsesToScalar(CI, NewAI, Offset);
590      CI->eraseFromParent();
591      continue;
592    }
593
594    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
595      // Compute the offset that this GEP adds to the pointer.
596      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
597      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
598                                               Indices);
599      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
600      GEP->eraseFromParent();
601      continue;
602    }
603
604    IRBuilder<> Builder(User);
605
606    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
607      // The load is a bit extract from NewAI shifted right by Offset bits.
608      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
609      Value *NewLoadVal
610        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
611      LI->replaceAllUsesWith(NewLoadVal);
612      LI->eraseFromParent();
613      continue;
614    }
615
616    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
617      assert(SI->getOperand(0) != Ptr && "Consistency error!");
618      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
619      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
620                                             Builder);
621      Builder.CreateStore(New, NewAI);
622      SI->eraseFromParent();
623
624      // If the load we just inserted is now dead, then the inserted store
625      // overwrote the entire thing.
626      if (Old->use_empty())
627        Old->eraseFromParent();
628      continue;
629    }
630
631    // If this is a constant sized memset of a constant value (e.g. 0) we can
632    // transform it into a store of the expanded constant value.
633    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
634      assert(MSI->getRawDest() == Ptr && "Consistency error!");
635      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
636      if (NumBytes != 0) {
637        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
638
639        // Compute the value replicated the right number of times.
640        APInt APVal(NumBytes*8, Val);
641
642        // Splat the value if non-zero.
643        if (Val)
644          for (unsigned i = 1; i != NumBytes; ++i)
645            APVal |= APVal << 8;
646
647        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
648        Value *New = ConvertScalar_InsertValue(
649                                    ConstantInt::get(User->getContext(), APVal),
650                                               Old, Offset, Builder);
651        Builder.CreateStore(New, NewAI);
652
653        // If the load we just inserted is now dead, then the memset overwrote
654        // the entire thing.
655        if (Old->use_empty())
656          Old->eraseFromParent();
657      }
658      MSI->eraseFromParent();
659      continue;
660    }
661
662    // If this is a memcpy or memmove into or out of the whole allocation, we
663    // can handle it like a load or store of the scalar type.
664    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
665      assert(Offset == 0 && "must be store to start of alloca");
666
667      // If the source and destination are both to the same alloca, then this is
668      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
669      // as appropriate.
670      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
671
672      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
673        // Dest must be OrigAI, change this to be a load from the original
674        // pointer (bitcasted), then a store to our new alloca.
675        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
676        Value *SrcPtr = MTI->getSource();
677        PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
678        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
679        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
680          AIPTy = PointerType::get(AIPTy->getElementType(),
681                                   SPTy->getAddressSpace());
682        }
683        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
684
685        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
686        SrcVal->setAlignment(MTI->getAlignment());
687        Builder.CreateStore(SrcVal, NewAI);
688      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
689        // Src must be OrigAI, change this to be a load from NewAI then a store
690        // through the original dest pointer (bitcasted).
691        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
692        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
693
694        PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
695        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
696        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
697          AIPTy = PointerType::get(AIPTy->getElementType(),
698                                   DPTy->getAddressSpace());
699        }
700        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
701
702        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
703        NewStore->setAlignment(MTI->getAlignment());
704      } else {
705        // Noop transfer. Src == Dst
706      }
707
708      MTI->eraseFromParent();
709      continue;
710    }
711
712    llvm_unreachable("Unsupported operation!");
713  }
714}
715
716/// getScaledElementType - Gets a scaled element type for a partial vector
717/// access of an alloca. The input types must be integer or floating-point
718/// scalar or vector types, and the resulting type is an integer, float or
719/// double.
720static Type *getScaledElementType(Type *Ty1, Type *Ty2,
721                                        unsigned NewBitWidth) {
722  bool IsFP1 = Ty1->isFloatingPointTy() ||
723               (Ty1->isVectorTy() &&
724                cast<VectorType>(Ty1)->getElementType()->isFloatingPointTy());
725  bool IsFP2 = Ty2->isFloatingPointTy() ||
726               (Ty2->isVectorTy() &&
727                cast<VectorType>(Ty2)->getElementType()->isFloatingPointTy());
728
729  LLVMContext &Context = Ty1->getContext();
730
731  // Prefer floating-point types over integer types, as integer types may have
732  // been created by earlier scalar replacement.
733  if (IsFP1 || IsFP2) {
734    if (NewBitWidth == 32)
735      return Type::getFloatTy(Context);
736    if (NewBitWidth == 64)
737      return Type::getDoubleTy(Context);
738  }
739
740  return Type::getIntNTy(Context, NewBitWidth);
741}
742
743/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
744/// to another vector of the same element type which has the same allocation
745/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
746static Value *CreateShuffleVectorCast(Value *FromVal, Type *ToType,
747                                      IRBuilder<> &Builder) {
748  Type *FromType = FromVal->getType();
749  VectorType *FromVTy = cast<VectorType>(FromType);
750  VectorType *ToVTy = cast<VectorType>(ToType);
751  assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
752         "Vectors must have the same element type");
753   Value *UnV = UndefValue::get(FromType);
754   unsigned numEltsFrom = FromVTy->getNumElements();
755   unsigned numEltsTo = ToVTy->getNumElements();
756
757   SmallVector<Constant*, 3> Args;
758   Type* Int32Ty = Builder.getInt32Ty();
759   unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
760   unsigned i;
761   for (i=0; i != minNumElts; ++i)
762     Args.push_back(ConstantInt::get(Int32Ty, i));
763
764   if (i < numEltsTo) {
765     Constant* UnC = UndefValue::get(Int32Ty);
766     for (; i != numEltsTo; ++i)
767       Args.push_back(UnC);
768   }
769   Constant *Mask = ConstantVector::get(Args);
770   return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
771}
772
773/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
774/// or vector value FromVal, extracting the bits from the offset specified by
775/// Offset.  This returns the value, which is of type ToType.
776///
777/// This happens when we are converting an "integer union" to a single
778/// integer scalar, or when we are converting a "vector union" to a vector with
779/// insert/extractelement instructions.
780///
781/// Offset is an offset from the original alloca, in bits that need to be
782/// shifted to the right.
783Value *ConvertToScalarInfo::
784ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
785                           uint64_t Offset, IRBuilder<> &Builder) {
786  // If the load is of the whole new alloca, no conversion is needed.
787  Type *FromType = FromVal->getType();
788  if (FromType == ToType && Offset == 0)
789    return FromVal;
790
791  // If the result alloca is a vector type, this is either an element
792  // access or a bitcast to another vector type of the same size.
793  if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
794    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
795    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
796    if (FromTypeSize == ToTypeSize) {
797      // If the two types have the same primitive size, use a bit cast.
798      // Otherwise, it is two vectors with the same element type that has
799      // the same allocation size but different number of elements so use
800      // a shuffle vector.
801      if (FromType->getPrimitiveSizeInBits() ==
802          ToType->getPrimitiveSizeInBits())
803        return Builder.CreateBitCast(FromVal, ToType, "tmp");
804      else
805        return CreateShuffleVectorCast(FromVal, ToType, Builder);
806    }
807
808    if (isPowerOf2_64(FromTypeSize / ToTypeSize)) {
809      assert(!(ToType->isVectorTy() && Offset != 0) && "Can't extract a value "
810             "of a smaller vector type at a nonzero offset.");
811
812      Type *CastElementTy = getScaledElementType(FromType, ToType,
813                                                       ToTypeSize * 8);
814      unsigned NumCastVectorElements = FromTypeSize / ToTypeSize;
815
816      LLVMContext &Context = FromVal->getContext();
817      Type *CastTy = VectorType::get(CastElementTy,
818                                           NumCastVectorElements);
819      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
820
821      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
822      unsigned Elt = Offset/EltSize;
823      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
824      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
825                                        Type::getInt32Ty(Context), Elt), "tmp");
826      return Builder.CreateBitCast(Extract, ToType, "tmp");
827    }
828
829    // Otherwise it must be an element access.
830    unsigned Elt = 0;
831    if (Offset) {
832      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
833      Elt = Offset/EltSize;
834      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
835    }
836    // Return the element extracted out of it.
837    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
838                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
839    if (V->getType() != ToType)
840      V = Builder.CreateBitCast(V, ToType, "tmp");
841    return V;
842  }
843
844  // If ToType is a first class aggregate, extract out each of the pieces and
845  // use insertvalue's to form the FCA.
846  if (StructType *ST = dyn_cast<StructType>(ToType)) {
847    const StructLayout &Layout = *TD.getStructLayout(ST);
848    Value *Res = UndefValue::get(ST);
849    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
850      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
851                                        Offset+Layout.getElementOffsetInBits(i),
852                                              Builder);
853      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
854    }
855    return Res;
856  }
857
858  if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
859    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
860    Value *Res = UndefValue::get(AT);
861    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
862      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
863                                              Offset+i*EltSize, Builder);
864      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
865    }
866    return Res;
867  }
868
869  // Otherwise, this must be a union that was converted to an integer value.
870  IntegerType *NTy = cast<IntegerType>(FromVal->getType());
871
872  // If this is a big-endian system and the load is narrower than the
873  // full alloca type, we need to do a shift to get the right bits.
874  int ShAmt = 0;
875  if (TD.isBigEndian()) {
876    // On big-endian machines, the lowest bit is stored at the bit offset
877    // from the pointer given by getTypeStoreSizeInBits.  This matters for
878    // integers with a bitwidth that is not a multiple of 8.
879    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
880            TD.getTypeStoreSizeInBits(ToType) - Offset;
881  } else {
882    ShAmt = Offset;
883  }
884
885  // Note: we support negative bitwidths (with shl) which are not defined.
886  // We do this to support (f.e.) loads off the end of a structure where
887  // only some bits are used.
888  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
889    FromVal = Builder.CreateLShr(FromVal,
890                                 ConstantInt::get(FromVal->getType(),
891                                                           ShAmt), "tmp");
892  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
893    FromVal = Builder.CreateShl(FromVal,
894                                ConstantInt::get(FromVal->getType(),
895                                                          -ShAmt), "tmp");
896
897  // Finally, unconditionally truncate the integer to the right width.
898  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
899  if (LIBitWidth < NTy->getBitWidth())
900    FromVal =
901      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
902                                                    LIBitWidth), "tmp");
903  else if (LIBitWidth > NTy->getBitWidth())
904    FromVal =
905       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
906                                                    LIBitWidth), "tmp");
907
908  // If the result is an integer, this is a trunc or bitcast.
909  if (ToType->isIntegerTy()) {
910    // Should be done.
911  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
912    // Just do a bitcast, we know the sizes match up.
913    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
914  } else {
915    // Otherwise must be a pointer.
916    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
917  }
918  assert(FromVal->getType() == ToType && "Didn't convert right?");
919  return FromVal;
920}
921
922/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
923/// or vector value "Old" at the offset specified by Offset.
924///
925/// This happens when we are converting an "integer union" to a
926/// single integer scalar, or when we are converting a "vector union" to a
927/// vector with insert/extractelement instructions.
928///
929/// Offset is an offset from the original alloca, in bits that need to be
930/// shifted to the right.
931Value *ConvertToScalarInfo::
932ConvertScalar_InsertValue(Value *SV, Value *Old,
933                          uint64_t Offset, IRBuilder<> &Builder) {
934  // Convert the stored type to the actual type, shift it left to insert
935  // then 'or' into place.
936  Type *AllocaType = Old->getType();
937  LLVMContext &Context = Old->getContext();
938
939  if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
940    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
941    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
942
943    // Changing the whole vector with memset or with an access of a different
944    // vector type?
945    if (ValSize == VecSize) {
946      // If the two types have the same primitive size, use a bit cast.
947      // Otherwise, it is two vectors with the same element type that has
948      // the same allocation size but different number of elements so use
949      // a shuffle vector.
950      if (VTy->getPrimitiveSizeInBits() ==
951          SV->getType()->getPrimitiveSizeInBits())
952        return Builder.CreateBitCast(SV, AllocaType, "tmp");
953      else
954        return CreateShuffleVectorCast(SV, VTy, Builder);
955    }
956
957    if (isPowerOf2_64(VecSize / ValSize)) {
958      assert(!(SV->getType()->isVectorTy() && Offset != 0) && "Can't insert a "
959             "value of a smaller vector type at a nonzero offset.");
960
961      Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
962                                                       ValSize);
963      unsigned NumCastVectorElements = VecSize / ValSize;
964
965      LLVMContext &Context = SV->getContext();
966      Type *OldCastTy = VectorType::get(CastElementTy,
967                                              NumCastVectorElements);
968      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
969
970      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
971
972      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
973      unsigned Elt = Offset/EltSize;
974      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
975      Value *Insert =
976        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
977                                        Type::getInt32Ty(Context), Elt), "tmp");
978      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
979    }
980
981    // Must be an element insertion.
982    assert(SV->getType() == VTy->getElementType());
983    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
984    unsigned Elt = Offset/EltSize;
985    return Builder.CreateInsertElement(Old, SV,
986                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
987                                     "tmp");
988  }
989
990  // If SV is a first-class aggregate value, insert each value recursively.
991  if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
992    const StructLayout &Layout = *TD.getStructLayout(ST);
993    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
994      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
995      Old = ConvertScalar_InsertValue(Elt, Old,
996                                      Offset+Layout.getElementOffsetInBits(i),
997                                      Builder);
998    }
999    return Old;
1000  }
1001
1002  if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1003    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
1004    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1005      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1006      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1007    }
1008    return Old;
1009  }
1010
1011  // If SV is a float, convert it to the appropriate integer type.
1012  // If it is a pointer, do the same.
1013  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1014  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
1015  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
1016  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
1017  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
1018    SV = Builder.CreateBitCast(SV,
1019                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
1020  else if (SV->getType()->isPointerTy())
1021    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
1022
1023  // Zero extend or truncate the value if needed.
1024  if (SV->getType() != AllocaType) {
1025    if (SV->getType()->getPrimitiveSizeInBits() <
1026             AllocaType->getPrimitiveSizeInBits())
1027      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1028    else {
1029      // Truncation may be needed if storing more than the alloca can hold
1030      // (undefined behavior).
1031      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1032      SrcWidth = DestWidth;
1033      SrcStoreWidth = DestStoreWidth;
1034    }
1035  }
1036
1037  // If this is a big-endian system and the store is narrower than the
1038  // full alloca type, we need to do a shift to get the right bits.
1039  int ShAmt = 0;
1040  if (TD.isBigEndian()) {
1041    // On big-endian machines, the lowest bit is stored at the bit offset
1042    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1043    // integers with a bitwidth that is not a multiple of 8.
1044    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1045  } else {
1046    ShAmt = Offset;
1047  }
1048
1049  // Note: we support negative bitwidths (with shr) which are not defined.
1050  // We do this to support (f.e.) stores off the end of a structure where
1051  // only some bits in the structure are set.
1052  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1053  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1054    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1055                           ShAmt), "tmp");
1056    Mask <<= ShAmt;
1057  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1058    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1059                            -ShAmt), "tmp");
1060    Mask = Mask.lshr(-ShAmt);
1061  }
1062
1063  // Mask out the bits we are about to insert from the old value, and or
1064  // in the new bits.
1065  if (SrcWidth != DestWidth) {
1066    assert(DestWidth > SrcWidth);
1067    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1068    SV = Builder.CreateOr(Old, SV, "ins");
1069  }
1070  return SV;
1071}
1072
1073
1074//===----------------------------------------------------------------------===//
1075// SRoA Driver
1076//===----------------------------------------------------------------------===//
1077
1078
1079bool SROA::runOnFunction(Function &F) {
1080  TD = getAnalysisIfAvailable<TargetData>();
1081
1082  bool Changed = performPromotion(F);
1083
1084  // FIXME: ScalarRepl currently depends on TargetData more than it
1085  // theoretically needs to. It should be refactored in order to support
1086  // target-independent IR. Until this is done, just skip the actual
1087  // scalar-replacement portion of this pass.
1088  if (!TD) return Changed;
1089
1090  while (1) {
1091    bool LocalChange = performScalarRepl(F);
1092    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1093    Changed = true;
1094    LocalChange = performPromotion(F);
1095    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1096  }
1097
1098  return Changed;
1099}
1100
1101namespace {
1102class AllocaPromoter : public LoadAndStorePromoter {
1103  AllocaInst *AI;
1104  DIBuilder *DIB;
1105  SmallVector<DbgDeclareInst *, 4> DDIs;
1106  SmallVector<DbgValueInst *, 4> DVIs;
1107public:
1108  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1109                 DIBuilder *DB)
1110    : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
1111
1112  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1113    // Remember which alloca we're promoting (for isInstInList).
1114    this->AI = AI;
1115    if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI))
1116      for (Value::use_iterator UI = DebugNode->use_begin(),
1117             E = DebugNode->use_end(); UI != E; ++UI)
1118        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1119          DDIs.push_back(DDI);
1120        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1121          DVIs.push_back(DVI);
1122
1123    LoadAndStorePromoter::run(Insts);
1124    AI->eraseFromParent();
1125    for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(),
1126           E = DDIs.end(); I != E; ++I) {
1127      DbgDeclareInst *DDI = *I;
1128      DDI->eraseFromParent();
1129    }
1130    for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(),
1131           E = DVIs.end(); I != E; ++I) {
1132      DbgValueInst *DVI = *I;
1133      DVI->eraseFromParent();
1134    }
1135  }
1136
1137  virtual bool isInstInList(Instruction *I,
1138                            const SmallVectorImpl<Instruction*> &Insts) const {
1139    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1140      return LI->getOperand(0) == AI;
1141    return cast<StoreInst>(I)->getPointerOperand() == AI;
1142  }
1143
1144  virtual void updateDebugInfo(Instruction *Inst) const {
1145    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1146           E = DDIs.end(); I != E; ++I) {
1147      DbgDeclareInst *DDI = *I;
1148      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1149        ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1150      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1151        ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
1152    }
1153    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1154           E = DVIs.end(); I != E; ++I) {
1155      DbgValueInst *DVI = *I;
1156      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1157        Instruction *DbgVal = NULL;
1158        // If an argument is zero extended then use argument directly. The ZExt
1159        // may be zapped by an optimization pass in future.
1160        Argument *ExtendedArg = NULL;
1161        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1162          ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1163        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1164          ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1165        if (ExtendedArg)
1166          DbgVal = DIB->insertDbgValueIntrinsic(ExtendedArg, 0,
1167                                                DIVariable(DVI->getVariable()),
1168                                                SI);
1169        else
1170          DbgVal = DIB->insertDbgValueIntrinsic(SI->getOperand(0), 0,
1171                                                DIVariable(DVI->getVariable()),
1172                                                SI);
1173        DbgVal->setDebugLoc(DVI->getDebugLoc());
1174      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1175        Instruction *DbgVal =
1176          DIB->insertDbgValueIntrinsic(LI->getOperand(0), 0,
1177                                       DIVariable(DVI->getVariable()), LI);
1178        DbgVal->setDebugLoc(DVI->getDebugLoc());
1179      }
1180    }
1181  }
1182};
1183} // end anon namespace
1184
1185/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1186/// subsequently loaded can be rewritten to load both input pointers and then
1187/// select between the result, allowing the load of the alloca to be promoted.
1188/// From this:
1189///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1190///   %V = load i32* %P2
1191/// to:
1192///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1193///   %V2 = load i32* %Other
1194///   %V = select i1 %cond, i32 %V1, i32 %V2
1195///
1196/// We can do this to a select if its only uses are loads and if the operand to
1197/// the select can be loaded unconditionally.
1198static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1199  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1200  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1201
1202  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1203       UI != UE; ++UI) {
1204    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1205    if (LI == 0 || LI->isVolatile()) return false;
1206
1207    // Both operands to the select need to be dereferencable, either absolutely
1208    // (e.g. allocas) or at this point because we can see other accesses to it.
1209    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1210                                                    LI->getAlignment(), TD))
1211      return false;
1212    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1213                                                    LI->getAlignment(), TD))
1214      return false;
1215  }
1216
1217  return true;
1218}
1219
1220/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1221/// subsequently loaded can be rewritten to load both input pointers in the pred
1222/// blocks and then PHI the results, allowing the load of the alloca to be
1223/// promoted.
1224/// From this:
1225///   %P2 = phi [i32* %Alloca, i32* %Other]
1226///   %V = load i32* %P2
1227/// to:
1228///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1229///   ...
1230///   %V2 = load i32* %Other
1231///   ...
1232///   %V = phi [i32 %V1, i32 %V2]
1233///
1234/// We can do this to a select if its only uses are loads and if the operand to
1235/// the select can be loaded unconditionally.
1236static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1237  // For now, we can only do this promotion if the load is in the same block as
1238  // the PHI, and if there are no stores between the phi and load.
1239  // TODO: Allow recursive phi users.
1240  // TODO: Allow stores.
1241  BasicBlock *BB = PN->getParent();
1242  unsigned MaxAlign = 0;
1243  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1244       UI != UE; ++UI) {
1245    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1246    if (LI == 0 || LI->isVolatile()) return false;
1247
1248    // For now we only allow loads in the same block as the PHI.  This is a
1249    // common case that happens when instcombine merges two loads through a PHI.
1250    if (LI->getParent() != BB) return false;
1251
1252    // Ensure that there are no instructions between the PHI and the load that
1253    // could store.
1254    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1255      if (BBI->mayWriteToMemory())
1256        return false;
1257
1258    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1259  }
1260
1261  // Okay, we know that we have one or more loads in the same block as the PHI.
1262  // We can transform this if it is safe to push the loads into the predecessor
1263  // blocks.  The only thing to watch out for is that we can't put a possibly
1264  // trapping load in the predecessor if it is a critical edge.
1265  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1266    BasicBlock *Pred = PN->getIncomingBlock(i);
1267
1268    // If the predecessor has a single successor, then the edge isn't critical.
1269    if (Pred->getTerminator()->getNumSuccessors() == 1)
1270      continue;
1271
1272    Value *InVal = PN->getIncomingValue(i);
1273
1274    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1275    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1276      if (II->getParent() == Pred)
1277        return false;
1278
1279    // If this pointer is always safe to load, or if we can prove that there is
1280    // already a load in the block, then we can move the load to the pred block.
1281    if (InVal->isDereferenceablePointer() ||
1282        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1283      continue;
1284
1285    return false;
1286  }
1287
1288  return true;
1289}
1290
1291
1292/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1293/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1294/// not quite there, this will transform the code to allow promotion.  As such,
1295/// it is a non-pure predicate.
1296static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1297  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1298            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1299
1300  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1301       UI != UE; ++UI) {
1302    User *U = *UI;
1303    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1304      if (LI->isVolatile())
1305        return false;
1306      continue;
1307    }
1308
1309    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1310      if (SI->getOperand(0) == AI || SI->isVolatile())
1311        return false;   // Don't allow a store OF the AI, only INTO the AI.
1312      continue;
1313    }
1314
1315    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1316      // If the condition being selected on is a constant, fold the select, yes
1317      // this does (rarely) happen early on.
1318      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1319        Value *Result = SI->getOperand(1+CI->isZero());
1320        SI->replaceAllUsesWith(Result);
1321        SI->eraseFromParent();
1322
1323        // This is very rare and we just scrambled the use list of AI, start
1324        // over completely.
1325        return tryToMakeAllocaBePromotable(AI, TD);
1326      }
1327
1328      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1329      // loads, then we can transform this by rewriting the select.
1330      if (!isSafeSelectToSpeculate(SI, TD))
1331        return false;
1332
1333      InstsToRewrite.insert(SI);
1334      continue;
1335    }
1336
1337    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1338      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1339        InstsToRewrite.insert(PN);
1340        continue;
1341      }
1342
1343      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1344      // in the pred blocks, then we can transform this by rewriting the PHI.
1345      if (!isSafePHIToSpeculate(PN, TD))
1346        return false;
1347
1348      InstsToRewrite.insert(PN);
1349      continue;
1350    }
1351
1352    return false;
1353  }
1354
1355  // If there are no instructions to rewrite, then all uses are load/stores and
1356  // we're done!
1357  if (InstsToRewrite.empty())
1358    return true;
1359
1360  // If we have instructions that need to be rewritten for this to be promotable
1361  // take care of it now.
1362  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1363    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1364      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1365      // loads with a new select.
1366      while (!SI->use_empty()) {
1367        LoadInst *LI = cast<LoadInst>(SI->use_back());
1368
1369        IRBuilder<> Builder(LI);
1370        LoadInst *TrueLoad =
1371          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1372        LoadInst *FalseLoad =
1373          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1374
1375        // Transfer alignment and TBAA info if present.
1376        TrueLoad->setAlignment(LI->getAlignment());
1377        FalseLoad->setAlignment(LI->getAlignment());
1378        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1379          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1380          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1381        }
1382
1383        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1384        V->takeName(LI);
1385        LI->replaceAllUsesWith(V);
1386        LI->eraseFromParent();
1387      }
1388
1389      // Now that all the loads are gone, the select is gone too.
1390      SI->eraseFromParent();
1391      continue;
1392    }
1393
1394    // Otherwise, we have a PHI node which allows us to push the loads into the
1395    // predecessors.
1396    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1397    if (PN->use_empty()) {
1398      PN->eraseFromParent();
1399      continue;
1400    }
1401
1402    Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1403    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1404                                     PN->getName()+".ld", PN);
1405
1406    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1407    // matter which one we get and if any differ, it doesn't matter.
1408    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1409    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1410    unsigned Align = SomeLoad->getAlignment();
1411
1412    // Rewrite all loads of the PN to use the new PHI.
1413    while (!PN->use_empty()) {
1414      LoadInst *LI = cast<LoadInst>(PN->use_back());
1415      LI->replaceAllUsesWith(NewPN);
1416      LI->eraseFromParent();
1417    }
1418
1419    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1420    // insert them into in case we have multiple edges from the same block.
1421    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1422
1423    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1424      BasicBlock *Pred = PN->getIncomingBlock(i);
1425      LoadInst *&Load = InsertedLoads[Pred];
1426      if (Load == 0) {
1427        Load = new LoadInst(PN->getIncomingValue(i),
1428                            PN->getName() + "." + Pred->getName(),
1429                            Pred->getTerminator());
1430        Load->setAlignment(Align);
1431        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1432      }
1433
1434      NewPN->addIncoming(Load, Pred);
1435    }
1436
1437    PN->eraseFromParent();
1438  }
1439
1440  ++NumAdjusted;
1441  return true;
1442}
1443
1444bool SROA::performPromotion(Function &F) {
1445  std::vector<AllocaInst*> Allocas;
1446  DominatorTree *DT = 0;
1447  if (HasDomTree)
1448    DT = &getAnalysis<DominatorTree>();
1449
1450  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1451  DIBuilder DIB(*F.getParent());
1452  bool Changed = false;
1453  SmallVector<Instruction*, 64> Insts;
1454  while (1) {
1455    Allocas.clear();
1456
1457    // Find allocas that are safe to promote, by looking at all instructions in
1458    // the entry node
1459    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1460      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1461        if (tryToMakeAllocaBePromotable(AI, TD))
1462          Allocas.push_back(AI);
1463
1464    if (Allocas.empty()) break;
1465
1466    if (HasDomTree)
1467      PromoteMemToReg(Allocas, *DT);
1468    else {
1469      SSAUpdater SSA;
1470      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1471        AllocaInst *AI = Allocas[i];
1472
1473        // Build list of instructions to promote.
1474        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1475             UI != E; ++UI)
1476          Insts.push_back(cast<Instruction>(*UI));
1477        AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1478        Insts.clear();
1479      }
1480    }
1481    NumPromoted += Allocas.size();
1482    Changed = true;
1483  }
1484
1485  return Changed;
1486}
1487
1488
1489/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1490/// SROA.  It must be a struct or array type with a small number of elements.
1491static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1492  Type *T = AI->getAllocatedType();
1493  // Do not promote any struct into more than 32 separate vars.
1494  if (StructType *ST = dyn_cast<StructType>(T))
1495    return ST->getNumElements() <= 32;
1496  // Arrays are much less likely to be safe for SROA; only consider
1497  // them if they are very small.
1498  if (ArrayType *AT = dyn_cast<ArrayType>(T))
1499    return AT->getNumElements() <= 8;
1500  return false;
1501}
1502
1503
1504// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1505// which runs on all of the alloca instructions in the function, removing them
1506// if they are only used by getelementptr instructions.
1507//
1508bool SROA::performScalarRepl(Function &F) {
1509  std::vector<AllocaInst*> WorkList;
1510
1511  // Scan the entry basic block, adding allocas to the worklist.
1512  BasicBlock &BB = F.getEntryBlock();
1513  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1514    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1515      WorkList.push_back(A);
1516
1517  // Process the worklist
1518  bool Changed = false;
1519  while (!WorkList.empty()) {
1520    AllocaInst *AI = WorkList.back();
1521    WorkList.pop_back();
1522
1523    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1524    // with unused elements.
1525    if (AI->use_empty()) {
1526      AI->eraseFromParent();
1527      Changed = true;
1528      continue;
1529    }
1530
1531    // If this alloca is impossible for us to promote, reject it early.
1532    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1533      continue;
1534
1535    // Check to see if this allocation is only modified by a memcpy/memmove from
1536    // a constant global.  If this is the case, we can change all users to use
1537    // the constant global instead.  This is commonly produced by the CFE by
1538    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1539    // is only subsequently read.
1540    SmallVector<Instruction *, 4> ToDelete;
1541    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) {
1542      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1543      DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
1544      for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
1545        ToDelete[i]->eraseFromParent();
1546      Constant *TheSrc = cast<Constant>(Copy->getSource());
1547      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1548      Copy->eraseFromParent();  // Don't mutate the global.
1549      AI->eraseFromParent();
1550      ++NumGlobals;
1551      Changed = true;
1552      continue;
1553    }
1554
1555    // Check to see if we can perform the core SROA transformation.  We cannot
1556    // transform the allocation instruction if it is an array allocation
1557    // (allocations OF arrays are ok though), and an allocation of a scalar
1558    // value cannot be decomposed at all.
1559    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1560
1561    // Do not promote [0 x %struct].
1562    if (AllocaSize == 0) continue;
1563
1564    // Do not promote any struct whose size is too big.
1565    if (AllocaSize > SRThreshold) continue;
1566
1567    // If the alloca looks like a good candidate for scalar replacement, and if
1568    // all its users can be transformed, then split up the aggregate into its
1569    // separate elements.
1570    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1571      DoScalarReplacement(AI, WorkList);
1572      Changed = true;
1573      continue;
1574    }
1575
1576    // If we can turn this aggregate value (potentially with casts) into a
1577    // simple scalar value that can be mem2reg'd into a register value.
1578    // IsNotTrivial tracks whether this is something that mem2reg could have
1579    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1580    // that we can't just check based on the type: the alloca may be of an i32
1581    // but that has pointer arithmetic to set byte 3 of it or something.
1582    if (AllocaInst *NewAI =
1583          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1584      NewAI->takeName(AI);
1585      AI->eraseFromParent();
1586      ++NumConverted;
1587      Changed = true;
1588      continue;
1589    }
1590
1591    // Otherwise, couldn't process this alloca.
1592  }
1593
1594  return Changed;
1595}
1596
1597/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1598/// predicate, do SROA now.
1599void SROA::DoScalarReplacement(AllocaInst *AI,
1600                               std::vector<AllocaInst*> &WorkList) {
1601  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1602  SmallVector<AllocaInst*, 32> ElementAllocas;
1603  if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1604    ElementAllocas.reserve(ST->getNumContainedTypes());
1605    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1606      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1607                                      AI->getAlignment(),
1608                                      AI->getName() + "." + Twine(i), AI);
1609      ElementAllocas.push_back(NA);
1610      WorkList.push_back(NA);  // Add to worklist for recursive processing
1611    }
1612  } else {
1613    ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1614    ElementAllocas.reserve(AT->getNumElements());
1615    Type *ElTy = AT->getElementType();
1616    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1617      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1618                                      AI->getName() + "." + Twine(i), AI);
1619      ElementAllocas.push_back(NA);
1620      WorkList.push_back(NA);  // Add to worklist for recursive processing
1621    }
1622  }
1623
1624  // Now that we have created the new alloca instructions, rewrite all the
1625  // uses of the old alloca.
1626  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1627
1628  // Now erase any instructions that were made dead while rewriting the alloca.
1629  DeleteDeadInstructions();
1630  AI->eraseFromParent();
1631
1632  ++NumReplaced;
1633}
1634
1635/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1636/// recursively including all their operands that become trivially dead.
1637void SROA::DeleteDeadInstructions() {
1638  while (!DeadInsts.empty()) {
1639    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1640
1641    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1642      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1643        // Zero out the operand and see if it becomes trivially dead.
1644        // (But, don't add allocas to the dead instruction list -- they are
1645        // already on the worklist and will be deleted separately.)
1646        *OI = 0;
1647        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1648          DeadInsts.push_back(U);
1649      }
1650
1651    I->eraseFromParent();
1652  }
1653}
1654
1655/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1656/// performing scalar replacement of alloca AI.  The results are flagged in
1657/// the Info parameter.  Offset indicates the position within AI that is
1658/// referenced by this instruction.
1659void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1660                               AllocaInfo &Info) {
1661  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1662    Instruction *User = cast<Instruction>(*UI);
1663
1664    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1665      isSafeForScalarRepl(BC, Offset, Info);
1666    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1667      uint64_t GEPOffset = Offset;
1668      isSafeGEP(GEPI, GEPOffset, Info);
1669      if (!Info.isUnsafe)
1670        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1671    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1672      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1673      if (Length == 0)
1674        return MarkUnsafe(Info, User);
1675      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1676                      UI.getOperandNo() == 0, Info, MI,
1677                      true /*AllowWholeAccess*/);
1678    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1679      if (LI->isVolatile())
1680        return MarkUnsafe(Info, User);
1681      Type *LIType = LI->getType();
1682      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1683                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1684      Info.hasALoadOrStore = true;
1685
1686    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1687      // Store is ok if storing INTO the pointer, not storing the pointer
1688      if (SI->isVolatile() || SI->getOperand(0) == I)
1689        return MarkUnsafe(Info, User);
1690
1691      Type *SIType = SI->getOperand(0)->getType();
1692      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1693                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1694      Info.hasALoadOrStore = true;
1695    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1696      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1697    } else {
1698      return MarkUnsafe(Info, User);
1699    }
1700    if (Info.isUnsafe) return;
1701  }
1702}
1703
1704
1705/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1706/// derived from the alloca, we can often still split the alloca into elements.
1707/// This is useful if we have a large alloca where one element is phi'd
1708/// together somewhere: we can SRoA and promote all the other elements even if
1709/// we end up not being able to promote this one.
1710///
1711/// All we require is that the uses of the PHI do not index into other parts of
1712/// the alloca.  The most important use case for this is single load and stores
1713/// that are PHI'd together, which can happen due to code sinking.
1714void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1715                                           AllocaInfo &Info) {
1716  // If we've already checked this PHI, don't do it again.
1717  if (PHINode *PN = dyn_cast<PHINode>(I))
1718    if (!Info.CheckedPHIs.insert(PN))
1719      return;
1720
1721  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1722    Instruction *User = cast<Instruction>(*UI);
1723
1724    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1725      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1726    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1727      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1728      // but would have to prove that we're staying inside of an element being
1729      // promoted.
1730      if (!GEPI->hasAllZeroIndices())
1731        return MarkUnsafe(Info, User);
1732      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1733    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1734      if (LI->isVolatile())
1735        return MarkUnsafe(Info, User);
1736      Type *LIType = LI->getType();
1737      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1738                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1739      Info.hasALoadOrStore = true;
1740
1741    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1742      // Store is ok if storing INTO the pointer, not storing the pointer
1743      if (SI->isVolatile() || SI->getOperand(0) == I)
1744        return MarkUnsafe(Info, User);
1745
1746      Type *SIType = SI->getOperand(0)->getType();
1747      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1748                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1749      Info.hasALoadOrStore = true;
1750    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1751      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1752    } else {
1753      return MarkUnsafe(Info, User);
1754    }
1755    if (Info.isUnsafe) return;
1756  }
1757}
1758
1759/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1760/// replacement.  It is safe when all the indices are constant, in-bounds
1761/// references, and when the resulting offset corresponds to an element within
1762/// the alloca type.  The results are flagged in the Info parameter.  Upon
1763/// return, Offset is adjusted as specified by the GEP indices.
1764void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1765                     uint64_t &Offset, AllocaInfo &Info) {
1766  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1767  if (GEPIt == E)
1768    return;
1769
1770  // Walk through the GEP type indices, checking the types that this indexes
1771  // into.
1772  for (; GEPIt != E; ++GEPIt) {
1773    // Ignore struct elements, no extra checking needed for these.
1774    if ((*GEPIt)->isStructTy())
1775      continue;
1776
1777    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1778    if (!IdxVal)
1779      return MarkUnsafe(Info, GEPI);
1780  }
1781
1782  // Compute the offset due to this GEP and check if the alloca has a
1783  // component element at that offset.
1784  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1785  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1786  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1787    MarkUnsafe(Info, GEPI);
1788}
1789
1790/// isHomogeneousAggregate - Check if type T is a struct or array containing
1791/// elements of the same type (which is always true for arrays).  If so,
1792/// return true with NumElts and EltTy set to the number of elements and the
1793/// element type, respectively.
1794static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1795                                   Type *&EltTy) {
1796  if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1797    NumElts = AT->getNumElements();
1798    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1799    return true;
1800  }
1801  if (StructType *ST = dyn_cast<StructType>(T)) {
1802    NumElts = ST->getNumContainedTypes();
1803    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1804    for (unsigned n = 1; n < NumElts; ++n) {
1805      if (ST->getContainedType(n) != EltTy)
1806        return false;
1807    }
1808    return true;
1809  }
1810  return false;
1811}
1812
1813/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1814/// "homogeneous" aggregates with the same element type and number of elements.
1815static bool isCompatibleAggregate(Type *T1, Type *T2) {
1816  if (T1 == T2)
1817    return true;
1818
1819  unsigned NumElts1, NumElts2;
1820  Type *EltTy1, *EltTy2;
1821  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1822      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1823      NumElts1 == NumElts2 &&
1824      EltTy1 == EltTy2)
1825    return true;
1826
1827  return false;
1828}
1829
1830/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1831/// alloca or has an offset and size that corresponds to a component element
1832/// within it.  The offset checked here may have been formed from a GEP with a
1833/// pointer bitcasted to a different type.
1834///
1835/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1836/// unit.  If false, it only allows accesses known to be in a single element.
1837void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1838                           Type *MemOpType, bool isStore,
1839                           AllocaInfo &Info, Instruction *TheAccess,
1840                           bool AllowWholeAccess) {
1841  // Check if this is a load/store of the entire alloca.
1842  if (Offset == 0 && AllowWholeAccess &&
1843      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1844    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1845    // loads/stores (which are essentially the same as the MemIntrinsics with
1846    // regard to copying padding between elements).  But, if an alloca is
1847    // flagged as both a source and destination of such operations, we'll need
1848    // to check later for padding between elements.
1849    if (!MemOpType || MemOpType->isIntegerTy()) {
1850      if (isStore)
1851        Info.isMemCpyDst = true;
1852      else
1853        Info.isMemCpySrc = true;
1854      return;
1855    }
1856    // This is also safe for references using a type that is compatible with
1857    // the type of the alloca, so that loads/stores can be rewritten using
1858    // insertvalue/extractvalue.
1859    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1860      Info.hasSubelementAccess = true;
1861      return;
1862    }
1863  }
1864  // Check if the offset/size correspond to a component within the alloca type.
1865  Type *T = Info.AI->getAllocatedType();
1866  if (TypeHasComponent(T, Offset, MemSize)) {
1867    Info.hasSubelementAccess = true;
1868    return;
1869  }
1870
1871  return MarkUnsafe(Info, TheAccess);
1872}
1873
1874/// TypeHasComponent - Return true if T has a component type with the
1875/// specified offset and size.  If Size is zero, do not check the size.
1876bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
1877  Type *EltTy;
1878  uint64_t EltSize;
1879  if (StructType *ST = dyn_cast<StructType>(T)) {
1880    const StructLayout *Layout = TD->getStructLayout(ST);
1881    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1882    EltTy = ST->getContainedType(EltIdx);
1883    EltSize = TD->getTypeAllocSize(EltTy);
1884    Offset -= Layout->getElementOffset(EltIdx);
1885  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1886    EltTy = AT->getElementType();
1887    EltSize = TD->getTypeAllocSize(EltTy);
1888    if (Offset >= AT->getNumElements() * EltSize)
1889      return false;
1890    Offset %= EltSize;
1891  } else {
1892    return false;
1893  }
1894  if (Offset == 0 && (Size == 0 || EltSize == Size))
1895    return true;
1896  // Check if the component spans multiple elements.
1897  if (Offset + Size > EltSize)
1898    return false;
1899  return TypeHasComponent(EltTy, Offset, Size);
1900}
1901
1902/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1903/// the instruction I, which references it, to use the separate elements.
1904/// Offset indicates the position within AI that is referenced by this
1905/// instruction.
1906void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1907                                SmallVector<AllocaInst*, 32> &NewElts) {
1908  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1909    Use &TheUse = UI.getUse();
1910    Instruction *User = cast<Instruction>(*UI++);
1911
1912    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1913      RewriteBitCast(BC, AI, Offset, NewElts);
1914      continue;
1915    }
1916
1917    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1918      RewriteGEP(GEPI, AI, Offset, NewElts);
1919      continue;
1920    }
1921
1922    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1923      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1924      uint64_t MemSize = Length->getZExtValue();
1925      if (Offset == 0 &&
1926          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1927        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1928      // Otherwise the intrinsic can only touch a single element and the
1929      // address operand will be updated, so nothing else needs to be done.
1930      continue;
1931    }
1932
1933    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1934      Type *LIType = LI->getType();
1935
1936      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1937        // Replace:
1938        //   %res = load { i32, i32 }* %alloc
1939        // with:
1940        //   %load.0 = load i32* %alloc.0
1941        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1942        //   %load.1 = load i32* %alloc.1
1943        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1944        // (Also works for arrays instead of structs)
1945        Value *Insert = UndefValue::get(LIType);
1946        IRBuilder<> Builder(LI);
1947        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1948          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1949          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1950        }
1951        LI->replaceAllUsesWith(Insert);
1952        DeadInsts.push_back(LI);
1953      } else if (LIType->isIntegerTy() &&
1954                 TD->getTypeAllocSize(LIType) ==
1955                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1956        // If this is a load of the entire alloca to an integer, rewrite it.
1957        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1958      }
1959      continue;
1960    }
1961
1962    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1963      Value *Val = SI->getOperand(0);
1964      Type *SIType = Val->getType();
1965      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1966        // Replace:
1967        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1968        // with:
1969        //   %val.0 = extractvalue { i32, i32 } %val, 0
1970        //   store i32 %val.0, i32* %alloc.0
1971        //   %val.1 = extractvalue { i32, i32 } %val, 1
1972        //   store i32 %val.1, i32* %alloc.1
1973        // (Also works for arrays instead of structs)
1974        IRBuilder<> Builder(SI);
1975        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1976          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1977          Builder.CreateStore(Extract, NewElts[i]);
1978        }
1979        DeadInsts.push_back(SI);
1980      } else if (SIType->isIntegerTy() &&
1981                 TD->getTypeAllocSize(SIType) ==
1982                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1983        // If this is a store of the entire alloca from an integer, rewrite it.
1984        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1985      }
1986      continue;
1987    }
1988
1989    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1990      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1991      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1992      // the new pointer.
1993      if (!isa<AllocaInst>(I)) continue;
1994
1995      assert(Offset == 0 && NewElts[0] &&
1996             "Direct alloca use should have a zero offset");
1997
1998      // If we have a use of the alloca, we know the derived uses will be
1999      // utilizing just the first element of the scalarized result.  Insert a
2000      // bitcast of the first alloca before the user as required.
2001      AllocaInst *NewAI = NewElts[0];
2002      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
2003      NewAI->moveBefore(BCI);
2004      TheUse = BCI;
2005      continue;
2006    }
2007  }
2008}
2009
2010/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
2011/// and recursively continue updating all of its uses.
2012void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
2013                          SmallVector<AllocaInst*, 32> &NewElts) {
2014  RewriteForScalarRepl(BC, AI, Offset, NewElts);
2015  if (BC->getOperand(0) != AI)
2016    return;
2017
2018  // The bitcast references the original alloca.  Replace its uses with
2019  // references to the first new element alloca.
2020  Instruction *Val = NewElts[0];
2021  if (Val->getType() != BC->getDestTy()) {
2022    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
2023    Val->takeName(BC);
2024  }
2025  BC->replaceAllUsesWith(Val);
2026  DeadInsts.push_back(BC);
2027}
2028
2029/// FindElementAndOffset - Return the index of the element containing Offset
2030/// within the specified type, which must be either a struct or an array.
2031/// Sets T to the type of the element and Offset to the offset within that
2032/// element.  IdxTy is set to the type of the index result to be used in a
2033/// GEP instruction.
2034uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
2035                                    Type *&IdxTy) {
2036  uint64_t Idx = 0;
2037  if (StructType *ST = dyn_cast<StructType>(T)) {
2038    const StructLayout *Layout = TD->getStructLayout(ST);
2039    Idx = Layout->getElementContainingOffset(Offset);
2040    T = ST->getContainedType(Idx);
2041    Offset -= Layout->getElementOffset(Idx);
2042    IdxTy = Type::getInt32Ty(T->getContext());
2043    return Idx;
2044  }
2045  ArrayType *AT = cast<ArrayType>(T);
2046  T = AT->getElementType();
2047  uint64_t EltSize = TD->getTypeAllocSize(T);
2048  Idx = Offset / EltSize;
2049  Offset -= Idx * EltSize;
2050  IdxTy = Type::getInt64Ty(T->getContext());
2051  return Idx;
2052}
2053
2054/// RewriteGEP - Check if this GEP instruction moves the pointer across
2055/// elements of the alloca that are being split apart, and if so, rewrite
2056/// the GEP to be relative to the new element.
2057void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
2058                      SmallVector<AllocaInst*, 32> &NewElts) {
2059  uint64_t OldOffset = Offset;
2060  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
2061  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
2062
2063  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
2064
2065  Type *T = AI->getAllocatedType();
2066  Type *IdxTy;
2067  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
2068  if (GEPI->getOperand(0) == AI)
2069    OldIdx = ~0ULL; // Force the GEP to be rewritten.
2070
2071  T = AI->getAllocatedType();
2072  uint64_t EltOffset = Offset;
2073  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
2074
2075  // If this GEP does not move the pointer across elements of the alloca
2076  // being split, then it does not needs to be rewritten.
2077  if (Idx == OldIdx)
2078    return;
2079
2080  Type *i32Ty = Type::getInt32Ty(AI->getContext());
2081  SmallVector<Value*, 8> NewArgs;
2082  NewArgs.push_back(Constant::getNullValue(i32Ty));
2083  while (EltOffset != 0) {
2084    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
2085    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
2086  }
2087  Instruction *Val = NewElts[Idx];
2088  if (NewArgs.size() > 1) {
2089    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
2090                                            NewArgs.end(), "", GEPI);
2091    Val->takeName(GEPI);
2092  }
2093  if (Val->getType() != GEPI->getType())
2094    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2095  GEPI->replaceAllUsesWith(Val);
2096  DeadInsts.push_back(GEPI);
2097}
2098
2099/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2100/// Rewrite it to copy or set the elements of the scalarized memory.
2101void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2102                                        AllocaInst *AI,
2103                                        SmallVector<AllocaInst*, 32> &NewElts) {
2104  // If this is a memcpy/memmove, construct the other pointer as the
2105  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2106  // that doesn't have anything to do with the alloca that we are promoting. For
2107  // memset, this Value* stays null.
2108  Value *OtherPtr = 0;
2109  unsigned MemAlignment = MI->getAlignment();
2110  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2111    if (Inst == MTI->getRawDest())
2112      OtherPtr = MTI->getRawSource();
2113    else {
2114      assert(Inst == MTI->getRawSource());
2115      OtherPtr = MTI->getRawDest();
2116    }
2117  }
2118
2119  // If there is an other pointer, we want to convert it to the same pointer
2120  // type as AI has, so we can GEP through it safely.
2121  if (OtherPtr) {
2122    unsigned AddrSpace =
2123      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2124
2125    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2126    // optimization, but it's also required to detect the corner case where
2127    // both pointer operands are referencing the same memory, and where
2128    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2129    // function is only called for mem intrinsics that access the whole
2130    // aggregate, so non-zero GEPs are not an issue here.)
2131    OtherPtr = OtherPtr->stripPointerCasts();
2132
2133    // Copying the alloca to itself is a no-op: just delete it.
2134    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2135      // This code will run twice for a no-op memcpy -- once for each operand.
2136      // Put only one reference to MI on the DeadInsts list.
2137      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2138             E = DeadInsts.end(); I != E; ++I)
2139        if (*I == MI) return;
2140      DeadInsts.push_back(MI);
2141      return;
2142    }
2143
2144    // If the pointer is not the right type, insert a bitcast to the right
2145    // type.
2146    Type *NewTy =
2147      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2148
2149    if (OtherPtr->getType() != NewTy)
2150      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2151  }
2152
2153  // Process each element of the aggregate.
2154  bool SROADest = MI->getRawDest() == Inst;
2155
2156  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2157
2158  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2159    // If this is a memcpy/memmove, emit a GEP of the other element address.
2160    Value *OtherElt = 0;
2161    unsigned OtherEltAlign = MemAlignment;
2162
2163    if (OtherPtr) {
2164      Value *Idx[2] = { Zero,
2165                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2166      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
2167                                              OtherPtr->getName()+"."+Twine(i),
2168                                                   MI);
2169      uint64_t EltOffset;
2170      PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2171      Type *OtherTy = OtherPtrTy->getElementType();
2172      if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2173        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2174      } else {
2175        Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2176        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2177      }
2178
2179      // The alignment of the other pointer is the guaranteed alignment of the
2180      // element, which is affected by both the known alignment of the whole
2181      // mem intrinsic and the alignment of the element.  If the alignment of
2182      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2183      // known alignment is just 4 bytes.
2184      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2185    }
2186
2187    Value *EltPtr = NewElts[i];
2188    Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2189
2190    // If we got down to a scalar, insert a load or store as appropriate.
2191    if (EltTy->isSingleValueType()) {
2192      if (isa<MemTransferInst>(MI)) {
2193        if (SROADest) {
2194          // From Other to Alloca.
2195          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2196          new StoreInst(Elt, EltPtr, MI);
2197        } else {
2198          // From Alloca to Other.
2199          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2200          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2201        }
2202        continue;
2203      }
2204      assert(isa<MemSetInst>(MI));
2205
2206      // If the stored element is zero (common case), just store a null
2207      // constant.
2208      Constant *StoreVal;
2209      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2210        if (CI->isZero()) {
2211          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2212        } else {
2213          // If EltTy is a vector type, get the element type.
2214          Type *ValTy = EltTy->getScalarType();
2215
2216          // Construct an integer with the right value.
2217          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2218          APInt OneVal(EltSize, CI->getZExtValue());
2219          APInt TotalVal(OneVal);
2220          // Set each byte.
2221          for (unsigned i = 0; 8*i < EltSize; ++i) {
2222            TotalVal = TotalVal.shl(8);
2223            TotalVal |= OneVal;
2224          }
2225
2226          // Convert the integer value to the appropriate type.
2227          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2228          if (ValTy->isPointerTy())
2229            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2230          else if (ValTy->isFloatingPointTy())
2231            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2232          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2233
2234          // If the requested value was a vector constant, create it.
2235          if (EltTy != ValTy) {
2236            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2237            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2238            StoreVal = ConstantVector::get(Elts);
2239          }
2240        }
2241        new StoreInst(StoreVal, EltPtr, MI);
2242        continue;
2243      }
2244      // Otherwise, if we're storing a byte variable, use a memset call for
2245      // this element.
2246    }
2247
2248    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2249
2250    IRBuilder<> Builder(MI);
2251
2252    // Finally, insert the meminst for this element.
2253    if (isa<MemSetInst>(MI)) {
2254      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2255                           MI->isVolatile());
2256    } else {
2257      assert(isa<MemTransferInst>(MI));
2258      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2259      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2260
2261      if (isa<MemCpyInst>(MI))
2262        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2263      else
2264        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2265    }
2266  }
2267  DeadInsts.push_back(MI);
2268}
2269
2270/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2271/// overwrites the entire allocation.  Extract out the pieces of the stored
2272/// integer and store them individually.
2273void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2274                                         SmallVector<AllocaInst*, 32> &NewElts){
2275  // Extract each element out of the integer according to its structure offset
2276  // and store the element value to the individual alloca.
2277  Value *SrcVal = SI->getOperand(0);
2278  Type *AllocaEltTy = AI->getAllocatedType();
2279  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2280
2281  IRBuilder<> Builder(SI);
2282
2283  // Handle tail padding by extending the operand
2284  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2285    SrcVal = Builder.CreateZExt(SrcVal,
2286                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2287
2288  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2289               << '\n');
2290
2291  // There are two forms here: AI could be an array or struct.  Both cases
2292  // have different ways to compute the element offset.
2293  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2294    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2295
2296    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2297      // Get the number of bits to shift SrcVal to get the value.
2298      Type *FieldTy = EltSTy->getElementType(i);
2299      uint64_t Shift = Layout->getElementOffsetInBits(i);
2300
2301      if (TD->isBigEndian())
2302        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2303
2304      Value *EltVal = SrcVal;
2305      if (Shift) {
2306        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2307        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2308      }
2309
2310      // Truncate down to an integer of the right size.
2311      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2312
2313      // Ignore zero sized fields like {}, they obviously contain no data.
2314      if (FieldSizeBits == 0) continue;
2315
2316      if (FieldSizeBits != AllocaSizeBits)
2317        EltVal = Builder.CreateTrunc(EltVal,
2318                             IntegerType::get(SI->getContext(), FieldSizeBits));
2319      Value *DestField = NewElts[i];
2320      if (EltVal->getType() == FieldTy) {
2321        // Storing to an integer field of this size, just do it.
2322      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2323        // Bitcast to the right element type (for fp/vector values).
2324        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2325      } else {
2326        // Otherwise, bitcast the dest pointer (for aggregates).
2327        DestField = Builder.CreateBitCast(DestField,
2328                                     PointerType::getUnqual(EltVal->getType()));
2329      }
2330      new StoreInst(EltVal, DestField, SI);
2331    }
2332
2333  } else {
2334    ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2335    Type *ArrayEltTy = ATy->getElementType();
2336    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2337    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2338
2339    uint64_t Shift;
2340
2341    if (TD->isBigEndian())
2342      Shift = AllocaSizeBits-ElementOffset;
2343    else
2344      Shift = 0;
2345
2346    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2347      // Ignore zero sized fields like {}, they obviously contain no data.
2348      if (ElementSizeBits == 0) continue;
2349
2350      Value *EltVal = SrcVal;
2351      if (Shift) {
2352        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2353        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2354      }
2355
2356      // Truncate down to an integer of the right size.
2357      if (ElementSizeBits != AllocaSizeBits)
2358        EltVal = Builder.CreateTrunc(EltVal,
2359                                     IntegerType::get(SI->getContext(),
2360                                                      ElementSizeBits));
2361      Value *DestField = NewElts[i];
2362      if (EltVal->getType() == ArrayEltTy) {
2363        // Storing to an integer field of this size, just do it.
2364      } else if (ArrayEltTy->isFloatingPointTy() ||
2365                 ArrayEltTy->isVectorTy()) {
2366        // Bitcast to the right element type (for fp/vector values).
2367        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2368      } else {
2369        // Otherwise, bitcast the dest pointer (for aggregates).
2370        DestField = Builder.CreateBitCast(DestField,
2371                                     PointerType::getUnqual(EltVal->getType()));
2372      }
2373      new StoreInst(EltVal, DestField, SI);
2374
2375      if (TD->isBigEndian())
2376        Shift -= ElementOffset;
2377      else
2378        Shift += ElementOffset;
2379    }
2380  }
2381
2382  DeadInsts.push_back(SI);
2383}
2384
2385/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2386/// an integer.  Load the individual pieces to form the aggregate value.
2387void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2388                                        SmallVector<AllocaInst*, 32> &NewElts) {
2389  // Extract each element out of the NewElts according to its structure offset
2390  // and form the result value.
2391  Type *AllocaEltTy = AI->getAllocatedType();
2392  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2393
2394  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2395               << '\n');
2396
2397  // There are two forms here: AI could be an array or struct.  Both cases
2398  // have different ways to compute the element offset.
2399  const StructLayout *Layout = 0;
2400  uint64_t ArrayEltBitOffset = 0;
2401  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2402    Layout = TD->getStructLayout(EltSTy);
2403  } else {
2404    Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2405    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2406  }
2407
2408  Value *ResultVal =
2409    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2410
2411  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2412    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2413    // the pointer to an integer of the same size before doing the load.
2414    Value *SrcField = NewElts[i];
2415    Type *FieldTy =
2416      cast<PointerType>(SrcField->getType())->getElementType();
2417    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2418
2419    // Ignore zero sized fields like {}, they obviously contain no data.
2420    if (FieldSizeBits == 0) continue;
2421
2422    IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2423                                                     FieldSizeBits);
2424    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2425        !FieldTy->isVectorTy())
2426      SrcField = new BitCastInst(SrcField,
2427                                 PointerType::getUnqual(FieldIntTy),
2428                                 "", LI);
2429    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2430
2431    // If SrcField is a fp or vector of the right size but that isn't an
2432    // integer type, bitcast to an integer so we can shift it.
2433    if (SrcField->getType() != FieldIntTy)
2434      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2435
2436    // Zero extend the field to be the same size as the final alloca so that
2437    // we can shift and insert it.
2438    if (SrcField->getType() != ResultVal->getType())
2439      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2440
2441    // Determine the number of bits to shift SrcField.
2442    uint64_t Shift;
2443    if (Layout) // Struct case.
2444      Shift = Layout->getElementOffsetInBits(i);
2445    else  // Array case.
2446      Shift = i*ArrayEltBitOffset;
2447
2448    if (TD->isBigEndian())
2449      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2450
2451    if (Shift) {
2452      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2453      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2454    }
2455
2456    // Don't create an 'or x, 0' on the first iteration.
2457    if (!isa<Constant>(ResultVal) ||
2458        !cast<Constant>(ResultVal)->isNullValue())
2459      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2460    else
2461      ResultVal = SrcField;
2462  }
2463
2464  // Handle tail padding by truncating the result
2465  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2466    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2467
2468  LI->replaceAllUsesWith(ResultVal);
2469  DeadInsts.push_back(LI);
2470}
2471
2472/// HasPadding - Return true if the specified type has any structure or
2473/// alignment padding in between the elements that would be split apart
2474/// by SROA; return false otherwise.
2475static bool HasPadding(Type *Ty, const TargetData &TD) {
2476  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2477    Ty = ATy->getElementType();
2478    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2479  }
2480
2481  // SROA currently handles only Arrays and Structs.
2482  StructType *STy = cast<StructType>(Ty);
2483  const StructLayout *SL = TD.getStructLayout(STy);
2484  unsigned PrevFieldBitOffset = 0;
2485  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2486    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2487
2488    // Check to see if there is any padding between this element and the
2489    // previous one.
2490    if (i) {
2491      unsigned PrevFieldEnd =
2492        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2493      if (PrevFieldEnd < FieldBitOffset)
2494        return true;
2495    }
2496    PrevFieldBitOffset = FieldBitOffset;
2497  }
2498  // Check for tail padding.
2499  if (unsigned EltCount = STy->getNumElements()) {
2500    unsigned PrevFieldEnd = PrevFieldBitOffset +
2501      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2502    if (PrevFieldEnd < SL->getSizeInBits())
2503      return true;
2504  }
2505  return false;
2506}
2507
2508/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2509/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2510/// or 1 if safe after canonicalization has been performed.
2511bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2512  // Loop over the use list of the alloca.  We can only transform it if all of
2513  // the users are safe to transform.
2514  AllocaInfo Info(AI);
2515
2516  isSafeForScalarRepl(AI, 0, Info);
2517  if (Info.isUnsafe) {
2518    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2519    return false;
2520  }
2521
2522  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2523  // source and destination, we have to be careful.  In particular, the memcpy
2524  // could be moving around elements that live in structure padding of the LLVM
2525  // types, but may actually be used.  In these cases, we refuse to promote the
2526  // struct.
2527  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2528      HasPadding(AI->getAllocatedType(), *TD))
2529    return false;
2530
2531  // If the alloca never has an access to just *part* of it, but is accessed
2532  // via loads and stores, then we should use ConvertToScalarInfo to promote
2533  // the alloca instead of promoting each piece at a time and inserting fission
2534  // and fusion code.
2535  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2536    // If the struct/array just has one element, use basic SRoA.
2537    if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2538      if (ST->getNumElements() > 1) return false;
2539    } else {
2540      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2541        return false;
2542    }
2543  }
2544
2545  return true;
2546}
2547
2548
2549
2550/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2551/// some part of a constant global variable.  This intentionally only accepts
2552/// constant expressions because we don't can't rewrite arbitrary instructions.
2553static bool PointsToConstantGlobal(Value *V) {
2554  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2555    return GV->isConstant();
2556  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2557    if (CE->getOpcode() == Instruction::BitCast ||
2558        CE->getOpcode() == Instruction::GetElementPtr)
2559      return PointsToConstantGlobal(CE->getOperand(0));
2560  return false;
2561}
2562
2563/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2564/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2565/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2566/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2567/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2568/// the alloca, and if the source pointer is a pointer to a constant global, we
2569/// can optimize this.
2570static bool
2571isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2572                               bool isOffset,
2573                               SmallVector<Instruction *, 4> &LifetimeMarkers) {
2574  // We track lifetime intrinsics as we encounter them.  If we decide to go
2575  // ahead and replace the value with the global, this lets the caller quickly
2576  // eliminate the markers.
2577
2578  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2579    User *U = cast<Instruction>(*UI);
2580
2581    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2582      // Ignore non-volatile loads, they are always ok.
2583      if (LI->isVolatile()) return false;
2584      continue;
2585    }
2586
2587    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2588      // If uses of the bitcast are ok, we are ok.
2589      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset,
2590                                          LifetimeMarkers))
2591        return false;
2592      continue;
2593    }
2594    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2595      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2596      // doesn't, it does.
2597      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2598                                          isOffset || !GEP->hasAllZeroIndices(),
2599                                          LifetimeMarkers))
2600        return false;
2601      continue;
2602    }
2603
2604    if (CallSite CS = U) {
2605      // If this is the function being called then we treat it like a load and
2606      // ignore it.
2607      if (CS.isCallee(UI))
2608        continue;
2609
2610      // If this is a readonly/readnone call site, then we know it is just a
2611      // load (but one that potentially returns the value itself), so we can
2612      // ignore it if we know that the value isn't captured.
2613      unsigned ArgNo = CS.getArgumentNo(UI);
2614      if (CS.onlyReadsMemory() &&
2615          (CS.getInstruction()->use_empty() ||
2616           CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2617        continue;
2618
2619      // If this is being passed as a byval argument, the caller is making a
2620      // copy, so it is only a read of the alloca.
2621      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2622        continue;
2623    }
2624
2625    // Lifetime intrinsics can be handled by the caller.
2626    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
2627      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2628          II->getIntrinsicID() == Intrinsic::lifetime_end) {
2629        assert(II->use_empty() && "Lifetime markers have no result to use!");
2630        LifetimeMarkers.push_back(II);
2631        continue;
2632      }
2633    }
2634
2635    // If this is isn't our memcpy/memmove, reject it as something we can't
2636    // handle.
2637    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2638    if (MI == 0)
2639      return false;
2640
2641    // If the transfer is using the alloca as a source of the transfer, then
2642    // ignore it since it is a load (unless the transfer is volatile).
2643    if (UI.getOperandNo() == 1) {
2644      if (MI->isVolatile()) return false;
2645      continue;
2646    }
2647
2648    // If we already have seen a copy, reject the second one.
2649    if (TheCopy) return false;
2650
2651    // If the pointer has been offset from the start of the alloca, we can't
2652    // safely handle this.
2653    if (isOffset) return false;
2654
2655    // If the memintrinsic isn't using the alloca as the dest, reject it.
2656    if (UI.getOperandNo() != 0) return false;
2657
2658    // If the source of the memcpy/move is not a constant global, reject it.
2659    if (!PointsToConstantGlobal(MI->getSource()))
2660      return false;
2661
2662    // Otherwise, the transform is safe.  Remember the copy instruction.
2663    TheCopy = MI;
2664  }
2665  return true;
2666}
2667
2668/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2669/// modified by a copy from a constant global.  If we can prove this, we can
2670/// replace any uses of the alloca with uses of the global directly.
2671MemTransferInst *
2672SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
2673                                     SmallVector<Instruction*, 4> &ToDelete) {
2674  MemTransferInst *TheCopy = 0;
2675  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete))
2676    return TheCopy;
2677  return 0;
2678}
2679