ScalarReplAggregates.cpp revision 9837a5c95981c239b34c1d0dfb51d4096409cbe1
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DIBuilder.h"
34#include "llvm/Analysis/Dominators.h"
35#include "llvm/Analysis/Loads.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Transforms/Utils/PromoteMemToReg.h"
39#include "llvm/Transforms/Utils/Local.h"
40#include "llvm/Transforms/Utils/SSAUpdater.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Support/IRBuilder.h"
46#include "llvm/Support/MathExtras.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/Statistic.h"
51using namespace llvm;
52
53STATISTIC(NumReplaced,  "Number of allocas broken up");
54STATISTIC(NumPromoted,  "Number of allocas promoted");
55STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
56STATISTIC(NumConverted, "Number of aggregates converted to scalar");
57STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
58
59namespace {
60  struct SROA : public FunctionPass {
61    SROA(int T, bool hasDT, char &ID)
62      : FunctionPass(ID), HasDomTree(hasDT) {
63      if (T == -1)
64        SRThreshold = 128;
65      else
66        SRThreshold = T;
67    }
68
69    bool runOnFunction(Function &F);
70
71    bool performScalarRepl(Function &F);
72    bool performPromotion(Function &F);
73
74  private:
75    bool HasDomTree;
76    TargetData *TD;
77
78    /// DeadInsts - Keep track of instructions we have made dead, so that
79    /// we can remove them after we are done working.
80    SmallVector<Value*, 32> DeadInsts;
81
82    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
83    /// information about the uses.  All these fields are initialized to false
84    /// and set to true when something is learned.
85    struct AllocaInfo {
86      /// The alloca to promote.
87      AllocaInst *AI;
88
89      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
90      /// looping and avoid redundant work.
91      SmallPtrSet<PHINode*, 8> CheckedPHIs;
92
93      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
94      bool isUnsafe : 1;
95
96      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
97      bool isMemCpySrc : 1;
98
99      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
100      bool isMemCpyDst : 1;
101
102      /// hasSubelementAccess - This is true if a subelement of the alloca is
103      /// ever accessed, or false if the alloca is only accessed with mem
104      /// intrinsics or load/store that only access the entire alloca at once.
105      bool hasSubelementAccess : 1;
106
107      /// hasALoadOrStore - This is true if there are any loads or stores to it.
108      /// The alloca may just be accessed with memcpy, for example, which would
109      /// not set this.
110      bool hasALoadOrStore : 1;
111
112      explicit AllocaInfo(AllocaInst *ai)
113        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
114          hasSubelementAccess(false), hasALoadOrStore(false) {}
115    };
116
117    unsigned SRThreshold;
118
119    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
120      I.isUnsafe = true;
121      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
122    }
123
124    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
125
126    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
127    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
128                                         AllocaInfo &Info);
129    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
130    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
131                         const Type *MemOpType, bool isStore, AllocaInfo &Info,
132                         Instruction *TheAccess, bool AllowWholeAccess);
133    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
134    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
135                                  const Type *&IdxTy);
136
137    void DoScalarReplacement(AllocaInst *AI,
138                             std::vector<AllocaInst*> &WorkList);
139    void DeleteDeadInstructions();
140
141    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
142                              SmallVector<AllocaInst*, 32> &NewElts);
143    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
144                        SmallVector<AllocaInst*, 32> &NewElts);
145    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
146                    SmallVector<AllocaInst*, 32> &NewElts);
147    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
148                                      AllocaInst *AI,
149                                      SmallVector<AllocaInst*, 32> &NewElts);
150    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
151                                       SmallVector<AllocaInst*, 32> &NewElts);
152    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
153                                      SmallVector<AllocaInst*, 32> &NewElts);
154
155    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
156  };
157
158  // SROA_DT - SROA that uses DominatorTree.
159  struct SROA_DT : public SROA {
160    static char ID;
161  public:
162    SROA_DT(int T = -1) : SROA(T, true, ID) {
163      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
164    }
165
166    // getAnalysisUsage - This pass does not require any passes, but we know it
167    // will not alter the CFG, so say so.
168    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
169      AU.addRequired<DominatorTree>();
170      AU.setPreservesCFG();
171    }
172  };
173
174  // SROA_SSAUp - SROA that uses SSAUpdater.
175  struct SROA_SSAUp : public SROA {
176    static char ID;
177  public:
178    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
179      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
180    }
181
182    // getAnalysisUsage - This pass does not require any passes, but we know it
183    // will not alter the CFG, so say so.
184    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
185      AU.setPreservesCFG();
186    }
187  };
188
189}
190
191char SROA_DT::ID = 0;
192char SROA_SSAUp::ID = 0;
193
194INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
195                "Scalar Replacement of Aggregates (DT)", false, false)
196INITIALIZE_PASS_DEPENDENCY(DominatorTree)
197INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
198                "Scalar Replacement of Aggregates (DT)", false, false)
199
200INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
201                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
202INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
203                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
204
205// Public interface to the ScalarReplAggregates pass
206FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
207                                                   bool UseDomTree) {
208  if (UseDomTree)
209    return new SROA_DT(Threshold);
210  return new SROA_SSAUp(Threshold);
211}
212
213
214//===----------------------------------------------------------------------===//
215// Convert To Scalar Optimization.
216//===----------------------------------------------------------------------===//
217
218namespace {
219/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
220/// optimization, which scans the uses of an alloca and determines if it can
221/// rewrite it in terms of a single new alloca that can be mem2reg'd.
222class ConvertToScalarInfo {
223  /// AllocaSize - The size of the alloca being considered in bytes.
224  unsigned AllocaSize;
225  const TargetData &TD;
226
227  /// IsNotTrivial - This is set to true if there is some access to the object
228  /// which means that mem2reg can't promote it.
229  bool IsNotTrivial;
230
231  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
232  /// computed based on the uses of the alloca rather than the LLVM type system.
233  enum {
234    Unknown,
235    Vector,
236    Integer
237  } ScalarKind;
238
239  /// VectorTy - This tracks the type that we should promote the vector to if
240  /// it is possible to turn it into a vector.  This starts out null, and if it
241  /// isn't possible to turn into a vector type, it gets set to VoidTy.
242  const VectorType *VectorTy;
243
244  /// HadAVector - True if there is at least one vector access to the alloca.
245  /// We don't want to turn random arrays into vectors and use vector element
246  /// insert/extract, but if there are element accesses to something that is
247  /// also declared as a vector, we do want to promote to a vector.
248  bool HadAVector;
249
250  /// HadNonMemTransferAccess - True if there is at least one access to the
251  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
252  /// large integers unless there is some potential for optimization.
253  bool HadNonMemTransferAccess;
254
255public:
256  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
257    : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
258      VectorTy(0), HadAVector(false), HadNonMemTransferAccess(false) { }
259
260  AllocaInst *TryConvert(AllocaInst *AI);
261
262private:
263  bool CanConvertToScalar(Value *V, uint64_t Offset);
264  void MergeInType(const Type *In, uint64_t Offset);
265  bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
266  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
267
268  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
269                                    uint64_t Offset, IRBuilder<> &Builder);
270  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
271                                   uint64_t Offset, IRBuilder<> &Builder);
272};
273} // end anonymous namespace.
274
275
276/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
277/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
278/// alloca if possible or null if not.
279AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
280  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
281  // out.
282  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
283    return 0;
284
285  // If we were able to find a vector type that can handle this with
286  // insert/extract elements, and if there was at least one use that had
287  // a vector type, promote this to a vector.  We don't want to promote
288  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
289  // we just get a lot of insert/extracts.  If at least one vector is
290  // involved, then we probably really do have a union of vector/array.
291  const Type *NewTy;
292  if (VectorTy && HadAVector) {
293    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
294          << *VectorTy << '\n');
295    NewTy = VectorTy;  // Use the vector type.
296  } else {
297    unsigned BitWidth = AllocaSize * 8;
298    if (!HadAVector && !HadNonMemTransferAccess &&
299        !TD.fitsInLegalInteger(BitWidth))
300      return 0;
301
302    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
303    // Create and insert the integer alloca.
304    NewTy = IntegerType::get(AI->getContext(), BitWidth);
305  }
306  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
307  ConvertUsesToScalar(AI, NewAI, 0);
308  return NewAI;
309}
310
311/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
312/// so far at the offset specified by Offset (which is specified in bytes).
313///
314/// There are three cases we handle here:
315///   1) A union of vector types of the same size and potentially its elements.
316///      Here we turn element accesses into insert/extract element operations.
317///      This promotes a <4 x float> with a store of float to the third element
318///      into a <4 x float> that uses insert element.
319///   2) A union of vector types with power-of-2 size differences, e.g. a float,
320///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
321///      and extract element operations, and <2 x float> accesses into a cast to
322///      <2 x double>, an extract, and a cast back to <2 x float>.
323///   3) A fully general blob of memory, which we turn into some (potentially
324///      large) integer type with extract and insert operations where the loads
325///      and stores would mutate the memory.  We mark this by setting VectorTy
326///      to VoidTy.
327void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
328  // If we already decided to turn this into a blob of integer memory, there is
329  // nothing to be done.
330  if (ScalarKind == Integer)
331    return;
332
333  // If this could be contributing to a vector, analyze it.
334
335  // If the In type is a vector that is the same size as the alloca, see if it
336  // matches the existing VecTy.
337  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
338    if (MergeInVectorType(VInTy, Offset))
339      return;
340  } else if (In->isFloatTy() || In->isDoubleTy() ||
341             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
342              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
343    // Full width accesses can be ignored, because they can always be turned
344    // into bitcasts.
345    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
346    if (EltSize == AllocaSize)
347      return;
348
349    // If we're accessing something that could be an element of a vector, see
350    // if the implied vector agrees with what we already have and if Offset is
351    // compatible with it.
352    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
353        (!VectorTy || Offset * 8 < VectorTy->getPrimitiveSizeInBits())) {
354      if (!VectorTy) {
355        ScalarKind = Vector;
356        VectorTy = VectorType::get(In, AllocaSize/EltSize);
357        return;
358      }
359
360      unsigned CurrentEltSize = VectorTy->getElementType()
361                                ->getPrimitiveSizeInBits()/8;
362      if (EltSize == CurrentEltSize)
363        return;
364
365      if (In->isIntegerTy() && isPowerOf2_32(AllocaSize / EltSize))
366        return;
367    }
368  }
369
370  // Otherwise, we have a case that we can't handle with an optimized vector
371  // form.  We can still turn this into a large integer.
372  ScalarKind = Integer;
373  VectorTy = 0;
374}
375
376/// MergeInVectorType - Handles the vector case of MergeInType, returning true
377/// if the type was successfully merged and false otherwise.
378bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
379                                            uint64_t Offset) {
380  // Remember if we saw a vector type.
381  HadAVector = true;
382
383  // TODO: Support nonzero offsets?
384  if (Offset != 0)
385    return false;
386
387  // Only allow vectors that are a power-of-2 away from the size of the alloca.
388  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
389    return false;
390
391  // If this the first vector we see, remember the type so that we know the
392  // element size.
393  if (!VectorTy) {
394    ScalarKind = Vector;
395    VectorTy = VInTy;
396    return true;
397  }
398
399  unsigned BitWidth = VectorTy->getBitWidth();
400  unsigned InBitWidth = VInTy->getBitWidth();
401
402  // Vectors of the same size can be converted using a simple bitcast.
403  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
404    return true;
405
406  const Type *ElementTy = VectorTy->getElementType();
407  const Type *InElementTy = VInTy->getElementType();
408
409  // Do not allow mixed integer and floating-point accesses from vectors of
410  // different sizes.
411  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
412    return false;
413
414  if (ElementTy->isFloatingPointTy()) {
415    // Only allow floating-point vectors of different sizes if they have the
416    // same element type.
417    // TODO: This could be loosened a bit, but would anything benefit?
418    if (ElementTy != InElementTy)
419      return false;
420
421    // There are no arbitrary-precision floating-point types, which limits the
422    // number of legal vector types with larger element types that we can form
423    // to bitcast and extract a subvector.
424    // TODO: We could support some more cases with mixed fp128 and double here.
425    if (!(BitWidth == 64 || BitWidth == 128) ||
426        !(InBitWidth == 64 || InBitWidth == 128))
427      return false;
428  } else {
429    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
430                                       "or floating-point.");
431    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
432    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
433
434    // Do not allow integer types smaller than a byte or types whose widths are
435    // not a multiple of a byte.
436    if (BitWidth < 8 || InBitWidth < 8 ||
437        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
438      return false;
439  }
440
441  // Pick the largest of the two vector types.
442  if (InBitWidth > BitWidth)
443    VectorTy = VInTy;
444
445  return true;
446}
447
448/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
449/// its accesses to a single vector type, return true and set VecTy to
450/// the new type.  If we could convert the alloca into a single promotable
451/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
452/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
453/// is the current offset from the base of the alloca being analyzed.
454///
455/// If we see at least one access to the value that is as a vector type, set the
456/// SawVec flag.
457bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
458  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
459    Instruction *User = cast<Instruction>(*UI);
460
461    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
462      // Don't break volatile loads.
463      if (LI->isVolatile())
464        return false;
465      // Don't touch MMX operations.
466      if (LI->getType()->isX86_MMXTy())
467        return false;
468      HadNonMemTransferAccess = true;
469      MergeInType(LI->getType(), Offset);
470      continue;
471    }
472
473    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
474      // Storing the pointer, not into the value?
475      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
476      // Don't touch MMX operations.
477      if (SI->getOperand(0)->getType()->isX86_MMXTy())
478        return false;
479      HadNonMemTransferAccess = true;
480      MergeInType(SI->getOperand(0)->getType(), Offset);
481      continue;
482    }
483
484    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
485      IsNotTrivial = true;  // Can't be mem2reg'd.
486      if (!CanConvertToScalar(BCI, Offset))
487        return false;
488      continue;
489    }
490
491    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
492      // If this is a GEP with a variable indices, we can't handle it.
493      if (!GEP->hasAllConstantIndices())
494        return false;
495
496      // Compute the offset that this GEP adds to the pointer.
497      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
498      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
499                                               &Indices[0], Indices.size());
500      // See if all uses can be converted.
501      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
502        return false;
503      IsNotTrivial = true;  // Can't be mem2reg'd.
504      HadNonMemTransferAccess = true;
505      continue;
506    }
507
508    // If this is a constant sized memset of a constant value (e.g. 0) we can
509    // handle it.
510    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
511      // Store of constant value and constant size.
512      if (!isa<ConstantInt>(MSI->getValue()) ||
513          !isa<ConstantInt>(MSI->getLength()))
514        return false;
515      IsNotTrivial = true;  // Can't be mem2reg'd.
516      HadNonMemTransferAccess = true;
517      continue;
518    }
519
520    // If this is a memcpy or memmove into or out of the whole allocation, we
521    // can handle it like a load or store of the scalar type.
522    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
523      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
524      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
525        return false;
526
527      IsNotTrivial = true;  // Can't be mem2reg'd.
528      continue;
529    }
530
531    // Otherwise, we cannot handle this!
532    return false;
533  }
534
535  return true;
536}
537
538/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
539/// directly.  This happens when we are converting an "integer union" to a
540/// single integer scalar, or when we are converting a "vector union" to a
541/// vector with insert/extractelement instructions.
542///
543/// Offset is an offset from the original alloca, in bits that need to be
544/// shifted to the right.  By the end of this, there should be no uses of Ptr.
545void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
546                                              uint64_t Offset) {
547  while (!Ptr->use_empty()) {
548    Instruction *User = cast<Instruction>(Ptr->use_back());
549
550    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
551      ConvertUsesToScalar(CI, NewAI, Offset);
552      CI->eraseFromParent();
553      continue;
554    }
555
556    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
557      // Compute the offset that this GEP adds to the pointer.
558      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
559      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
560                                               &Indices[0], Indices.size());
561      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
562      GEP->eraseFromParent();
563      continue;
564    }
565
566    IRBuilder<> Builder(User);
567
568    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
569      // The load is a bit extract from NewAI shifted right by Offset bits.
570      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
571      Value *NewLoadVal
572        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
573      LI->replaceAllUsesWith(NewLoadVal);
574      LI->eraseFromParent();
575      continue;
576    }
577
578    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
579      assert(SI->getOperand(0) != Ptr && "Consistency error!");
580      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
581      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
582                                             Builder);
583      Builder.CreateStore(New, NewAI);
584      SI->eraseFromParent();
585
586      // If the load we just inserted is now dead, then the inserted store
587      // overwrote the entire thing.
588      if (Old->use_empty())
589        Old->eraseFromParent();
590      continue;
591    }
592
593    // If this is a constant sized memset of a constant value (e.g. 0) we can
594    // transform it into a store of the expanded constant value.
595    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
596      assert(MSI->getRawDest() == Ptr && "Consistency error!");
597      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
598      if (NumBytes != 0) {
599        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
600
601        // Compute the value replicated the right number of times.
602        APInt APVal(NumBytes*8, Val);
603
604        // Splat the value if non-zero.
605        if (Val)
606          for (unsigned i = 1; i != NumBytes; ++i)
607            APVal |= APVal << 8;
608
609        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
610        Value *New = ConvertScalar_InsertValue(
611                                    ConstantInt::get(User->getContext(), APVal),
612                                               Old, Offset, Builder);
613        Builder.CreateStore(New, NewAI);
614
615        // If the load we just inserted is now dead, then the memset overwrote
616        // the entire thing.
617        if (Old->use_empty())
618          Old->eraseFromParent();
619      }
620      MSI->eraseFromParent();
621      continue;
622    }
623
624    // If this is a memcpy or memmove into or out of the whole allocation, we
625    // can handle it like a load or store of the scalar type.
626    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
627      assert(Offset == 0 && "must be store to start of alloca");
628
629      // If the source and destination are both to the same alloca, then this is
630      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
631      // as appropriate.
632      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
633
634      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
635        // Dest must be OrigAI, change this to be a load from the original
636        // pointer (bitcasted), then a store to our new alloca.
637        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
638        Value *SrcPtr = MTI->getSource();
639        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
640        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
641        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
642          AIPTy = PointerType::get(AIPTy->getElementType(),
643                                   SPTy->getAddressSpace());
644        }
645        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
646
647        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
648        SrcVal->setAlignment(MTI->getAlignment());
649        Builder.CreateStore(SrcVal, NewAI);
650      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
651        // Src must be OrigAI, change this to be a load from NewAI then a store
652        // through the original dest pointer (bitcasted).
653        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
654        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
655
656        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
657        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
658        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
659          AIPTy = PointerType::get(AIPTy->getElementType(),
660                                   DPTy->getAddressSpace());
661        }
662        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
663
664        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
665        NewStore->setAlignment(MTI->getAlignment());
666      } else {
667        // Noop transfer. Src == Dst
668      }
669
670      MTI->eraseFromParent();
671      continue;
672    }
673
674    llvm_unreachable("Unsupported operation!");
675  }
676}
677
678/// getScaledElementType - Gets a scaled element type for a partial vector
679/// access of an alloca. The input types must be integer or floating-point
680/// scalar or vector types, and the resulting type is an integer, float or
681/// double.
682static const Type *getScaledElementType(const Type *Ty1, const Type *Ty2,
683                                        unsigned NewBitWidth) {
684  bool IsFP1 = Ty1->isFloatingPointTy() ||
685               (Ty1->isVectorTy() &&
686                cast<VectorType>(Ty1)->getElementType()->isFloatingPointTy());
687  bool IsFP2 = Ty2->isFloatingPointTy() ||
688               (Ty2->isVectorTy() &&
689                cast<VectorType>(Ty2)->getElementType()->isFloatingPointTy());
690
691  LLVMContext &Context = Ty1->getContext();
692
693  // Prefer floating-point types over integer types, as integer types may have
694  // been created by earlier scalar replacement.
695  if (IsFP1 || IsFP2) {
696    if (NewBitWidth == 32)
697      return Type::getFloatTy(Context);
698    if (NewBitWidth == 64)
699      return Type::getDoubleTy(Context);
700  }
701
702  return Type::getIntNTy(Context, NewBitWidth);
703}
704
705/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
706/// to another vector of the same element type which has the same allocation
707/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
708static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
709                                      IRBuilder<> &Builder) {
710  const Type *FromType = FromVal->getType();
711  const VectorType *FromVTy = cast<VectorType>(FromType);
712  const VectorType *ToVTy = cast<VectorType>(ToType);
713  assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
714         "Vectors must have the same element type");
715   Value *UnV = UndefValue::get(FromType);
716   unsigned numEltsFrom = FromVTy->getNumElements();
717   unsigned numEltsTo = ToVTy->getNumElements();
718
719   SmallVector<Constant*, 3> Args;
720   const Type* Int32Ty = Builder.getInt32Ty();
721   unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
722   unsigned i;
723   for (i=0; i != minNumElts; ++i)
724     Args.push_back(ConstantInt::get(Int32Ty, i));
725
726   if (i < numEltsTo) {
727     Constant* UnC = UndefValue::get(Int32Ty);
728     for (; i != numEltsTo; ++i)
729       Args.push_back(UnC);
730   }
731   Constant *Mask = ConstantVector::get(Args);
732   return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
733}
734
735/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
736/// or vector value FromVal, extracting the bits from the offset specified by
737/// Offset.  This returns the value, which is of type ToType.
738///
739/// This happens when we are converting an "integer union" to a single
740/// integer scalar, or when we are converting a "vector union" to a vector with
741/// insert/extractelement instructions.
742///
743/// Offset is an offset from the original alloca, in bits that need to be
744/// shifted to the right.
745Value *ConvertToScalarInfo::
746ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
747                           uint64_t Offset, IRBuilder<> &Builder) {
748  // If the load is of the whole new alloca, no conversion is needed.
749  const Type *FromType = FromVal->getType();
750  if (FromType == ToType && Offset == 0)
751    return FromVal;
752
753  // If the result alloca is a vector type, this is either an element
754  // access or a bitcast to another vector type of the same size.
755  if (const VectorType *VTy = dyn_cast<VectorType>(FromType)) {
756    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
757    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
758    if (FromTypeSize == ToTypeSize) {
759      // If the two types have the same primitive size, use a bit cast.
760      // Otherwise, it is two vectors with the same element type that has
761      // the same allocation size but different number of elements so use
762      // a shuffle vector.
763      if (FromType->getPrimitiveSizeInBits() ==
764          ToType->getPrimitiveSizeInBits())
765        return Builder.CreateBitCast(FromVal, ToType, "tmp");
766      else
767        return CreateShuffleVectorCast(FromVal, ToType, Builder);
768    }
769
770    if (isPowerOf2_64(FromTypeSize / ToTypeSize)) {
771      assert(!(ToType->isVectorTy() && Offset != 0) && "Can't extract a value "
772             "of a smaller vector type at a nonzero offset.");
773
774      const Type *CastElementTy = getScaledElementType(FromType, ToType,
775                                                       ToTypeSize * 8);
776      unsigned NumCastVectorElements = FromTypeSize / ToTypeSize;
777
778      LLVMContext &Context = FromVal->getContext();
779      const Type *CastTy = VectorType::get(CastElementTy,
780                                           NumCastVectorElements);
781      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
782
783      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
784      unsigned Elt = Offset/EltSize;
785      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
786      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
787                                        Type::getInt32Ty(Context), Elt), "tmp");
788      return Builder.CreateBitCast(Extract, ToType, "tmp");
789    }
790
791    // Otherwise it must be an element access.
792    unsigned Elt = 0;
793    if (Offset) {
794      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
795      Elt = Offset/EltSize;
796      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
797    }
798    // Return the element extracted out of it.
799    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
800                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
801    if (V->getType() != ToType)
802      V = Builder.CreateBitCast(V, ToType, "tmp");
803    return V;
804  }
805
806  // If ToType is a first class aggregate, extract out each of the pieces and
807  // use insertvalue's to form the FCA.
808  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
809    const StructLayout &Layout = *TD.getStructLayout(ST);
810    Value *Res = UndefValue::get(ST);
811    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
812      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
813                                        Offset+Layout.getElementOffsetInBits(i),
814                                              Builder);
815      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
816    }
817    return Res;
818  }
819
820  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
821    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
822    Value *Res = UndefValue::get(AT);
823    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
824      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
825                                              Offset+i*EltSize, Builder);
826      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
827    }
828    return Res;
829  }
830
831  // Otherwise, this must be a union that was converted to an integer value.
832  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
833
834  // If this is a big-endian system and the load is narrower than the
835  // full alloca type, we need to do a shift to get the right bits.
836  int ShAmt = 0;
837  if (TD.isBigEndian()) {
838    // On big-endian machines, the lowest bit is stored at the bit offset
839    // from the pointer given by getTypeStoreSizeInBits.  This matters for
840    // integers with a bitwidth that is not a multiple of 8.
841    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
842            TD.getTypeStoreSizeInBits(ToType) - Offset;
843  } else {
844    ShAmt = Offset;
845  }
846
847  // Note: we support negative bitwidths (with shl) which are not defined.
848  // We do this to support (f.e.) loads off the end of a structure where
849  // only some bits are used.
850  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
851    FromVal = Builder.CreateLShr(FromVal,
852                                 ConstantInt::get(FromVal->getType(),
853                                                           ShAmt), "tmp");
854  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
855    FromVal = Builder.CreateShl(FromVal,
856                                ConstantInt::get(FromVal->getType(),
857                                                          -ShAmt), "tmp");
858
859  // Finally, unconditionally truncate the integer to the right width.
860  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
861  if (LIBitWidth < NTy->getBitWidth())
862    FromVal =
863      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
864                                                    LIBitWidth), "tmp");
865  else if (LIBitWidth > NTy->getBitWidth())
866    FromVal =
867       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
868                                                    LIBitWidth), "tmp");
869
870  // If the result is an integer, this is a trunc or bitcast.
871  if (ToType->isIntegerTy()) {
872    // Should be done.
873  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
874    // Just do a bitcast, we know the sizes match up.
875    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
876  } else {
877    // Otherwise must be a pointer.
878    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
879  }
880  assert(FromVal->getType() == ToType && "Didn't convert right?");
881  return FromVal;
882}
883
884/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
885/// or vector value "Old" at the offset specified by Offset.
886///
887/// This happens when we are converting an "integer union" to a
888/// single integer scalar, or when we are converting a "vector union" to a
889/// vector with insert/extractelement instructions.
890///
891/// Offset is an offset from the original alloca, in bits that need to be
892/// shifted to the right.
893Value *ConvertToScalarInfo::
894ConvertScalar_InsertValue(Value *SV, Value *Old,
895                          uint64_t Offset, IRBuilder<> &Builder) {
896  // Convert the stored type to the actual type, shift it left to insert
897  // then 'or' into place.
898  const Type *AllocaType = Old->getType();
899  LLVMContext &Context = Old->getContext();
900
901  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
902    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
903    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
904
905    // Changing the whole vector with memset or with an access of a different
906    // vector type?
907    if (ValSize == VecSize) {
908      // If the two types have the same primitive size, use a bit cast.
909      // Otherwise, it is two vectors with the same element type that has
910      // the same allocation size but different number of elements so use
911      // a shuffle vector.
912      if (VTy->getPrimitiveSizeInBits() ==
913          SV->getType()->getPrimitiveSizeInBits())
914        return Builder.CreateBitCast(SV, AllocaType, "tmp");
915      else
916        return CreateShuffleVectorCast(SV, VTy, Builder);
917    }
918
919    if (isPowerOf2_64(VecSize / ValSize)) {
920      assert(!(SV->getType()->isVectorTy() && Offset != 0) && "Can't insert a "
921             "value of a smaller vector type at a nonzero offset.");
922
923      const Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
924                                                       ValSize);
925      unsigned NumCastVectorElements = VecSize / ValSize;
926
927      LLVMContext &Context = SV->getContext();
928      const Type *OldCastTy = VectorType::get(CastElementTy,
929                                              NumCastVectorElements);
930      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
931
932      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
933
934      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
935      unsigned Elt = Offset/EltSize;
936      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
937      Value *Insert =
938        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
939                                        Type::getInt32Ty(Context), Elt), "tmp");
940      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
941    }
942
943    // Must be an element insertion.
944    assert(SV->getType() == VTy->getElementType());
945    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
946    unsigned Elt = Offset/EltSize;
947    return Builder.CreateInsertElement(Old, SV,
948                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
949                                     "tmp");
950  }
951
952  // If SV is a first-class aggregate value, insert each value recursively.
953  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
954    const StructLayout &Layout = *TD.getStructLayout(ST);
955    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
956      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
957      Old = ConvertScalar_InsertValue(Elt, Old,
958                                      Offset+Layout.getElementOffsetInBits(i),
959                                      Builder);
960    }
961    return Old;
962  }
963
964  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
965    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
966    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
967      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
968      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
969    }
970    return Old;
971  }
972
973  // If SV is a float, convert it to the appropriate integer type.
974  // If it is a pointer, do the same.
975  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
976  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
977  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
978  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
979  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
980    SV = Builder.CreateBitCast(SV,
981                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
982  else if (SV->getType()->isPointerTy())
983    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
984
985  // Zero extend or truncate the value if needed.
986  if (SV->getType() != AllocaType) {
987    if (SV->getType()->getPrimitiveSizeInBits() <
988             AllocaType->getPrimitiveSizeInBits())
989      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
990    else {
991      // Truncation may be needed if storing more than the alloca can hold
992      // (undefined behavior).
993      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
994      SrcWidth = DestWidth;
995      SrcStoreWidth = DestStoreWidth;
996    }
997  }
998
999  // If this is a big-endian system and the store is narrower than the
1000  // full alloca type, we need to do a shift to get the right bits.
1001  int ShAmt = 0;
1002  if (TD.isBigEndian()) {
1003    // On big-endian machines, the lowest bit is stored at the bit offset
1004    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1005    // integers with a bitwidth that is not a multiple of 8.
1006    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1007  } else {
1008    ShAmt = Offset;
1009  }
1010
1011  // Note: we support negative bitwidths (with shr) which are not defined.
1012  // We do this to support (f.e.) stores off the end of a structure where
1013  // only some bits in the structure are set.
1014  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1015  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1016    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1017                           ShAmt), "tmp");
1018    Mask <<= ShAmt;
1019  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1020    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1021                            -ShAmt), "tmp");
1022    Mask = Mask.lshr(-ShAmt);
1023  }
1024
1025  // Mask out the bits we are about to insert from the old value, and or
1026  // in the new bits.
1027  if (SrcWidth != DestWidth) {
1028    assert(DestWidth > SrcWidth);
1029    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1030    SV = Builder.CreateOr(Old, SV, "ins");
1031  }
1032  return SV;
1033}
1034
1035
1036//===----------------------------------------------------------------------===//
1037// SRoA Driver
1038//===----------------------------------------------------------------------===//
1039
1040
1041bool SROA::runOnFunction(Function &F) {
1042  TD = getAnalysisIfAvailable<TargetData>();
1043
1044  bool Changed = performPromotion(F);
1045
1046  // FIXME: ScalarRepl currently depends on TargetData more than it
1047  // theoretically needs to. It should be refactored in order to support
1048  // target-independent IR. Until this is done, just skip the actual
1049  // scalar-replacement portion of this pass.
1050  if (!TD) return Changed;
1051
1052  while (1) {
1053    bool LocalChange = performScalarRepl(F);
1054    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1055    Changed = true;
1056    LocalChange = performPromotion(F);
1057    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1058  }
1059
1060  return Changed;
1061}
1062
1063namespace {
1064class AllocaPromoter : public LoadAndStorePromoter {
1065  AllocaInst *AI;
1066public:
1067  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1068                 DbgDeclareInst *DD, DIBuilder *&DB)
1069    : LoadAndStorePromoter(Insts, S, DD, DB), AI(0) {}
1070
1071  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1072    // Remember which alloca we're promoting (for isInstInList).
1073    this->AI = AI;
1074    LoadAndStorePromoter::run(Insts);
1075    AI->eraseFromParent();
1076  }
1077
1078  virtual bool isInstInList(Instruction *I,
1079                            const SmallVectorImpl<Instruction*> &Insts) const {
1080    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1081      return LI->getOperand(0) == AI;
1082    return cast<StoreInst>(I)->getPointerOperand() == AI;
1083  }
1084};
1085} // end anon namespace
1086
1087/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1088/// subsequently loaded can be rewritten to load both input pointers and then
1089/// select between the result, allowing the load of the alloca to be promoted.
1090/// From this:
1091///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1092///   %V = load i32* %P2
1093/// to:
1094///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1095///   %V2 = load i32* %Other
1096///   %V = select i1 %cond, i32 %V1, i32 %V2
1097///
1098/// We can do this to a select if its only uses are loads and if the operand to
1099/// the select can be loaded unconditionally.
1100static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1101  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1102  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1103
1104  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1105       UI != UE; ++UI) {
1106    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1107    if (LI == 0 || LI->isVolatile()) return false;
1108
1109    // Both operands to the select need to be dereferencable, either absolutely
1110    // (e.g. allocas) or at this point because we can see other accesses to it.
1111    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1112                                                    LI->getAlignment(), TD))
1113      return false;
1114    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1115                                                    LI->getAlignment(), TD))
1116      return false;
1117  }
1118
1119  return true;
1120}
1121
1122/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1123/// subsequently loaded can be rewritten to load both input pointers in the pred
1124/// blocks and then PHI the results, allowing the load of the alloca to be
1125/// promoted.
1126/// From this:
1127///   %P2 = phi [i32* %Alloca, i32* %Other]
1128///   %V = load i32* %P2
1129/// to:
1130///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1131///   ...
1132///   %V2 = load i32* %Other
1133///   ...
1134///   %V = phi [i32 %V1, i32 %V2]
1135///
1136/// We can do this to a select if its only uses are loads and if the operand to
1137/// the select can be loaded unconditionally.
1138static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1139  // For now, we can only do this promotion if the load is in the same block as
1140  // the PHI, and if there are no stores between the phi and load.
1141  // TODO: Allow recursive phi users.
1142  // TODO: Allow stores.
1143  BasicBlock *BB = PN->getParent();
1144  unsigned MaxAlign = 0;
1145  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1146       UI != UE; ++UI) {
1147    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1148    if (LI == 0 || LI->isVolatile()) return false;
1149
1150    // For now we only allow loads in the same block as the PHI.  This is a
1151    // common case that happens when instcombine merges two loads through a PHI.
1152    if (LI->getParent() != BB) return false;
1153
1154    // Ensure that there are no instructions between the PHI and the load that
1155    // could store.
1156    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1157      if (BBI->mayWriteToMemory())
1158        return false;
1159
1160    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1161  }
1162
1163  // Okay, we know that we have one or more loads in the same block as the PHI.
1164  // We can transform this if it is safe to push the loads into the predecessor
1165  // blocks.  The only thing to watch out for is that we can't put a possibly
1166  // trapping load in the predecessor if it is a critical edge.
1167  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1168    BasicBlock *Pred = PN->getIncomingBlock(i);
1169
1170    // If the predecessor has a single successor, then the edge isn't critical.
1171    if (Pred->getTerminator()->getNumSuccessors() == 1)
1172      continue;
1173
1174    Value *InVal = PN->getIncomingValue(i);
1175
1176    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1177    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1178      if (II->getParent() == Pred)
1179        return false;
1180
1181    // If this pointer is always safe to load, or if we can prove that there is
1182    // already a load in the block, then we can move the load to the pred block.
1183    if (InVal->isDereferenceablePointer() ||
1184        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1185      continue;
1186
1187    return false;
1188  }
1189
1190  return true;
1191}
1192
1193
1194/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1195/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1196/// not quite there, this will transform the code to allow promotion.  As such,
1197/// it is a non-pure predicate.
1198static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1199  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1200            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1201
1202  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1203       UI != UE; ++UI) {
1204    User *U = *UI;
1205    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1206      if (LI->isVolatile())
1207        return false;
1208      continue;
1209    }
1210
1211    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1212      if (SI->getOperand(0) == AI || SI->isVolatile())
1213        return false;   // Don't allow a store OF the AI, only INTO the AI.
1214      continue;
1215    }
1216
1217    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1218      // If the condition being selected on is a constant, fold the select, yes
1219      // this does (rarely) happen early on.
1220      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1221        Value *Result = SI->getOperand(1+CI->isZero());
1222        SI->replaceAllUsesWith(Result);
1223        SI->eraseFromParent();
1224
1225        // This is very rare and we just scrambled the use list of AI, start
1226        // over completely.
1227        return tryToMakeAllocaBePromotable(AI, TD);
1228      }
1229
1230      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1231      // loads, then we can transform this by rewriting the select.
1232      if (!isSafeSelectToSpeculate(SI, TD))
1233        return false;
1234
1235      InstsToRewrite.insert(SI);
1236      continue;
1237    }
1238
1239    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1240      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1241        InstsToRewrite.insert(PN);
1242        continue;
1243      }
1244
1245      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1246      // in the pred blocks, then we can transform this by rewriting the PHI.
1247      if (!isSafePHIToSpeculate(PN, TD))
1248        return false;
1249
1250      InstsToRewrite.insert(PN);
1251      continue;
1252    }
1253
1254    return false;
1255  }
1256
1257  // If there are no instructions to rewrite, then all uses are load/stores and
1258  // we're done!
1259  if (InstsToRewrite.empty())
1260    return true;
1261
1262  // If we have instructions that need to be rewritten for this to be promotable
1263  // take care of it now.
1264  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1265    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1266      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1267      // loads with a new select.
1268      while (!SI->use_empty()) {
1269        LoadInst *LI = cast<LoadInst>(SI->use_back());
1270
1271        IRBuilder<> Builder(LI);
1272        LoadInst *TrueLoad =
1273          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1274        LoadInst *FalseLoad =
1275          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1276
1277        // Transfer alignment and TBAA info if present.
1278        TrueLoad->setAlignment(LI->getAlignment());
1279        FalseLoad->setAlignment(LI->getAlignment());
1280        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1281          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1282          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1283        }
1284
1285        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1286        V->takeName(LI);
1287        LI->replaceAllUsesWith(V);
1288        LI->eraseFromParent();
1289      }
1290
1291      // Now that all the loads are gone, the select is gone too.
1292      SI->eraseFromParent();
1293      continue;
1294    }
1295
1296    // Otherwise, we have a PHI node which allows us to push the loads into the
1297    // predecessors.
1298    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1299    if (PN->use_empty()) {
1300      PN->eraseFromParent();
1301      continue;
1302    }
1303
1304    const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1305    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1306                                     PN->getName()+".ld", PN);
1307
1308    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1309    // matter which one we get and if any differ, it doesn't matter.
1310    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1311    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1312    unsigned Align = SomeLoad->getAlignment();
1313
1314    // Rewrite all loads of the PN to use the new PHI.
1315    while (!PN->use_empty()) {
1316      LoadInst *LI = cast<LoadInst>(PN->use_back());
1317      LI->replaceAllUsesWith(NewPN);
1318      LI->eraseFromParent();
1319    }
1320
1321    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1322    // insert them into in case we have multiple edges from the same block.
1323    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1324
1325    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1326      BasicBlock *Pred = PN->getIncomingBlock(i);
1327      LoadInst *&Load = InsertedLoads[Pred];
1328      if (Load == 0) {
1329        Load = new LoadInst(PN->getIncomingValue(i),
1330                            PN->getName() + "." + Pred->getName(),
1331                            Pred->getTerminator());
1332        Load->setAlignment(Align);
1333        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1334      }
1335
1336      NewPN->addIncoming(Load, Pred);
1337    }
1338
1339    PN->eraseFromParent();
1340  }
1341
1342  ++NumAdjusted;
1343  return true;
1344}
1345
1346bool SROA::performPromotion(Function &F) {
1347  std::vector<AllocaInst*> Allocas;
1348  DominatorTree *DT = 0;
1349  if (HasDomTree)
1350    DT = &getAnalysis<DominatorTree>();
1351
1352  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1353
1354  bool Changed = false;
1355  SmallVector<Instruction*, 64> Insts;
1356  DIBuilder *DIB = 0;
1357  while (1) {
1358    Allocas.clear();
1359
1360    // Find allocas that are safe to promote, by looking at all instructions in
1361    // the entry node
1362    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1363      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1364        if (tryToMakeAllocaBePromotable(AI, TD))
1365          Allocas.push_back(AI);
1366
1367    if (Allocas.empty()) break;
1368
1369    if (HasDomTree)
1370      PromoteMemToReg(Allocas, *DT);
1371    else {
1372      SSAUpdater SSA;
1373      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1374        AllocaInst *AI = Allocas[i];
1375
1376        // Build list of instructions to promote.
1377        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1378             UI != E; ++UI)
1379          Insts.push_back(cast<Instruction>(*UI));
1380
1381        DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
1382        if (DDI && !DIB)
1383          DIB = new DIBuilder(*AI->getParent()->getParent()->getParent());
1384        AllocaPromoter(Insts, SSA, DDI, DIB).run(AI, Insts);
1385        Insts.clear();
1386      }
1387    }
1388    NumPromoted += Allocas.size();
1389    Changed = true;
1390  }
1391
1392  // FIXME: Is there a better way to handle the lazy initialization of DIB
1393  // so that there doesn't need to be an explicit delete?
1394  delete DIB;
1395
1396  return Changed;
1397}
1398
1399
1400/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1401/// SROA.  It must be a struct or array type with a small number of elements.
1402static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1403  const Type *T = AI->getAllocatedType();
1404  // Do not promote any struct into more than 32 separate vars.
1405  if (const StructType *ST = dyn_cast<StructType>(T))
1406    return ST->getNumElements() <= 32;
1407  // Arrays are much less likely to be safe for SROA; only consider
1408  // them if they are very small.
1409  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1410    return AT->getNumElements() <= 8;
1411  return false;
1412}
1413
1414
1415// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1416// which runs on all of the malloc/alloca instructions in the function, removing
1417// them if they are only used by getelementptr instructions.
1418//
1419bool SROA::performScalarRepl(Function &F) {
1420  std::vector<AllocaInst*> WorkList;
1421
1422  // Scan the entry basic block, adding allocas to the worklist.
1423  BasicBlock &BB = F.getEntryBlock();
1424  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1425    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1426      WorkList.push_back(A);
1427
1428  // Process the worklist
1429  bool Changed = false;
1430  while (!WorkList.empty()) {
1431    AllocaInst *AI = WorkList.back();
1432    WorkList.pop_back();
1433
1434    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1435    // with unused elements.
1436    if (AI->use_empty()) {
1437      AI->eraseFromParent();
1438      Changed = true;
1439      continue;
1440    }
1441
1442    // If this alloca is impossible for us to promote, reject it early.
1443    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1444      continue;
1445
1446    // Check to see if this allocation is only modified by a memcpy/memmove from
1447    // a constant global.  If this is the case, we can change all users to use
1448    // the constant global instead.  This is commonly produced by the CFE by
1449    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1450    // is only subsequently read.
1451    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1452      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1453      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
1454      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1455      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1456      TheCopy->eraseFromParent();  // Don't mutate the global.
1457      AI->eraseFromParent();
1458      ++NumGlobals;
1459      Changed = true;
1460      continue;
1461    }
1462
1463    // Check to see if we can perform the core SROA transformation.  We cannot
1464    // transform the allocation instruction if it is an array allocation
1465    // (allocations OF arrays are ok though), and an allocation of a scalar
1466    // value cannot be decomposed at all.
1467    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1468
1469    // Do not promote [0 x %struct].
1470    if (AllocaSize == 0) continue;
1471
1472    // Do not promote any struct whose size is too big.
1473    if (AllocaSize > SRThreshold) continue;
1474
1475    // If the alloca looks like a good candidate for scalar replacement, and if
1476    // all its users can be transformed, then split up the aggregate into its
1477    // separate elements.
1478    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1479      DoScalarReplacement(AI, WorkList);
1480      Changed = true;
1481      continue;
1482    }
1483
1484    // If we can turn this aggregate value (potentially with casts) into a
1485    // simple scalar value that can be mem2reg'd into a register value.
1486    // IsNotTrivial tracks whether this is something that mem2reg could have
1487    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1488    // that we can't just check based on the type: the alloca may be of an i32
1489    // but that has pointer arithmetic to set byte 3 of it or something.
1490    if (AllocaInst *NewAI =
1491          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1492      NewAI->takeName(AI);
1493      AI->eraseFromParent();
1494      ++NumConverted;
1495      Changed = true;
1496      continue;
1497    }
1498
1499    // Otherwise, couldn't process this alloca.
1500  }
1501
1502  return Changed;
1503}
1504
1505/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1506/// predicate, do SROA now.
1507void SROA::DoScalarReplacement(AllocaInst *AI,
1508                               std::vector<AllocaInst*> &WorkList) {
1509  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1510  SmallVector<AllocaInst*, 32> ElementAllocas;
1511  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1512    ElementAllocas.reserve(ST->getNumContainedTypes());
1513    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1514      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1515                                      AI->getAlignment(),
1516                                      AI->getName() + "." + Twine(i), AI);
1517      ElementAllocas.push_back(NA);
1518      WorkList.push_back(NA);  // Add to worklist for recursive processing
1519    }
1520  } else {
1521    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1522    ElementAllocas.reserve(AT->getNumElements());
1523    const Type *ElTy = AT->getElementType();
1524    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1525      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1526                                      AI->getName() + "." + Twine(i), AI);
1527      ElementAllocas.push_back(NA);
1528      WorkList.push_back(NA);  // Add to worklist for recursive processing
1529    }
1530  }
1531
1532  // Now that we have created the new alloca instructions, rewrite all the
1533  // uses of the old alloca.
1534  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1535
1536  // Now erase any instructions that were made dead while rewriting the alloca.
1537  DeleteDeadInstructions();
1538  AI->eraseFromParent();
1539
1540  ++NumReplaced;
1541}
1542
1543/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1544/// recursively including all their operands that become trivially dead.
1545void SROA::DeleteDeadInstructions() {
1546  while (!DeadInsts.empty()) {
1547    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1548
1549    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1550      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1551        // Zero out the operand and see if it becomes trivially dead.
1552        // (But, don't add allocas to the dead instruction list -- they are
1553        // already on the worklist and will be deleted separately.)
1554        *OI = 0;
1555        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1556          DeadInsts.push_back(U);
1557      }
1558
1559    I->eraseFromParent();
1560  }
1561}
1562
1563/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1564/// performing scalar replacement of alloca AI.  The results are flagged in
1565/// the Info parameter.  Offset indicates the position within AI that is
1566/// referenced by this instruction.
1567void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1568                               AllocaInfo &Info) {
1569  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1570    Instruction *User = cast<Instruction>(*UI);
1571
1572    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1573      isSafeForScalarRepl(BC, Offset, Info);
1574    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1575      uint64_t GEPOffset = Offset;
1576      isSafeGEP(GEPI, GEPOffset, Info);
1577      if (!Info.isUnsafe)
1578        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1579    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1580      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1581      if (Length == 0)
1582        return MarkUnsafe(Info, User);
1583      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1584                      UI.getOperandNo() == 0, Info, MI,
1585                      true /*AllowWholeAccess*/);
1586    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1587      if (LI->isVolatile())
1588        return MarkUnsafe(Info, User);
1589      const Type *LIType = LI->getType();
1590      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1591                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1592      Info.hasALoadOrStore = true;
1593
1594    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1595      // Store is ok if storing INTO the pointer, not storing the pointer
1596      if (SI->isVolatile() || SI->getOperand(0) == I)
1597        return MarkUnsafe(Info, User);
1598
1599      const Type *SIType = SI->getOperand(0)->getType();
1600      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1601                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1602      Info.hasALoadOrStore = true;
1603    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1604      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1605    } else {
1606      return MarkUnsafe(Info, User);
1607    }
1608    if (Info.isUnsafe) return;
1609  }
1610}
1611
1612
1613/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1614/// derived from the alloca, we can often still split the alloca into elements.
1615/// This is useful if we have a large alloca where one element is phi'd
1616/// together somewhere: we can SRoA and promote all the other elements even if
1617/// we end up not being able to promote this one.
1618///
1619/// All we require is that the uses of the PHI do not index into other parts of
1620/// the alloca.  The most important use case for this is single load and stores
1621/// that are PHI'd together, which can happen due to code sinking.
1622void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1623                                           AllocaInfo &Info) {
1624  // If we've already checked this PHI, don't do it again.
1625  if (PHINode *PN = dyn_cast<PHINode>(I))
1626    if (!Info.CheckedPHIs.insert(PN))
1627      return;
1628
1629  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1630    Instruction *User = cast<Instruction>(*UI);
1631
1632    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1633      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1634    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1635      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1636      // but would have to prove that we're staying inside of an element being
1637      // promoted.
1638      if (!GEPI->hasAllZeroIndices())
1639        return MarkUnsafe(Info, User);
1640      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1641    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1642      if (LI->isVolatile())
1643        return MarkUnsafe(Info, User);
1644      const Type *LIType = LI->getType();
1645      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1646                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1647      Info.hasALoadOrStore = true;
1648
1649    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1650      // Store is ok if storing INTO the pointer, not storing the pointer
1651      if (SI->isVolatile() || SI->getOperand(0) == I)
1652        return MarkUnsafe(Info, User);
1653
1654      const Type *SIType = SI->getOperand(0)->getType();
1655      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1656                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1657      Info.hasALoadOrStore = true;
1658    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1659      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1660    } else {
1661      return MarkUnsafe(Info, User);
1662    }
1663    if (Info.isUnsafe) return;
1664  }
1665}
1666
1667/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1668/// replacement.  It is safe when all the indices are constant, in-bounds
1669/// references, and when the resulting offset corresponds to an element within
1670/// the alloca type.  The results are flagged in the Info parameter.  Upon
1671/// return, Offset is adjusted as specified by the GEP indices.
1672void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1673                     uint64_t &Offset, AllocaInfo &Info) {
1674  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1675  if (GEPIt == E)
1676    return;
1677
1678  // Walk through the GEP type indices, checking the types that this indexes
1679  // into.
1680  for (; GEPIt != E; ++GEPIt) {
1681    // Ignore struct elements, no extra checking needed for these.
1682    if ((*GEPIt)->isStructTy())
1683      continue;
1684
1685    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1686    if (!IdxVal)
1687      return MarkUnsafe(Info, GEPI);
1688  }
1689
1690  // Compute the offset due to this GEP and check if the alloca has a
1691  // component element at that offset.
1692  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1693  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1694                                 &Indices[0], Indices.size());
1695  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1696    MarkUnsafe(Info, GEPI);
1697}
1698
1699/// isHomogeneousAggregate - Check if type T is a struct or array containing
1700/// elements of the same type (which is always true for arrays).  If so,
1701/// return true with NumElts and EltTy set to the number of elements and the
1702/// element type, respectively.
1703static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1704                                   const Type *&EltTy) {
1705  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1706    NumElts = AT->getNumElements();
1707    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1708    return true;
1709  }
1710  if (const StructType *ST = dyn_cast<StructType>(T)) {
1711    NumElts = ST->getNumContainedTypes();
1712    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1713    for (unsigned n = 1; n < NumElts; ++n) {
1714      if (ST->getContainedType(n) != EltTy)
1715        return false;
1716    }
1717    return true;
1718  }
1719  return false;
1720}
1721
1722/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1723/// "homogeneous" aggregates with the same element type and number of elements.
1724static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1725  if (T1 == T2)
1726    return true;
1727
1728  unsigned NumElts1, NumElts2;
1729  const Type *EltTy1, *EltTy2;
1730  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1731      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1732      NumElts1 == NumElts2 &&
1733      EltTy1 == EltTy2)
1734    return true;
1735
1736  return false;
1737}
1738
1739/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1740/// alloca or has an offset and size that corresponds to a component element
1741/// within it.  The offset checked here may have been formed from a GEP with a
1742/// pointer bitcasted to a different type.
1743///
1744/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1745/// unit.  If false, it only allows accesses known to be in a single element.
1746void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1747                           const Type *MemOpType, bool isStore,
1748                           AllocaInfo &Info, Instruction *TheAccess,
1749                           bool AllowWholeAccess) {
1750  // Check if this is a load/store of the entire alloca.
1751  if (Offset == 0 && AllowWholeAccess &&
1752      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1753    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1754    // loads/stores (which are essentially the same as the MemIntrinsics with
1755    // regard to copying padding between elements).  But, if an alloca is
1756    // flagged as both a source and destination of such operations, we'll need
1757    // to check later for padding between elements.
1758    if (!MemOpType || MemOpType->isIntegerTy()) {
1759      if (isStore)
1760        Info.isMemCpyDst = true;
1761      else
1762        Info.isMemCpySrc = true;
1763      return;
1764    }
1765    // This is also safe for references using a type that is compatible with
1766    // the type of the alloca, so that loads/stores can be rewritten using
1767    // insertvalue/extractvalue.
1768    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1769      Info.hasSubelementAccess = true;
1770      return;
1771    }
1772  }
1773  // Check if the offset/size correspond to a component within the alloca type.
1774  const Type *T = Info.AI->getAllocatedType();
1775  if (TypeHasComponent(T, Offset, MemSize)) {
1776    Info.hasSubelementAccess = true;
1777    return;
1778  }
1779
1780  return MarkUnsafe(Info, TheAccess);
1781}
1782
1783/// TypeHasComponent - Return true if T has a component type with the
1784/// specified offset and size.  If Size is zero, do not check the size.
1785bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1786  const Type *EltTy;
1787  uint64_t EltSize;
1788  if (const StructType *ST = dyn_cast<StructType>(T)) {
1789    const StructLayout *Layout = TD->getStructLayout(ST);
1790    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1791    EltTy = ST->getContainedType(EltIdx);
1792    EltSize = TD->getTypeAllocSize(EltTy);
1793    Offset -= Layout->getElementOffset(EltIdx);
1794  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1795    EltTy = AT->getElementType();
1796    EltSize = TD->getTypeAllocSize(EltTy);
1797    if (Offset >= AT->getNumElements() * EltSize)
1798      return false;
1799    Offset %= EltSize;
1800  } else {
1801    return false;
1802  }
1803  if (Offset == 0 && (Size == 0 || EltSize == Size))
1804    return true;
1805  // Check if the component spans multiple elements.
1806  if (Offset + Size > EltSize)
1807    return false;
1808  return TypeHasComponent(EltTy, Offset, Size);
1809}
1810
1811/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1812/// the instruction I, which references it, to use the separate elements.
1813/// Offset indicates the position within AI that is referenced by this
1814/// instruction.
1815void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1816                                SmallVector<AllocaInst*, 32> &NewElts) {
1817  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1818    Use &TheUse = UI.getUse();
1819    Instruction *User = cast<Instruction>(*UI++);
1820
1821    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1822      RewriteBitCast(BC, AI, Offset, NewElts);
1823      continue;
1824    }
1825
1826    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1827      RewriteGEP(GEPI, AI, Offset, NewElts);
1828      continue;
1829    }
1830
1831    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1832      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1833      uint64_t MemSize = Length->getZExtValue();
1834      if (Offset == 0 &&
1835          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1836        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1837      // Otherwise the intrinsic can only touch a single element and the
1838      // address operand will be updated, so nothing else needs to be done.
1839      continue;
1840    }
1841
1842    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1843      const Type *LIType = LI->getType();
1844
1845      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1846        // Replace:
1847        //   %res = load { i32, i32 }* %alloc
1848        // with:
1849        //   %load.0 = load i32* %alloc.0
1850        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1851        //   %load.1 = load i32* %alloc.1
1852        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1853        // (Also works for arrays instead of structs)
1854        Value *Insert = UndefValue::get(LIType);
1855        IRBuilder<> Builder(LI);
1856        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1857          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1858          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1859        }
1860        LI->replaceAllUsesWith(Insert);
1861        DeadInsts.push_back(LI);
1862      } else if (LIType->isIntegerTy() &&
1863                 TD->getTypeAllocSize(LIType) ==
1864                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1865        // If this is a load of the entire alloca to an integer, rewrite it.
1866        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1867      }
1868      continue;
1869    }
1870
1871    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1872      Value *Val = SI->getOperand(0);
1873      const Type *SIType = Val->getType();
1874      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1875        // Replace:
1876        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1877        // with:
1878        //   %val.0 = extractvalue { i32, i32 } %val, 0
1879        //   store i32 %val.0, i32* %alloc.0
1880        //   %val.1 = extractvalue { i32, i32 } %val, 1
1881        //   store i32 %val.1, i32* %alloc.1
1882        // (Also works for arrays instead of structs)
1883        IRBuilder<> Builder(SI);
1884        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1885          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1886          Builder.CreateStore(Extract, NewElts[i]);
1887        }
1888        DeadInsts.push_back(SI);
1889      } else if (SIType->isIntegerTy() &&
1890                 TD->getTypeAllocSize(SIType) ==
1891                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1892        // If this is a store of the entire alloca from an integer, rewrite it.
1893        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1894      }
1895      continue;
1896    }
1897
1898    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1899      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1900      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1901      // the new pointer.
1902      if (!isa<AllocaInst>(I)) continue;
1903
1904      assert(Offset == 0 && NewElts[0] &&
1905             "Direct alloca use should have a zero offset");
1906
1907      // If we have a use of the alloca, we know the derived uses will be
1908      // utilizing just the first element of the scalarized result.  Insert a
1909      // bitcast of the first alloca before the user as required.
1910      AllocaInst *NewAI = NewElts[0];
1911      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1912      NewAI->moveBefore(BCI);
1913      TheUse = BCI;
1914      continue;
1915    }
1916  }
1917}
1918
1919/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1920/// and recursively continue updating all of its uses.
1921void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1922                          SmallVector<AllocaInst*, 32> &NewElts) {
1923  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1924  if (BC->getOperand(0) != AI)
1925    return;
1926
1927  // The bitcast references the original alloca.  Replace its uses with
1928  // references to the first new element alloca.
1929  Instruction *Val = NewElts[0];
1930  if (Val->getType() != BC->getDestTy()) {
1931    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1932    Val->takeName(BC);
1933  }
1934  BC->replaceAllUsesWith(Val);
1935  DeadInsts.push_back(BC);
1936}
1937
1938/// FindElementAndOffset - Return the index of the element containing Offset
1939/// within the specified type, which must be either a struct or an array.
1940/// Sets T to the type of the element and Offset to the offset within that
1941/// element.  IdxTy is set to the type of the index result to be used in a
1942/// GEP instruction.
1943uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1944                                    const Type *&IdxTy) {
1945  uint64_t Idx = 0;
1946  if (const StructType *ST = dyn_cast<StructType>(T)) {
1947    const StructLayout *Layout = TD->getStructLayout(ST);
1948    Idx = Layout->getElementContainingOffset(Offset);
1949    T = ST->getContainedType(Idx);
1950    Offset -= Layout->getElementOffset(Idx);
1951    IdxTy = Type::getInt32Ty(T->getContext());
1952    return Idx;
1953  }
1954  const ArrayType *AT = cast<ArrayType>(T);
1955  T = AT->getElementType();
1956  uint64_t EltSize = TD->getTypeAllocSize(T);
1957  Idx = Offset / EltSize;
1958  Offset -= Idx * EltSize;
1959  IdxTy = Type::getInt64Ty(T->getContext());
1960  return Idx;
1961}
1962
1963/// RewriteGEP - Check if this GEP instruction moves the pointer across
1964/// elements of the alloca that are being split apart, and if so, rewrite
1965/// the GEP to be relative to the new element.
1966void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1967                      SmallVector<AllocaInst*, 32> &NewElts) {
1968  uint64_t OldOffset = Offset;
1969  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1970  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1971                                 &Indices[0], Indices.size());
1972
1973  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1974
1975  const Type *T = AI->getAllocatedType();
1976  const Type *IdxTy;
1977  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1978  if (GEPI->getOperand(0) == AI)
1979    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1980
1981  T = AI->getAllocatedType();
1982  uint64_t EltOffset = Offset;
1983  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1984
1985  // If this GEP does not move the pointer across elements of the alloca
1986  // being split, then it does not needs to be rewritten.
1987  if (Idx == OldIdx)
1988    return;
1989
1990  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1991  SmallVector<Value*, 8> NewArgs;
1992  NewArgs.push_back(Constant::getNullValue(i32Ty));
1993  while (EltOffset != 0) {
1994    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1995    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1996  }
1997  Instruction *Val = NewElts[Idx];
1998  if (NewArgs.size() > 1) {
1999    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
2000                                            NewArgs.end(), "", GEPI);
2001    Val->takeName(GEPI);
2002  }
2003  if (Val->getType() != GEPI->getType())
2004    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2005  GEPI->replaceAllUsesWith(Val);
2006  DeadInsts.push_back(GEPI);
2007}
2008
2009/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2010/// Rewrite it to copy or set the elements of the scalarized memory.
2011void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2012                                        AllocaInst *AI,
2013                                        SmallVector<AllocaInst*, 32> &NewElts) {
2014  // If this is a memcpy/memmove, construct the other pointer as the
2015  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2016  // that doesn't have anything to do with the alloca that we are promoting. For
2017  // memset, this Value* stays null.
2018  Value *OtherPtr = 0;
2019  unsigned MemAlignment = MI->getAlignment();
2020  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2021    if (Inst == MTI->getRawDest())
2022      OtherPtr = MTI->getRawSource();
2023    else {
2024      assert(Inst == MTI->getRawSource());
2025      OtherPtr = MTI->getRawDest();
2026    }
2027  }
2028
2029  // If there is an other pointer, we want to convert it to the same pointer
2030  // type as AI has, so we can GEP through it safely.
2031  if (OtherPtr) {
2032    unsigned AddrSpace =
2033      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2034
2035    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2036    // optimization, but it's also required to detect the corner case where
2037    // both pointer operands are referencing the same memory, and where
2038    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2039    // function is only called for mem intrinsics that access the whole
2040    // aggregate, so non-zero GEPs are not an issue here.)
2041    OtherPtr = OtherPtr->stripPointerCasts();
2042
2043    // Copying the alloca to itself is a no-op: just delete it.
2044    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2045      // This code will run twice for a no-op memcpy -- once for each operand.
2046      // Put only one reference to MI on the DeadInsts list.
2047      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2048             E = DeadInsts.end(); I != E; ++I)
2049        if (*I == MI) return;
2050      DeadInsts.push_back(MI);
2051      return;
2052    }
2053
2054    // If the pointer is not the right type, insert a bitcast to the right
2055    // type.
2056    const Type *NewTy =
2057      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2058
2059    if (OtherPtr->getType() != NewTy)
2060      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2061  }
2062
2063  // Process each element of the aggregate.
2064  bool SROADest = MI->getRawDest() == Inst;
2065
2066  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2067
2068  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2069    // If this is a memcpy/memmove, emit a GEP of the other element address.
2070    Value *OtherElt = 0;
2071    unsigned OtherEltAlign = MemAlignment;
2072
2073    if (OtherPtr) {
2074      Value *Idx[2] = { Zero,
2075                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2076      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
2077                                              OtherPtr->getName()+"."+Twine(i),
2078                                                   MI);
2079      uint64_t EltOffset;
2080      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2081      const Type *OtherTy = OtherPtrTy->getElementType();
2082      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
2083        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2084      } else {
2085        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2086        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2087      }
2088
2089      // The alignment of the other pointer is the guaranteed alignment of the
2090      // element, which is affected by both the known alignment of the whole
2091      // mem intrinsic and the alignment of the element.  If the alignment of
2092      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2093      // known alignment is just 4 bytes.
2094      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2095    }
2096
2097    Value *EltPtr = NewElts[i];
2098    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2099
2100    // If we got down to a scalar, insert a load or store as appropriate.
2101    if (EltTy->isSingleValueType()) {
2102      if (isa<MemTransferInst>(MI)) {
2103        if (SROADest) {
2104          // From Other to Alloca.
2105          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2106          new StoreInst(Elt, EltPtr, MI);
2107        } else {
2108          // From Alloca to Other.
2109          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2110          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2111        }
2112        continue;
2113      }
2114      assert(isa<MemSetInst>(MI));
2115
2116      // If the stored element is zero (common case), just store a null
2117      // constant.
2118      Constant *StoreVal;
2119      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2120        if (CI->isZero()) {
2121          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2122        } else {
2123          // If EltTy is a vector type, get the element type.
2124          const Type *ValTy = EltTy->getScalarType();
2125
2126          // Construct an integer with the right value.
2127          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2128          APInt OneVal(EltSize, CI->getZExtValue());
2129          APInt TotalVal(OneVal);
2130          // Set each byte.
2131          for (unsigned i = 0; 8*i < EltSize; ++i) {
2132            TotalVal = TotalVal.shl(8);
2133            TotalVal |= OneVal;
2134          }
2135
2136          // Convert the integer value to the appropriate type.
2137          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2138          if (ValTy->isPointerTy())
2139            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2140          else if (ValTy->isFloatingPointTy())
2141            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2142          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2143
2144          // If the requested value was a vector constant, create it.
2145          if (EltTy != ValTy) {
2146            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2147            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2148            StoreVal = ConstantVector::get(Elts);
2149          }
2150        }
2151        new StoreInst(StoreVal, EltPtr, MI);
2152        continue;
2153      }
2154      // Otherwise, if we're storing a byte variable, use a memset call for
2155      // this element.
2156    }
2157
2158    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2159
2160    IRBuilder<> Builder(MI);
2161
2162    // Finally, insert the meminst for this element.
2163    if (isa<MemSetInst>(MI)) {
2164      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2165                           MI->isVolatile());
2166    } else {
2167      assert(isa<MemTransferInst>(MI));
2168      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2169      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2170
2171      if (isa<MemCpyInst>(MI))
2172        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2173      else
2174        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2175    }
2176  }
2177  DeadInsts.push_back(MI);
2178}
2179
2180/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2181/// overwrites the entire allocation.  Extract out the pieces of the stored
2182/// integer and store them individually.
2183void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2184                                         SmallVector<AllocaInst*, 32> &NewElts){
2185  // Extract each element out of the integer according to its structure offset
2186  // and store the element value to the individual alloca.
2187  Value *SrcVal = SI->getOperand(0);
2188  const Type *AllocaEltTy = AI->getAllocatedType();
2189  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2190
2191  IRBuilder<> Builder(SI);
2192
2193  // Handle tail padding by extending the operand
2194  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2195    SrcVal = Builder.CreateZExt(SrcVal,
2196                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2197
2198  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2199               << '\n');
2200
2201  // There are two forms here: AI could be an array or struct.  Both cases
2202  // have different ways to compute the element offset.
2203  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2204    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2205
2206    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2207      // Get the number of bits to shift SrcVal to get the value.
2208      const Type *FieldTy = EltSTy->getElementType(i);
2209      uint64_t Shift = Layout->getElementOffsetInBits(i);
2210
2211      if (TD->isBigEndian())
2212        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2213
2214      Value *EltVal = SrcVal;
2215      if (Shift) {
2216        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2217        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2218      }
2219
2220      // Truncate down to an integer of the right size.
2221      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2222
2223      // Ignore zero sized fields like {}, they obviously contain no data.
2224      if (FieldSizeBits == 0) continue;
2225
2226      if (FieldSizeBits != AllocaSizeBits)
2227        EltVal = Builder.CreateTrunc(EltVal,
2228                             IntegerType::get(SI->getContext(), FieldSizeBits));
2229      Value *DestField = NewElts[i];
2230      if (EltVal->getType() == FieldTy) {
2231        // Storing to an integer field of this size, just do it.
2232      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2233        // Bitcast to the right element type (for fp/vector values).
2234        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2235      } else {
2236        // Otherwise, bitcast the dest pointer (for aggregates).
2237        DestField = Builder.CreateBitCast(DestField,
2238                                     PointerType::getUnqual(EltVal->getType()));
2239      }
2240      new StoreInst(EltVal, DestField, SI);
2241    }
2242
2243  } else {
2244    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2245    const Type *ArrayEltTy = ATy->getElementType();
2246    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2247    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2248
2249    uint64_t Shift;
2250
2251    if (TD->isBigEndian())
2252      Shift = AllocaSizeBits-ElementOffset;
2253    else
2254      Shift = 0;
2255
2256    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2257      // Ignore zero sized fields like {}, they obviously contain no data.
2258      if (ElementSizeBits == 0) continue;
2259
2260      Value *EltVal = SrcVal;
2261      if (Shift) {
2262        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2263        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2264      }
2265
2266      // Truncate down to an integer of the right size.
2267      if (ElementSizeBits != AllocaSizeBits)
2268        EltVal = Builder.CreateTrunc(EltVal,
2269                                     IntegerType::get(SI->getContext(),
2270                                                      ElementSizeBits));
2271      Value *DestField = NewElts[i];
2272      if (EltVal->getType() == ArrayEltTy) {
2273        // Storing to an integer field of this size, just do it.
2274      } else if (ArrayEltTy->isFloatingPointTy() ||
2275                 ArrayEltTy->isVectorTy()) {
2276        // Bitcast to the right element type (for fp/vector values).
2277        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2278      } else {
2279        // Otherwise, bitcast the dest pointer (for aggregates).
2280        DestField = Builder.CreateBitCast(DestField,
2281                                     PointerType::getUnqual(EltVal->getType()));
2282      }
2283      new StoreInst(EltVal, DestField, SI);
2284
2285      if (TD->isBigEndian())
2286        Shift -= ElementOffset;
2287      else
2288        Shift += ElementOffset;
2289    }
2290  }
2291
2292  DeadInsts.push_back(SI);
2293}
2294
2295/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2296/// an integer.  Load the individual pieces to form the aggregate value.
2297void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2298                                        SmallVector<AllocaInst*, 32> &NewElts) {
2299  // Extract each element out of the NewElts according to its structure offset
2300  // and form the result value.
2301  const Type *AllocaEltTy = AI->getAllocatedType();
2302  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2303
2304  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2305               << '\n');
2306
2307  // There are two forms here: AI could be an array or struct.  Both cases
2308  // have different ways to compute the element offset.
2309  const StructLayout *Layout = 0;
2310  uint64_t ArrayEltBitOffset = 0;
2311  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2312    Layout = TD->getStructLayout(EltSTy);
2313  } else {
2314    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2315    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2316  }
2317
2318  Value *ResultVal =
2319    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2320
2321  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2322    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2323    // the pointer to an integer of the same size before doing the load.
2324    Value *SrcField = NewElts[i];
2325    const Type *FieldTy =
2326      cast<PointerType>(SrcField->getType())->getElementType();
2327    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2328
2329    // Ignore zero sized fields like {}, they obviously contain no data.
2330    if (FieldSizeBits == 0) continue;
2331
2332    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2333                                                     FieldSizeBits);
2334    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2335        !FieldTy->isVectorTy())
2336      SrcField = new BitCastInst(SrcField,
2337                                 PointerType::getUnqual(FieldIntTy),
2338                                 "", LI);
2339    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2340
2341    // If SrcField is a fp or vector of the right size but that isn't an
2342    // integer type, bitcast to an integer so we can shift it.
2343    if (SrcField->getType() != FieldIntTy)
2344      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2345
2346    // Zero extend the field to be the same size as the final alloca so that
2347    // we can shift and insert it.
2348    if (SrcField->getType() != ResultVal->getType())
2349      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2350
2351    // Determine the number of bits to shift SrcField.
2352    uint64_t Shift;
2353    if (Layout) // Struct case.
2354      Shift = Layout->getElementOffsetInBits(i);
2355    else  // Array case.
2356      Shift = i*ArrayEltBitOffset;
2357
2358    if (TD->isBigEndian())
2359      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2360
2361    if (Shift) {
2362      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2363      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2364    }
2365
2366    // Don't create an 'or x, 0' on the first iteration.
2367    if (!isa<Constant>(ResultVal) ||
2368        !cast<Constant>(ResultVal)->isNullValue())
2369      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2370    else
2371      ResultVal = SrcField;
2372  }
2373
2374  // Handle tail padding by truncating the result
2375  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2376    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2377
2378  LI->replaceAllUsesWith(ResultVal);
2379  DeadInsts.push_back(LI);
2380}
2381
2382/// HasPadding - Return true if the specified type has any structure or
2383/// alignment padding in between the elements that would be split apart
2384/// by SROA; return false otherwise.
2385static bool HasPadding(const Type *Ty, const TargetData &TD) {
2386  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2387    Ty = ATy->getElementType();
2388    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2389  }
2390
2391  // SROA currently handles only Arrays and Structs.
2392  const StructType *STy = cast<StructType>(Ty);
2393  const StructLayout *SL = TD.getStructLayout(STy);
2394  unsigned PrevFieldBitOffset = 0;
2395  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2396    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2397
2398    // Check to see if there is any padding between this element and the
2399    // previous one.
2400    if (i) {
2401      unsigned PrevFieldEnd =
2402        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2403      if (PrevFieldEnd < FieldBitOffset)
2404        return true;
2405    }
2406    PrevFieldBitOffset = FieldBitOffset;
2407  }
2408  // Check for tail padding.
2409  if (unsigned EltCount = STy->getNumElements()) {
2410    unsigned PrevFieldEnd = PrevFieldBitOffset +
2411      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2412    if (PrevFieldEnd < SL->getSizeInBits())
2413      return true;
2414  }
2415  return false;
2416}
2417
2418/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2419/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2420/// or 1 if safe after canonicalization has been performed.
2421bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2422  // Loop over the use list of the alloca.  We can only transform it if all of
2423  // the users are safe to transform.
2424  AllocaInfo Info(AI);
2425
2426  isSafeForScalarRepl(AI, 0, Info);
2427  if (Info.isUnsafe) {
2428    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2429    return false;
2430  }
2431
2432  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2433  // source and destination, we have to be careful.  In particular, the memcpy
2434  // could be moving around elements that live in structure padding of the LLVM
2435  // types, but may actually be used.  In these cases, we refuse to promote the
2436  // struct.
2437  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2438      HasPadding(AI->getAllocatedType(), *TD))
2439    return false;
2440
2441  // If the alloca never has an access to just *part* of it, but is accessed
2442  // via loads and stores, then we should use ConvertToScalarInfo to promote
2443  // the alloca instead of promoting each piece at a time and inserting fission
2444  // and fusion code.
2445  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2446    // If the struct/array just has one element, use basic SRoA.
2447    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2448      if (ST->getNumElements() > 1) return false;
2449    } else {
2450      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2451        return false;
2452    }
2453  }
2454
2455  return true;
2456}
2457
2458
2459
2460/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2461/// some part of a constant global variable.  This intentionally only accepts
2462/// constant expressions because we don't can't rewrite arbitrary instructions.
2463static bool PointsToConstantGlobal(Value *V) {
2464  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2465    return GV->isConstant();
2466  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2467    if (CE->getOpcode() == Instruction::BitCast ||
2468        CE->getOpcode() == Instruction::GetElementPtr)
2469      return PointsToConstantGlobal(CE->getOperand(0));
2470  return false;
2471}
2472
2473/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2474/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2475/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2476/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2477/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2478/// the alloca, and if the source pointer is a pointer to a constant global, we
2479/// can optimize this.
2480static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2481                                           bool isOffset) {
2482  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2483    User *U = cast<Instruction>(*UI);
2484
2485    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2486      // Ignore non-volatile loads, they are always ok.
2487      if (LI->isVolatile()) return false;
2488      continue;
2489    }
2490
2491    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2492      // If uses of the bitcast are ok, we are ok.
2493      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2494        return false;
2495      continue;
2496    }
2497    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2498      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2499      // doesn't, it does.
2500      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2501                                         isOffset || !GEP->hasAllZeroIndices()))
2502        return false;
2503      continue;
2504    }
2505
2506    if (CallSite CS = U) {
2507      // If this is the function being called then we treat it like a load and
2508      // ignore it.
2509      if (CS.isCallee(UI))
2510        continue;
2511
2512      // If this is a readonly/readnone call site, then we know it is just a
2513      // load (but one that potentially returns the value itself), so we can
2514      // ignore it if we know that the value isn't captured.
2515      unsigned ArgNo = CS.getArgumentNo(UI);
2516      if (CS.onlyReadsMemory() &&
2517          (CS.getInstruction()->use_empty() ||
2518           CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2519        continue;
2520
2521      // If this is being passed as a byval argument, the caller is making a
2522      // copy, so it is only a read of the alloca.
2523      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2524        continue;
2525    }
2526
2527    // If this is isn't our memcpy/memmove, reject it as something we can't
2528    // handle.
2529    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2530    if (MI == 0)
2531      return false;
2532
2533    // If the transfer is using the alloca as a source of the transfer, then
2534    // ignore it since it is a load (unless the transfer is volatile).
2535    if (UI.getOperandNo() == 1) {
2536      if (MI->isVolatile()) return false;
2537      continue;
2538    }
2539
2540    // If we already have seen a copy, reject the second one.
2541    if (TheCopy) return false;
2542
2543    // If the pointer has been offset from the start of the alloca, we can't
2544    // safely handle this.
2545    if (isOffset) return false;
2546
2547    // If the memintrinsic isn't using the alloca as the dest, reject it.
2548    if (UI.getOperandNo() != 0) return false;
2549
2550    // If the source of the memcpy/move is not a constant global, reject it.
2551    if (!PointsToConstantGlobal(MI->getSource()))
2552      return false;
2553
2554    // Otherwise, the transform is safe.  Remember the copy instruction.
2555    TheCopy = MI;
2556  }
2557  return true;
2558}
2559
2560/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2561/// modified by a copy from a constant global.  If we can prove this, we can
2562/// replace any uses of the alloca with uses of the global directly.
2563MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2564  MemTransferInst *TheCopy = 0;
2565  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2566    return TheCopy;
2567  return 0;
2568}
2569