ScalarReplAggregates.cpp revision 88e6dc8bf14e8a98888f62173a6581386b8d29a0
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced,  "Number of allocas broken up");
44STATISTIC(NumPromoted,  "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
47
48namespace {
49  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50    static char ID; // Pass identification, replacement for typeid
51    explicit SROA(signed T = -1) : FunctionPass((intptr_t)&ID) {
52      if (T == -1)
53        SRThreshold = 128;
54      else
55        SRThreshold = T;
56    }
57
58    bool runOnFunction(Function &F);
59
60    bool performScalarRepl(Function &F);
61    bool performPromotion(Function &F);
62
63    // getAnalysisUsage - This pass does not require any passes, but we know it
64    // will not alter the CFG, so say so.
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequired<DominatorTree>();
67      AU.addRequired<DominanceFrontier>();
68      AU.addRequired<TargetData>();
69      AU.setPreservesCFG();
70    }
71
72  private:
73    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
74    /// information about the uses.  All these fields are initialized to false
75    /// and set to true when something is learned.
76    struct AllocaInfo {
77      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
78      bool isUnsafe : 1;
79
80      /// needsCanon - This is set to true if there is some use of the alloca
81      /// that requires canonicalization.
82      bool needsCanon : 1;
83
84      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
85      bool isMemCpySrc : 1;
86
87      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
88      bool isMemCpyDst : 1;
89
90      AllocaInfo()
91        : isUnsafe(false), needsCanon(false),
92          isMemCpySrc(false), isMemCpyDst(false) {}
93    };
94
95    unsigned SRThreshold;
96
97    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
98
99    int isSafeAllocaToScalarRepl(AllocationInst *AI);
100
101    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
102                               AllocaInfo &Info);
103    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
104                         AllocaInfo &Info);
105    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
106                                        unsigned OpNo, AllocaInfo &Info);
107    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
108                                        AllocaInfo &Info);
109
110    void DoScalarReplacement(AllocationInst *AI,
111                             std::vector<AllocationInst*> &WorkList);
112    void CanonicalizeAllocaUsers(AllocationInst *AI);
113    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
114
115    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
116                                    SmallVector<AllocaInst*, 32> &NewElts);
117
118    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
119    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
120    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
121    Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
122                                     unsigned Offset);
123    Value *ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
124                                      unsigned Offset);
125    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
126  };
127}
128
129char SROA::ID = 0;
130static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
131
132// Public interface to the ScalarReplAggregates pass
133FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
134  return new SROA(Threshold);
135}
136
137
138bool SROA::runOnFunction(Function &F) {
139  bool Changed = performPromotion(F);
140  while (1) {
141    bool LocalChange = performScalarRepl(F);
142    if (!LocalChange) break;   // No need to repromote if no scalarrepl
143    Changed = true;
144    LocalChange = performPromotion(F);
145    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
146  }
147
148  return Changed;
149}
150
151
152bool SROA::performPromotion(Function &F) {
153  std::vector<AllocaInst*> Allocas;
154  DominatorTree         &DT = getAnalysis<DominatorTree>();
155  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
156
157  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
158
159  bool Changed = false;
160
161  while (1) {
162    Allocas.clear();
163
164    // Find allocas that are safe to promote, by looking at all instructions in
165    // the entry node
166    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
167      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
168        if (isAllocaPromotable(AI))
169          Allocas.push_back(AI);
170
171    if (Allocas.empty()) break;
172
173    PromoteMemToReg(Allocas, DT, DF);
174    NumPromoted += Allocas.size();
175    Changed = true;
176  }
177
178  return Changed;
179}
180
181/// getNumSAElements - Return the number of elements in the specific struct or
182/// array.
183static uint64_t getNumSAElements(const Type *T) {
184  if (const StructType *ST = dyn_cast<StructType>(T))
185    return ST->getNumElements();
186  return cast<ArrayType>(T)->getNumElements();
187}
188
189// performScalarRepl - This algorithm is a simple worklist driven algorithm,
190// which runs on all of the malloc/alloca instructions in the function, removing
191// them if they are only used by getelementptr instructions.
192//
193bool SROA::performScalarRepl(Function &F) {
194  std::vector<AllocationInst*> WorkList;
195
196  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
197  BasicBlock &BB = F.getEntryBlock();
198  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
199    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
200      WorkList.push_back(A);
201
202  const TargetData &TD = getAnalysis<TargetData>();
203
204  // Process the worklist
205  bool Changed = false;
206  while (!WorkList.empty()) {
207    AllocationInst *AI = WorkList.back();
208    WorkList.pop_back();
209
210    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
211    // with unused elements.
212    if (AI->use_empty()) {
213      AI->eraseFromParent();
214      continue;
215    }
216
217    // If we can turn this aggregate value (potentially with casts) into a
218    // simple scalar value that can be mem2reg'd into a register value.
219    bool IsNotTrivial = false;
220    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
221      if (IsNotTrivial && ActualType != Type::VoidTy) {
222        ConvertToScalar(AI, ActualType);
223        Changed = true;
224        continue;
225      }
226
227    // Check to see if we can perform the core SROA transformation.  We cannot
228    // transform the allocation instruction if it is an array allocation
229    // (allocations OF arrays are ok though), and an allocation of a scalar
230    // value cannot be decomposed at all.
231    if (!AI->isArrayAllocation() &&
232        (isa<StructType>(AI->getAllocatedType()) ||
233         isa<ArrayType>(AI->getAllocatedType())) &&
234        AI->getAllocatedType()->isSized() &&
235        // Do not promote any struct whose size is larger than "128" bytes.
236        TD.getABITypeSize(AI->getAllocatedType()) < SRThreshold &&
237        // Do not promote any struct into more than "32" separate vars.
238        getNumSAElements(AI->getAllocatedType()) < SRThreshold/4) {
239      // Check that all of the users of the allocation are capable of being
240      // transformed.
241      switch (isSafeAllocaToScalarRepl(AI)) {
242      default: assert(0 && "Unexpected value!");
243      case 0:  // Not safe to scalar replace.
244        break;
245      case 1:  // Safe, but requires cleanup/canonicalizations first
246        CanonicalizeAllocaUsers(AI);
247        // FALL THROUGH.
248      case 3:  // Safe to scalar replace.
249        DoScalarReplacement(AI, WorkList);
250        Changed = true;
251        continue;
252      }
253    }
254
255    // Check to see if this allocation is only modified by a memcpy/memmove from
256    // a constant global.  If this is the case, we can change all users to use
257    // the constant global instead.  This is commonly produced by the CFE by
258    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
259    // is only subsequently read.
260    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
261      DOUT << "Found alloca equal to global: " << *AI;
262      DOUT << "  memcpy = " << *TheCopy;
263      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
264      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
265      TheCopy->eraseFromParent();  // Don't mutate the global.
266      AI->eraseFromParent();
267      ++NumGlobals;
268      Changed = true;
269      continue;
270    }
271
272    // Otherwise, couldn't process this.
273  }
274
275  return Changed;
276}
277
278/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
279/// predicate, do SROA now.
280void SROA::DoScalarReplacement(AllocationInst *AI,
281                               std::vector<AllocationInst*> &WorkList) {
282  DOUT << "Found inst to SROA: " << *AI;
283  SmallVector<AllocaInst*, 32> ElementAllocas;
284  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
285    ElementAllocas.reserve(ST->getNumContainedTypes());
286    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
287      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
288                                      AI->getAlignment(),
289                                      AI->getName() + "." + utostr(i), AI);
290      ElementAllocas.push_back(NA);
291      WorkList.push_back(NA);  // Add to worklist for recursive processing
292    }
293  } else {
294    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
295    ElementAllocas.reserve(AT->getNumElements());
296    const Type *ElTy = AT->getElementType();
297    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
298      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
299                                      AI->getName() + "." + utostr(i), AI);
300      ElementAllocas.push_back(NA);
301      WorkList.push_back(NA);  // Add to worklist for recursive processing
302    }
303  }
304
305  // Now that we have created the alloca instructions that we want to use,
306  // expand the getelementptr instructions to use them.
307  //
308  while (!AI->use_empty()) {
309    Instruction *User = cast<Instruction>(AI->use_back());
310    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
311      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
312      BCInst->eraseFromParent();
313      continue;
314    }
315
316    // Replace:
317    //   %res = load { i32, i32 }* %alloc
318    // with:
319    //   %load.0 = load i32* %alloc.0
320    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
321    //   %load.1 = load i32* %alloc.1
322    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
323    // (Also works for arrays instead of structs)
324    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
325      Value *Insert = UndefValue::get(LI->getType());
326      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
327        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
328        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
329      }
330      LI->replaceAllUsesWith(Insert);
331      LI->eraseFromParent();
332      continue;
333    }
334
335    // Replace:
336    //   store { i32, i32 } %val, { i32, i32 }* %alloc
337    // with:
338    //   %val.0 = extractvalue { i32, i32 } %val, 0
339    //   store i32 %val.0, i32* %alloc.0
340    //   %val.1 = extractvalue { i32, i32 } %val, 1
341    //   store i32 %val.1, i32* %alloc.1
342    // (Also works for arrays instead of structs)
343    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
344      Value *Val = SI->getOperand(0);
345      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
346        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
347        new StoreInst(Extract, ElementAllocas[i], SI);
348      }
349      SI->eraseFromParent();
350      continue;
351    }
352
353    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
354    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
355    unsigned Idx =
356       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
357
358    assert(Idx < ElementAllocas.size() && "Index out of range?");
359    AllocaInst *AllocaToUse = ElementAllocas[Idx];
360
361    Value *RepValue;
362    if (GEPI->getNumOperands() == 3) {
363      // Do not insert a new getelementptr instruction with zero indices, only
364      // to have it optimized out later.
365      RepValue = AllocaToUse;
366    } else {
367      // We are indexing deeply into the structure, so we still need a
368      // getelement ptr instruction to finish the indexing.  This may be
369      // expanded itself once the worklist is rerun.
370      //
371      SmallVector<Value*, 8> NewArgs;
372      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
373      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
374      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
375                                           NewArgs.end(), "", GEPI);
376      RepValue->takeName(GEPI);
377    }
378
379    // If this GEP is to the start of the aggregate, check for memcpys.
380    if (Idx == 0) {
381      bool IsStartOfAggregateGEP = true;
382      for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) {
383        if (!isa<ConstantInt>(GEPI->getOperand(i))) {
384          IsStartOfAggregateGEP = false;
385          break;
386        }
387        if (!cast<ConstantInt>(GEPI->getOperand(i))->isZero()) {
388          IsStartOfAggregateGEP = false;
389          break;
390        }
391      }
392
393      if (IsStartOfAggregateGEP)
394        RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
395    }
396
397
398    // Move all of the users over to the new GEP.
399    GEPI->replaceAllUsesWith(RepValue);
400    // Delete the old GEP
401    GEPI->eraseFromParent();
402  }
403
404  // Finally, delete the Alloca instruction
405  AI->eraseFromParent();
406  NumReplaced++;
407}
408
409
410/// isSafeElementUse - Check to see if this use is an allowed use for a
411/// getelementptr instruction of an array aggregate allocation.  isFirstElt
412/// indicates whether Ptr is known to the start of the aggregate.
413///
414void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
415                            AllocaInfo &Info) {
416  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
417       I != E; ++I) {
418    Instruction *User = cast<Instruction>(*I);
419    switch (User->getOpcode()) {
420    case Instruction::Load:  break;
421    case Instruction::Store:
422      // Store is ok if storing INTO the pointer, not storing the pointer
423      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
424      break;
425    case Instruction::GetElementPtr: {
426      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
427      bool AreAllZeroIndices = isFirstElt;
428      if (GEP->getNumOperands() > 1) {
429        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
430            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
431          // Using pointer arithmetic to navigate the array.
432          return MarkUnsafe(Info);
433
434        if (AreAllZeroIndices) {
435          for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) {
436            if (!isa<ConstantInt>(GEP->getOperand(i)) ||
437                !cast<ConstantInt>(GEP->getOperand(i))->isZero()) {
438              AreAllZeroIndices = false;
439              break;
440            }
441          }
442        }
443      }
444      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
445      if (Info.isUnsafe) return;
446      break;
447    }
448    case Instruction::BitCast:
449      if (isFirstElt) {
450        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
451        if (Info.isUnsafe) return;
452        break;
453      }
454      DOUT << "  Transformation preventing inst: " << *User;
455      return MarkUnsafe(Info);
456    case Instruction::Call:
457      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
458        if (isFirstElt) {
459          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
460          if (Info.isUnsafe) return;
461          break;
462        }
463      }
464      DOUT << "  Transformation preventing inst: " << *User;
465      return MarkUnsafe(Info);
466    default:
467      DOUT << "  Transformation preventing inst: " << *User;
468      return MarkUnsafe(Info);
469    }
470  }
471  return;  // All users look ok :)
472}
473
474/// AllUsersAreLoads - Return true if all users of this value are loads.
475static bool AllUsersAreLoads(Value *Ptr) {
476  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
477       I != E; ++I)
478    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
479      return false;
480  return true;
481}
482
483/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
484/// aggregate allocation.
485///
486void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
487                                 AllocaInfo &Info) {
488  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
489    return isSafeUseOfBitCastedAllocation(C, AI, Info);
490
491  if (isa<LoadInst>(User))
492    return; // Loads (returning a first class aggregrate) are always rewritable
493
494  if (isa<StoreInst>(User) && User->getOperand(0) != AI)
495    return; // Store is ok if storing INTO the pointer, not storing the pointer
496
497  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
498  if (GEPI == 0)
499    return MarkUnsafe(Info);
500
501  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
502
503  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
504  if (I == E ||
505      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
506    return MarkUnsafe(Info);
507  }
508
509  ++I;
510  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
511
512  bool IsAllZeroIndices = true;
513
514  // If the first index is a non-constant index into an array, see if we can
515  // handle it as a special case.
516  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
517    if (!isa<ConstantInt>(I.getOperand())) {
518      IsAllZeroIndices = 0;
519      uint64_t NumElements = AT->getNumElements();
520
521      // If this is an array index and the index is not constant, we cannot
522      // promote... that is unless the array has exactly one or two elements in
523      // it, in which case we CAN promote it, but we have to canonicalize this
524      // out if this is the only problem.
525      if ((NumElements == 1 || NumElements == 2) &&
526          AllUsersAreLoads(GEPI)) {
527        Info.needsCanon = true;
528        return;  // Canonicalization required!
529      }
530      return MarkUnsafe(Info);
531    }
532  }
533
534
535  // Walk through the GEP type indices, checking the types that this indexes
536  // into.
537  for (; I != E; ++I) {
538    // Ignore struct elements, no extra checking needed for these.
539    if (isa<StructType>(*I))
540      continue;
541
542    // Don't SROA pointers into vectors.
543    if (isa<VectorType>(*I))
544      return MarkUnsafe(Info);
545
546    // Otherwise, we must have an index into an array type.  Verify that this is
547    // an in-range constant integer.  Specifically, consider A[0][i].  We
548    // cannot know that the user isn't doing invalid things like allowing i to
549    // index an out-of-range subscript that accesses A[1].  Because of this, we
550    // have to reject SROA of any accesses into structs where any of the
551    // components are variables.
552    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
553    if (!IdxVal) return MarkUnsafe(Info);
554    if (IdxVal->getZExtValue() >= cast<ArrayType>(*I)->getNumElements())
555      return MarkUnsafe(Info);
556
557    IsAllZeroIndices &= IdxVal->isZero();
558  }
559
560  // If there are any non-simple uses of this getelementptr, make sure to reject
561  // them.
562  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
563}
564
565/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
566/// intrinsic can be promoted by SROA.  At this point, we know that the operand
567/// of the memintrinsic is a pointer to the beginning of the allocation.
568void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
569                                          unsigned OpNo, AllocaInfo &Info) {
570  // If not constant length, give up.
571  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
572  if (!Length) return MarkUnsafe(Info);
573
574  // If not the whole aggregate, give up.
575  const TargetData &TD = getAnalysis<TargetData>();
576  if (Length->getZExtValue() !=
577      TD.getABITypeSize(AI->getType()->getElementType()))
578    return MarkUnsafe(Info);
579
580  // We only know about memcpy/memset/memmove.
581  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
582    return MarkUnsafe(Info);
583
584  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
585  // into or out of the aggregate.
586  if (OpNo == 1)
587    Info.isMemCpyDst = true;
588  else {
589    assert(OpNo == 2);
590    Info.isMemCpySrc = true;
591  }
592}
593
594/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
595/// are
596void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
597                                          AllocaInfo &Info) {
598  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
599       UI != E; ++UI) {
600    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
601      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
602    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
603      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
604    } else {
605      return MarkUnsafe(Info);
606    }
607    if (Info.isUnsafe) return;
608  }
609}
610
611/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
612/// to its first element.  Transform users of the cast to use the new values
613/// instead.
614void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
615                                      SmallVector<AllocaInst*, 32> &NewElts) {
616  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
617  const TargetData &TD = getAnalysis<TargetData>();
618
619  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
620  while (UI != UE) {
621    if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) {
622      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
623      ++UI;
624      BCU->eraseFromParent();
625      continue;
626    }
627
628    // Otherwise, must be memcpy/memmove/memset of the entire aggregate.  Split
629    // into one per element.
630    MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI);
631
632    // If it's not a mem intrinsic, it must be some other user of a gep of the
633    // first pointer.  Just leave these alone.
634    if (!MI) {
635      ++UI;
636      continue;
637    }
638
639    // If this is a memcpy/memmove, construct the other pointer as the
640    // appropriate type.
641    Value *OtherPtr = 0;
642    if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
643      if (BCInst == MCI->getRawDest())
644        OtherPtr = MCI->getRawSource();
645      else {
646        assert(BCInst == MCI->getRawSource());
647        OtherPtr = MCI->getRawDest();
648      }
649    } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
650      if (BCInst == MMI->getRawDest())
651        OtherPtr = MMI->getRawSource();
652      else {
653        assert(BCInst == MMI->getRawSource());
654        OtherPtr = MMI->getRawDest();
655      }
656    }
657
658    // If there is an other pointer, we want to convert it to the same pointer
659    // type as AI has, so we can GEP through it.
660    if (OtherPtr) {
661      // It is likely that OtherPtr is a bitcast, if so, remove it.
662      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
663        OtherPtr = BC->getOperand(0);
664      if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
665        if (BCE->getOpcode() == Instruction::BitCast)
666          OtherPtr = BCE->getOperand(0);
667
668      // If the pointer is not the right type, insert a bitcast to the right
669      // type.
670      if (OtherPtr->getType() != AI->getType())
671        OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
672                                   MI);
673    }
674
675    // Process each element of the aggregate.
676    Value *TheFn = MI->getOperand(0);
677    const Type *BytePtrTy = MI->getRawDest()->getType();
678    bool SROADest = MI->getRawDest() == BCInst;
679
680    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
681      // If this is a memcpy/memmove, emit a GEP of the other element address.
682      Value *OtherElt = 0;
683      if (OtherPtr) {
684        Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
685        OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
686                                           OtherPtr->getNameStr()+"."+utostr(i),
687                                             MI);
688      }
689
690      Value *EltPtr = NewElts[i];
691      const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
692
693      // If we got down to a scalar, insert a load or store as appropriate.
694      if (EltTy->isSingleValueType()) {
695        if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
696          Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
697                                    MI);
698          new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
699          continue;
700        } else {
701          assert(isa<MemSetInst>(MI));
702
703          // If the stored element is zero (common case), just store a null
704          // constant.
705          Constant *StoreVal;
706          if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
707            if (CI->isZero()) {
708              StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
709            } else {
710              // If EltTy is a vector type, get the element type.
711              const Type *ValTy = EltTy;
712              if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
713                ValTy = VTy->getElementType();
714
715              // Construct an integer with the right value.
716              unsigned EltSize = TD.getTypeSizeInBits(ValTy);
717              APInt OneVal(EltSize, CI->getZExtValue());
718              APInt TotalVal(OneVal);
719              // Set each byte.
720              for (unsigned i = 0; 8*i < EltSize; ++i) {
721                TotalVal = TotalVal.shl(8);
722                TotalVal |= OneVal;
723              }
724
725              // Convert the integer value to the appropriate type.
726              StoreVal = ConstantInt::get(TotalVal);
727              if (isa<PointerType>(ValTy))
728                StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
729              else if (ValTy->isFloatingPoint())
730                StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
731              assert(StoreVal->getType() == ValTy && "Type mismatch!");
732
733              // If the requested value was a vector constant, create it.
734              if (EltTy != ValTy) {
735                unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
736                SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
737                StoreVal = ConstantVector::get(&Elts[0], NumElts);
738              }
739            }
740            new StoreInst(StoreVal, EltPtr, MI);
741            continue;
742          }
743          // Otherwise, if we're storing a byte variable, use a memset call for
744          // this element.
745        }
746      }
747
748      // Cast the element pointer to BytePtrTy.
749      if (EltPtr->getType() != BytePtrTy)
750        EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
751
752      // Cast the other pointer (if we have one) to BytePtrTy.
753      if (OtherElt && OtherElt->getType() != BytePtrTy)
754        OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
755                                   MI);
756
757      unsigned EltSize = TD.getABITypeSize(EltTy);
758
759      // Finally, insert the meminst for this element.
760      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
761        Value *Ops[] = {
762          SROADest ? EltPtr : OtherElt,  // Dest ptr
763          SROADest ? OtherElt : EltPtr,  // Src ptr
764          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
765          Zero  // Align
766        };
767        CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
768      } else {
769        assert(isa<MemSetInst>(MI));
770        Value *Ops[] = {
771          EltPtr, MI->getOperand(2),  // Dest, Value,
772          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
773          Zero  // Align
774        };
775        CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
776      }
777    }
778
779    // Finally, MI is now dead, as we've modified its actions to occur on all of
780    // the elements of the aggregate.
781    ++UI;
782    MI->eraseFromParent();
783  }
784}
785
786/// HasPadding - Return true if the specified type has any structure or
787/// alignment padding, false otherwise.
788static bool HasPadding(const Type *Ty, const TargetData &TD) {
789  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
790    const StructLayout *SL = TD.getStructLayout(STy);
791    unsigned PrevFieldBitOffset = 0;
792    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
793      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
794
795      // Padding in sub-elements?
796      if (HasPadding(STy->getElementType(i), TD))
797        return true;
798
799      // Check to see if there is any padding between this element and the
800      // previous one.
801      if (i) {
802        unsigned PrevFieldEnd =
803        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
804        if (PrevFieldEnd < FieldBitOffset)
805          return true;
806      }
807
808      PrevFieldBitOffset = FieldBitOffset;
809    }
810
811    //  Check for tail padding.
812    if (unsigned EltCount = STy->getNumElements()) {
813      unsigned PrevFieldEnd = PrevFieldBitOffset +
814                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
815      if (PrevFieldEnd < SL->getSizeInBits())
816        return true;
817    }
818
819  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
820    return HasPadding(ATy->getElementType(), TD);
821  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
822    return HasPadding(VTy->getElementType(), TD);
823  }
824  return TD.getTypeSizeInBits(Ty) != TD.getABITypeSizeInBits(Ty);
825}
826
827/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
828/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
829/// or 1 if safe after canonicalization has been performed.
830///
831int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
832  // Loop over the use list of the alloca.  We can only transform it if all of
833  // the users are safe to transform.
834  AllocaInfo Info;
835
836  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
837       I != E; ++I) {
838    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
839    if (Info.isUnsafe) {
840      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
841      return 0;
842    }
843  }
844
845  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
846  // source and destination, we have to be careful.  In particular, the memcpy
847  // could be moving around elements that live in structure padding of the LLVM
848  // types, but may actually be used.  In these cases, we refuse to promote the
849  // struct.
850  if (Info.isMemCpySrc && Info.isMemCpyDst &&
851      HasPadding(AI->getType()->getElementType(), getAnalysis<TargetData>()))
852    return 0;
853
854  // If we require cleanup, return 1, otherwise return 3.
855  return Info.needsCanon ? 1 : 3;
856}
857
858/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
859/// allocation, but only if cleaned up, perform the cleanups required.
860void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
861  // At this point, we know that the end result will be SROA'd and promoted, so
862  // we can insert ugly code if required so long as sroa+mem2reg will clean it
863  // up.
864  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
865       UI != E; ) {
866    GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
867    if (!GEPI) continue;
868    gep_type_iterator I = gep_type_begin(GEPI);
869    ++I;
870
871    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
872      uint64_t NumElements = AT->getNumElements();
873
874      if (!isa<ConstantInt>(I.getOperand())) {
875        if (NumElements == 1) {
876          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
877        } else {
878          assert(NumElements == 2 && "Unhandled case!");
879          // All users of the GEP must be loads.  At each use of the GEP, insert
880          // two loads of the appropriate indexed GEP and select between them.
881          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
882                              Constant::getNullValue(I.getOperand()->getType()),
883             "isone", GEPI);
884          // Insert the new GEP instructions, which are properly indexed.
885          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
886          Indices[1] = Constant::getNullValue(Type::Int32Ty);
887          Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
888                                                     Indices.begin(),
889                                                     Indices.end(),
890                                                     GEPI->getName()+".0", GEPI);
891          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
892          Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
893                                                    Indices.begin(),
894                                                    Indices.end(),
895                                                    GEPI->getName()+".1", GEPI);
896          // Replace all loads of the variable index GEP with loads from both
897          // indexes and a select.
898          while (!GEPI->use_empty()) {
899            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
900            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
901            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
902            Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
903            LI->replaceAllUsesWith(R);
904            LI->eraseFromParent();
905          }
906          GEPI->eraseFromParent();
907        }
908      }
909    }
910  }
911}
912
913/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
914/// types are incompatible, return true, otherwise update Accum and return
915/// false.
916///
917/// There are three cases we handle here:
918///   1) An effectively-integer union, where the pieces are stored into as
919///      smaller integers (common with byte swap and other idioms).
920///   2) A union of vector types of the same size and potentially its elements.
921///      Here we turn element accesses into insert/extract element operations.
922///   3) A union of scalar types, such as int/float or int/pointer.  Here we
923///      merge together into integers, allowing the xform to work with #1 as
924///      well.
925static bool MergeInType(const Type *In, const Type *&Accum,
926                        const TargetData &TD) {
927  // If this is our first type, just use it.
928  const VectorType *PTy;
929  if (Accum == Type::VoidTy || In == Accum) {
930    Accum = In;
931  } else if (In == Type::VoidTy) {
932    // Noop.
933  } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
934    // Otherwise pick whichever type is larger.
935    if (cast<IntegerType>(In)->getBitWidth() >
936        cast<IntegerType>(Accum)->getBitWidth())
937      Accum = In;
938  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
939    // Pointer unions just stay as one of the pointers.
940  } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
941    if ((PTy = dyn_cast<VectorType>(Accum)) &&
942        PTy->getElementType() == In) {
943      // Accum is a vector, and we are accessing an element: ok.
944    } else if ((PTy = dyn_cast<VectorType>(In)) &&
945               PTy->getElementType() == Accum) {
946      // In is a vector, and accum is an element: ok, remember In.
947      Accum = In;
948    } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
949               PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
950      // Two vectors of the same size: keep Accum.
951    } else {
952      // Cannot insert an short into a <4 x int> or handle
953      // <2 x int> -> <4 x int>
954      return true;
955    }
956  } else {
957    // Pointer/FP/Integer unions merge together as integers.
958    switch (Accum->getTypeID()) {
959    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
960    case Type::FloatTyID:   Accum = Type::Int32Ty; break;
961    case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
962    case Type::X86_FP80TyID:  return true;
963    case Type::FP128TyID: return true;
964    case Type::PPC_FP128TyID: return true;
965    default:
966      assert(Accum->isInteger() && "Unknown FP type!");
967      break;
968    }
969
970    switch (In->getTypeID()) {
971    case Type::PointerTyID: In = TD.getIntPtrType(); break;
972    case Type::FloatTyID:   In = Type::Int32Ty; break;
973    case Type::DoubleTyID:  In = Type::Int64Ty; break;
974    case Type::X86_FP80TyID:  return true;
975    case Type::FP128TyID: return true;
976    case Type::PPC_FP128TyID: return true;
977    default:
978      assert(In->isInteger() && "Unknown FP type!");
979      break;
980    }
981    return MergeInType(In, Accum, TD);
982  }
983  return false;
984}
985
986/// getUIntAtLeastAsBigAs - Return an unsigned integer type that is at least
987/// as big as the specified type.  If there is no suitable type, this returns
988/// null.
989const Type *getUIntAtLeastAsBigAs(unsigned NumBits) {
990  if (NumBits > 64) return 0;
991  if (NumBits > 32) return Type::Int64Ty;
992  if (NumBits > 16) return Type::Int32Ty;
993  if (NumBits > 8) return Type::Int16Ty;
994  return Type::Int8Ty;
995}
996
997/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
998/// single scalar integer type, return that type.  Further, if the use is not
999/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
1000/// there are no uses of this pointer, return Type::VoidTy to differentiate from
1001/// failure.
1002///
1003const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
1004  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
1005  const TargetData &TD = getAnalysis<TargetData>();
1006  const PointerType *PTy = cast<PointerType>(V->getType());
1007
1008  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1009    Instruction *User = cast<Instruction>(*UI);
1010
1011    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1012      // FIXME: Loads of a first class aggregrate value could be converted to a
1013      // series of loads and insertvalues
1014      if (!LI->getType()->isSingleValueType())
1015        return 0;
1016
1017      if (MergeInType(LI->getType(), UsedType, TD))
1018        return 0;
1019
1020    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1021      // Storing the pointer, not into the value?
1022      if (SI->getOperand(0) == V) return 0;
1023
1024      // FIXME: Stores of a first class aggregrate value could be converted to a
1025      // series of extractvalues and stores
1026      if (!SI->getOperand(0)->getType()->isSingleValueType())
1027        return 0;
1028
1029      // NOTE: We could handle storing of FP imms into integers here!
1030
1031      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
1032        return 0;
1033    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1034      IsNotTrivial = true;
1035      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
1036      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
1037    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1038      // Check to see if this is stepping over an element: GEP Ptr, int C
1039      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
1040        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1041        unsigned ElSize = TD.getABITypeSize(PTy->getElementType());
1042        unsigned BitOffset = Idx*ElSize*8;
1043        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
1044
1045        IsNotTrivial = true;
1046        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
1047        if (SubElt == 0) return 0;
1048        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
1049          const Type *NewTy =
1050            getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(SubElt)+BitOffset);
1051          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
1052          continue;
1053        }
1054      } else if (GEP->getNumOperands() == 3 &&
1055                 isa<ConstantInt>(GEP->getOperand(1)) &&
1056                 isa<ConstantInt>(GEP->getOperand(2)) &&
1057                 cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
1058        // We are stepping into an element, e.g. a structure or an array:
1059        // GEP Ptr, int 0, uint C
1060        const Type *AggTy = PTy->getElementType();
1061        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1062
1063        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
1064          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
1065        } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
1066          // Getting an element of the vector.
1067          if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.
1068
1069          // Merge in the vector type.
1070          if (MergeInType(VectorTy, UsedType, TD)) return 0;
1071
1072          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1073          if (SubTy == 0) return 0;
1074
1075          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1076            return 0;
1077
1078          // We'll need to change this to an insert/extract element operation.
1079          IsNotTrivial = true;
1080          continue;    // Everything looks ok
1081
1082        } else if (isa<StructType>(AggTy)) {
1083          // Structs are always ok.
1084        } else {
1085          return 0;
1086        }
1087        const Type *NTy = getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(AggTy));
1088        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
1089        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1090        if (SubTy == 0) return 0;
1091        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1092          return 0;
1093        continue;    // Everything looks ok
1094      }
1095      return 0;
1096    } else {
1097      // Cannot handle this!
1098      return 0;
1099    }
1100  }
1101
1102  return UsedType;
1103}
1104
1105/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
1106/// predicate and is non-trivial.  Convert it to something that can be trivially
1107/// promoted into a register by mem2reg.
1108void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
1109  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
1110       << *ActualTy << "\n";
1111  ++NumConverted;
1112
1113  BasicBlock *EntryBlock = AI->getParent();
1114  assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
1115         "Not in the entry block!");
1116  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
1117
1118  // Create and insert the alloca.
1119  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
1120                                     EntryBlock->begin());
1121  ConvertUsesToScalar(AI, NewAI, 0);
1122  delete AI;
1123}
1124
1125
1126/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1127/// directly.  This happens when we are converting an "integer union" to a
1128/// single integer scalar, or when we are converting a "vector union" to a
1129/// vector with insert/extractelement instructions.
1130///
1131/// Offset is an offset from the original alloca, in bits that need to be
1132/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1133void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
1134  while (!Ptr->use_empty()) {
1135    Instruction *User = cast<Instruction>(Ptr->use_back());
1136
1137    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1138      Value *NV = ConvertUsesOfLoadToScalar(LI, NewAI, Offset);
1139      LI->replaceAllUsesWith(NV);
1140      LI->eraseFromParent();
1141    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1142      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1143
1144      Value *SV = ConvertUsesOfStoreToScalar(SI, NewAI, Offset);
1145      new StoreInst(SV, NewAI, SI);
1146      SI->eraseFromParent();
1147
1148    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1149      ConvertUsesToScalar(CI, NewAI, Offset);
1150      CI->eraseFromParent();
1151    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1152      const PointerType *AggPtrTy =
1153        cast<PointerType>(GEP->getOperand(0)->getType());
1154      const TargetData &TD = getAnalysis<TargetData>();
1155      unsigned AggSizeInBits =
1156        TD.getABITypeSizeInBits(AggPtrTy->getElementType());
1157
1158      // Check to see if this is stepping over an element: GEP Ptr, int C
1159      unsigned NewOffset = Offset;
1160      if (GEP->getNumOperands() == 2) {
1161        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1162        unsigned BitOffset = Idx*AggSizeInBits;
1163
1164        NewOffset += BitOffset;
1165      } else if (GEP->getNumOperands() == 3) {
1166        // We know that operand #2 is zero.
1167        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1168        const Type *AggTy = AggPtrTy->getElementType();
1169        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
1170          unsigned ElSizeBits =
1171            TD.getABITypeSizeInBits(SeqTy->getElementType());
1172
1173          NewOffset += ElSizeBits*Idx;
1174        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
1175          unsigned EltBitOffset =
1176            TD.getStructLayout(STy)->getElementOffsetInBits(Idx);
1177
1178          NewOffset += EltBitOffset;
1179        } else {
1180          assert(0 && "Unsupported operation!");
1181          abort();
1182        }
1183      } else {
1184        assert(0 && "Unsupported operation!");
1185        abort();
1186      }
1187      ConvertUsesToScalar(GEP, NewAI, NewOffset);
1188      GEP->eraseFromParent();
1189    } else {
1190      assert(0 && "Unsupported operation!");
1191      abort();
1192    }
1193  }
1194}
1195
1196/// ConvertUsesOfLoadToScalar - Convert all of the users the specified load to
1197/// use the new alloca directly, returning the value that should replace the
1198/// load.  This happens when we are converting an "integer union" to a
1199/// single integer scalar, or when we are converting a "vector union" to a
1200/// vector with insert/extractelement instructions.
1201///
1202/// Offset is an offset from the original alloca, in bits that need to be
1203/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1204Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
1205                                       unsigned Offset) {
1206  // The load is a bit extract from NewAI shifted right by Offset bits.
1207  Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1208
1209  if (NV->getType() == LI->getType() && Offset == 0) {
1210    // We win, no conversion needed.
1211    return NV;
1212  }
1213
1214  // If the result type of the 'union' is a pointer, then this must be ptr->ptr
1215  // cast.  Anything else would result in NV being an integer.
1216  if (isa<PointerType>(NV->getType())) {
1217    assert(isa<PointerType>(LI->getType()));
1218    return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1219  }
1220
1221  if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) {
1222    // If the result alloca is a vector type, this is either an element
1223    // access or a bitcast to another vector type.
1224    if (isa<VectorType>(LI->getType()))
1225      return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1226
1227    // Otherwise it must be an element access.
1228    const TargetData &TD = getAnalysis<TargetData>();
1229    unsigned Elt = 0;
1230    if (Offset) {
1231      unsigned EltSize = TD.getABITypeSizeInBits(VTy->getElementType());
1232      Elt = Offset/EltSize;
1233      Offset -= EltSize*Elt;
1234    }
1235    NV = new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
1236                                "tmp", LI);
1237
1238    // If we're done, return this element.
1239    if (NV->getType() == LI->getType() && Offset == 0)
1240      return NV;
1241  }
1242
1243  const IntegerType *NTy = cast<IntegerType>(NV->getType());
1244
1245  // If this is a big-endian system and the load is narrower than the
1246  // full alloca type, we need to do a shift to get the right bits.
1247  int ShAmt = 0;
1248  const TargetData &TD = getAnalysis<TargetData>();
1249  if (TD.isBigEndian()) {
1250    // On big-endian machines, the lowest bit is stored at the bit offset
1251    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1252    // integers with a bitwidth that is not a multiple of 8.
1253    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
1254    TD.getTypeStoreSizeInBits(LI->getType()) - Offset;
1255  } else {
1256    ShAmt = Offset;
1257  }
1258
1259  // Note: we support negative bitwidths (with shl) which are not defined.
1260  // We do this to support (f.e.) loads off the end of a structure where
1261  // only some bits are used.
1262  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1263    NV = BinaryOperator::CreateLShr(NV,
1264                                    ConstantInt::get(NV->getType(),ShAmt),
1265                                    LI->getName(), LI);
1266  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1267    NV = BinaryOperator::CreateShl(NV,
1268                                   ConstantInt::get(NV->getType(),-ShAmt),
1269                                   LI->getName(), LI);
1270
1271  // Finally, unconditionally truncate the integer to the right width.
1272  unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType());
1273  if (LIBitWidth < NTy->getBitWidth())
1274    NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
1275                       LI->getName(), LI);
1276
1277  // If the result is an integer, this is a trunc or bitcast.
1278  if (isa<IntegerType>(LI->getType())) {
1279    // Should be done.
1280  } else if (LI->getType()->isFloatingPoint()) {
1281    // Just do a bitcast, we know the sizes match up.
1282    NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1283  } else {
1284    // Otherwise must be a pointer.
1285    NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1286  }
1287  assert(NV->getType() == LI->getType() && "Didn't convert right?");
1288  return NV;
1289}
1290
1291
1292/// ConvertUsesOfStoreToScalar - Convert the specified store to a load+store
1293/// pair of the new alloca directly, returning the value that should be stored
1294/// to the alloca.  This happens when we are converting an "integer union" to a
1295/// single integer scalar, or when we are converting a "vector union" to a
1296/// vector with insert/extractelement instructions.
1297///
1298/// Offset is an offset from the original alloca, in bits that need to be
1299/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1300Value *SROA::ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
1301                                        unsigned Offset) {
1302
1303  // Convert the stored type to the actual type, shift it left to insert
1304  // then 'or' into place.
1305  Value *SV = SI->getOperand(0);
1306  const Type *AllocaType = NewAI->getType()->getElementType();
1307  if (SV->getType() == AllocaType && Offset == 0) {
1308    // All is well.
1309  } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
1310    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1311
1312    // If the result alloca is a vector type, this is either an element
1313    // access or a bitcast to another vector type.
1314    if (isa<VectorType>(SV->getType())) {
1315      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1316    } else {
1317      // Must be an element insertion.
1318      const TargetData &TD = getAnalysis<TargetData>();
1319      unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType());
1320      SV = InsertElementInst::Create(Old, SV,
1321                                     ConstantInt::get(Type::Int32Ty, Elt),
1322                                     "tmp", SI);
1323    }
1324  } else if (isa<PointerType>(AllocaType)) {
1325    // If the alloca type is a pointer, then all the elements must be
1326    // pointers.
1327    if (SV->getType() != AllocaType)
1328      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1329  } else {
1330    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1331
1332    // If SV is a float, convert it to the appropriate integer type.
1333    // If it is a pointer, do the same, and also handle ptr->ptr casts
1334    // here.
1335    const TargetData &TD = getAnalysis<TargetData>();
1336    unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1337    unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
1338    unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
1339    unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
1340    if (SV->getType()->isFloatingPoint())
1341      SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
1342                           SV->getName(), SI);
1343    else if (isa<PointerType>(SV->getType()))
1344      SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
1345
1346    // Always zero extend the value if needed.
1347    if (SV->getType() != AllocaType)
1348      SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
1349
1350    // If this is a big-endian system and the store is narrower than the
1351    // full alloca type, we need to do a shift to get the right bits.
1352    int ShAmt = 0;
1353    if (TD.isBigEndian()) {
1354      // On big-endian machines, the lowest bit is stored at the bit offset
1355      // from the pointer given by getTypeStoreSizeInBits.  This matters for
1356      // integers with a bitwidth that is not a multiple of 8.
1357      ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1358    } else {
1359      ShAmt = Offset;
1360    }
1361
1362    // Note: we support negative bitwidths (with shr) which are not defined.
1363    // We do this to support (f.e.) stores off the end of a structure where
1364    // only some bits in the structure are set.
1365    APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1366    if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1367      SV = BinaryOperator::CreateShl(SV,
1368                                     ConstantInt::get(SV->getType(), ShAmt),
1369                                     SV->getName(), SI);
1370      Mask <<= ShAmt;
1371    } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1372      SV = BinaryOperator::CreateLShr(SV,
1373                                      ConstantInt::get(SV->getType(),-ShAmt),
1374                                      SV->getName(), SI);
1375      Mask = Mask.lshr(ShAmt);
1376    }
1377
1378    // Mask out the bits we are about to insert from the old value, and or
1379    // in the new bits.
1380    if (SrcWidth != DestWidth) {
1381      assert(DestWidth > SrcWidth);
1382      Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
1383                                      Old->getName()+".mask", SI);
1384      SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", SI);
1385    }
1386  }
1387  return SV;
1388}
1389
1390
1391
1392/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1393/// some part of a constant global variable.  This intentionally only accepts
1394/// constant expressions because we don't can't rewrite arbitrary instructions.
1395static bool PointsToConstantGlobal(Value *V) {
1396  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1397    return GV->isConstant();
1398  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1399    if (CE->getOpcode() == Instruction::BitCast ||
1400        CE->getOpcode() == Instruction::GetElementPtr)
1401      return PointsToConstantGlobal(CE->getOperand(0));
1402  return false;
1403}
1404
1405/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1406/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1407/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1408/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1409/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1410/// the alloca, and if the source pointer is a pointer to a constant  global, we
1411/// can optimize this.
1412static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1413                                           bool isOffset) {
1414  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1415    if (isa<LoadInst>(*UI)) {
1416      // Ignore loads, they are always ok.
1417      continue;
1418    }
1419    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1420      // If uses of the bitcast are ok, we are ok.
1421      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1422        return false;
1423      continue;
1424    }
1425    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1426      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1427      // doesn't, it does.
1428      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1429                                         isOffset || !GEP->hasAllZeroIndices()))
1430        return false;
1431      continue;
1432    }
1433
1434    // If this is isn't our memcpy/memmove, reject it as something we can't
1435    // handle.
1436    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1437      return false;
1438
1439    // If we already have seen a copy, reject the second one.
1440    if (TheCopy) return false;
1441
1442    // If the pointer has been offset from the start of the alloca, we can't
1443    // safely handle this.
1444    if (isOffset) return false;
1445
1446    // If the memintrinsic isn't using the alloca as the dest, reject it.
1447    if (UI.getOperandNo() != 1) return false;
1448
1449    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1450
1451    // If the source of the memcpy/move is not a constant global, reject it.
1452    if (!PointsToConstantGlobal(MI->getOperand(2)))
1453      return false;
1454
1455    // Otherwise, the transform is safe.  Remember the copy instruction.
1456    TheCopy = MI;
1457  }
1458  return true;
1459}
1460
1461/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1462/// modified by a copy from a constant global.  If we can prove this, we can
1463/// replace any uses of the alloca with uses of the global directly.
1464Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1465  Instruction *TheCopy = 0;
1466  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1467    return TheCopy;
1468  return 0;
1469}
1470