ScalarReplAggregates.cpp revision 996d7a97f94de45a3627b03eb3c44b2b325f3e51
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced,  "Number of allocas broken up");
44STATISTIC(NumPromoted,  "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
47
48namespace {
49  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50    static char ID; // Pass identification, replacement for typeid
51    explicit SROA(signed T = -1) : FunctionPass(&ID) {
52      if (T == -1)
53        SRThreshold = 128;
54      else
55        SRThreshold = T;
56    }
57
58    bool runOnFunction(Function &F);
59
60    bool performScalarRepl(Function &F);
61    bool performPromotion(Function &F);
62
63    // getAnalysisUsage - This pass does not require any passes, but we know it
64    // will not alter the CFG, so say so.
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequired<DominatorTree>();
67      AU.addRequired<DominanceFrontier>();
68      AU.addRequired<TargetData>();
69      AU.setPreservesCFG();
70    }
71
72  private:
73    TargetData *TD;
74
75    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
76    /// information about the uses.  All these fields are initialized to false
77    /// and set to true when something is learned.
78    struct AllocaInfo {
79      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
80      bool isUnsafe : 1;
81
82      /// needsCanon - This is set to true if there is some use of the alloca
83      /// that requires canonicalization.
84      bool needsCanon : 1;
85
86      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
87      bool isMemCpySrc : 1;
88
89      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
90      bool isMemCpyDst : 1;
91
92      AllocaInfo()
93        : isUnsafe(false), needsCanon(false),
94          isMemCpySrc(false), isMemCpyDst(false) {}
95    };
96
97    unsigned SRThreshold;
98
99    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
100
101    int isSafeAllocaToScalarRepl(AllocationInst *AI);
102
103    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
104                               AllocaInfo &Info);
105    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
106                         AllocaInfo &Info);
107    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
108                                        unsigned OpNo, AllocaInfo &Info);
109    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
110                                        AllocaInfo &Info);
111
112    void DoScalarReplacement(AllocationInst *AI,
113                             std::vector<AllocationInst*> &WorkList);
114    void CanonicalizeAllocaUsers(AllocationInst *AI);
115    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
116
117    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
118                                    SmallVector<AllocaInst*, 32> &NewElts);
119
120    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
121                                      AllocationInst *AI,
122                                      SmallVector<AllocaInst*, 32> &NewElts);
123    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
124                                       SmallVector<AllocaInst*, 32> &NewElts);
125    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
126                                      SmallVector<AllocaInst*, 32> &NewElts);
127
128    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&ResTy,
129                            uint64_t Offset);
130    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
131    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
132    Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
133                                     uint64_t Offset);
134    Value *ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
135                                      uint64_t Offset);
136    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
137  };
138}
139
140char SROA::ID = 0;
141static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
142
143// Public interface to the ScalarReplAggregates pass
144FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
145  return new SROA(Threshold);
146}
147
148
149bool SROA::runOnFunction(Function &F) {
150  TD = &getAnalysis<TargetData>();
151
152  bool Changed = performPromotion(F);
153  while (1) {
154    bool LocalChange = performScalarRepl(F);
155    if (!LocalChange) break;   // No need to repromote if no scalarrepl
156    Changed = true;
157    LocalChange = performPromotion(F);
158    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
159  }
160
161  return Changed;
162}
163
164
165bool SROA::performPromotion(Function &F) {
166  std::vector<AllocaInst*> Allocas;
167  DominatorTree         &DT = getAnalysis<DominatorTree>();
168  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
169
170  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
171
172  bool Changed = false;
173
174  while (1) {
175    Allocas.clear();
176
177    // Find allocas that are safe to promote, by looking at all instructions in
178    // the entry node
179    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
180      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
181        if (isAllocaPromotable(AI))
182          Allocas.push_back(AI);
183
184    if (Allocas.empty()) break;
185
186    PromoteMemToReg(Allocas, DT, DF);
187    NumPromoted += Allocas.size();
188    Changed = true;
189  }
190
191  return Changed;
192}
193
194/// getNumSAElements - Return the number of elements in the specific struct or
195/// array.
196static uint64_t getNumSAElements(const Type *T) {
197  if (const StructType *ST = dyn_cast<StructType>(T))
198    return ST->getNumElements();
199  return cast<ArrayType>(T)->getNumElements();
200}
201
202// performScalarRepl - This algorithm is a simple worklist driven algorithm,
203// which runs on all of the malloc/alloca instructions in the function, removing
204// them if they are only used by getelementptr instructions.
205//
206bool SROA::performScalarRepl(Function &F) {
207  std::vector<AllocationInst*> WorkList;
208
209  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
210  BasicBlock &BB = F.getEntryBlock();
211  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
212    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
213      WorkList.push_back(A);
214
215  // Process the worklist
216  bool Changed = false;
217  while (!WorkList.empty()) {
218    AllocationInst *AI = WorkList.back();
219    WorkList.pop_back();
220
221    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
222    // with unused elements.
223    if (AI->use_empty()) {
224      AI->eraseFromParent();
225      continue;
226    }
227
228    // Check to see if we can perform the core SROA transformation.  We cannot
229    // transform the allocation instruction if it is an array allocation
230    // (allocations OF arrays are ok though), and an allocation of a scalar
231    // value cannot be decomposed at all.
232    if (!AI->isArrayAllocation() &&
233        (isa<StructType>(AI->getAllocatedType()) ||
234         isa<ArrayType>(AI->getAllocatedType())) &&
235        AI->getAllocatedType()->isSized() &&
236        // Do not promote any struct whose size is larger than "128" bytes.
237        TD->getTypePaddedSize(AI->getAllocatedType()) < SRThreshold &&
238        // Do not promote any struct into more than "32" separate vars.
239        getNumSAElements(AI->getAllocatedType()) < SRThreshold/4) {
240      // Check that all of the users of the allocation are capable of being
241      // transformed.
242      switch (isSafeAllocaToScalarRepl(AI)) {
243      default: assert(0 && "Unexpected value!");
244      case 0:  // Not safe to scalar replace.
245        break;
246      case 1:  // Safe, but requires cleanup/canonicalizations first
247        CanonicalizeAllocaUsers(AI);
248        // FALL THROUGH.
249      case 3:  // Safe to scalar replace.
250        DoScalarReplacement(AI, WorkList);
251        Changed = true;
252        continue;
253      }
254    }
255
256    // Check to see if this allocation is only modified by a memcpy/memmove from
257    // a constant global.  If this is the case, we can change all users to use
258    // the constant global instead.  This is commonly produced by the CFE by
259    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
260    // is only subsequently read.
261    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
262      DOUT << "Found alloca equal to global: " << *AI;
263      DOUT << "  memcpy = " << *TheCopy;
264      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
265      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
266      TheCopy->eraseFromParent();  // Don't mutate the global.
267      AI->eraseFromParent();
268      ++NumGlobals;
269      Changed = true;
270      continue;
271    }
272
273    // If we can turn this aggregate value (potentially with casts) into a
274    // simple scalar value that can be mem2reg'd into a register value.
275    // IsNotTrivial tracks whether this is something that mem2reg could have
276    // promoted itself.  If so, we don't want to transform it needlessly.  Note
277    // that we can't just check based on the type: the alloca may be of an i32
278    // but that has pointer arithmetic to set byte 3 of it or something.
279    bool IsNotTrivial = false;
280    const Type *ActualType = 0;
281    if (CanConvertToScalar(AI, IsNotTrivial, ActualType, 0))
282      if (IsNotTrivial && ActualType &&
283          TD->getTypeSizeInBits(ActualType) < SRThreshold*8) {
284        ConvertToScalar(AI, ActualType);
285        Changed = true;
286        continue;
287      }
288
289    // Otherwise, couldn't process this.
290  }
291
292  return Changed;
293}
294
295/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
296/// predicate, do SROA now.
297void SROA::DoScalarReplacement(AllocationInst *AI,
298                               std::vector<AllocationInst*> &WorkList) {
299  DOUT << "Found inst to SROA: " << *AI;
300  SmallVector<AllocaInst*, 32> ElementAllocas;
301  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
302    ElementAllocas.reserve(ST->getNumContainedTypes());
303    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
304      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
305                                      AI->getAlignment(),
306                                      AI->getName() + "." + utostr(i), AI);
307      ElementAllocas.push_back(NA);
308      WorkList.push_back(NA);  // Add to worklist for recursive processing
309    }
310  } else {
311    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
312    ElementAllocas.reserve(AT->getNumElements());
313    const Type *ElTy = AT->getElementType();
314    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
315      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
316                                      AI->getName() + "." + utostr(i), AI);
317      ElementAllocas.push_back(NA);
318      WorkList.push_back(NA);  // Add to worklist for recursive processing
319    }
320  }
321
322  // Now that we have created the alloca instructions that we want to use,
323  // expand the getelementptr instructions to use them.
324  //
325  while (!AI->use_empty()) {
326    Instruction *User = cast<Instruction>(AI->use_back());
327    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
328      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
329      BCInst->eraseFromParent();
330      continue;
331    }
332
333    // Replace:
334    //   %res = load { i32, i32 }* %alloc
335    // with:
336    //   %load.0 = load i32* %alloc.0
337    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
338    //   %load.1 = load i32* %alloc.1
339    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
340    // (Also works for arrays instead of structs)
341    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
342      Value *Insert = UndefValue::get(LI->getType());
343      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
344        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
345        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
346      }
347      LI->replaceAllUsesWith(Insert);
348      LI->eraseFromParent();
349      continue;
350    }
351
352    // Replace:
353    //   store { i32, i32 } %val, { i32, i32 }* %alloc
354    // with:
355    //   %val.0 = extractvalue { i32, i32 } %val, 0
356    //   store i32 %val.0, i32* %alloc.0
357    //   %val.1 = extractvalue { i32, i32 } %val, 1
358    //   store i32 %val.1, i32* %alloc.1
359    // (Also works for arrays instead of structs)
360    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
361      Value *Val = SI->getOperand(0);
362      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
363        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
364        new StoreInst(Extract, ElementAllocas[i], SI);
365      }
366      SI->eraseFromParent();
367      continue;
368    }
369
370    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
371    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
372    unsigned Idx =
373       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
374
375    assert(Idx < ElementAllocas.size() && "Index out of range?");
376    AllocaInst *AllocaToUse = ElementAllocas[Idx];
377
378    Value *RepValue;
379    if (GEPI->getNumOperands() == 3) {
380      // Do not insert a new getelementptr instruction with zero indices, only
381      // to have it optimized out later.
382      RepValue = AllocaToUse;
383    } else {
384      // We are indexing deeply into the structure, so we still need a
385      // getelement ptr instruction to finish the indexing.  This may be
386      // expanded itself once the worklist is rerun.
387      //
388      SmallVector<Value*, 8> NewArgs;
389      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
390      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
391      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
392                                           NewArgs.end(), "", GEPI);
393      RepValue->takeName(GEPI);
394    }
395
396    // If this GEP is to the start of the aggregate, check for memcpys.
397    if (Idx == 0 && GEPI->hasAllZeroIndices())
398      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
399
400    // Move all of the users over to the new GEP.
401    GEPI->replaceAllUsesWith(RepValue);
402    // Delete the old GEP
403    GEPI->eraseFromParent();
404  }
405
406  // Finally, delete the Alloca instruction
407  AI->eraseFromParent();
408  NumReplaced++;
409}
410
411
412/// isSafeElementUse - Check to see if this use is an allowed use for a
413/// getelementptr instruction of an array aggregate allocation.  isFirstElt
414/// indicates whether Ptr is known to the start of the aggregate.
415///
416void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
417                            AllocaInfo &Info) {
418  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
419       I != E; ++I) {
420    Instruction *User = cast<Instruction>(*I);
421    switch (User->getOpcode()) {
422    case Instruction::Load:  break;
423    case Instruction::Store:
424      // Store is ok if storing INTO the pointer, not storing the pointer
425      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
426      break;
427    case Instruction::GetElementPtr: {
428      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
429      bool AreAllZeroIndices = isFirstElt;
430      if (GEP->getNumOperands() > 1) {
431        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
432            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
433          // Using pointer arithmetic to navigate the array.
434          return MarkUnsafe(Info);
435
436        if (AreAllZeroIndices)
437          AreAllZeroIndices = GEP->hasAllZeroIndices();
438      }
439      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
440      if (Info.isUnsafe) return;
441      break;
442    }
443    case Instruction::BitCast:
444      if (isFirstElt) {
445        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
446        if (Info.isUnsafe) return;
447        break;
448      }
449      DOUT << "  Transformation preventing inst: " << *User;
450      return MarkUnsafe(Info);
451    case Instruction::Call:
452      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
453        if (isFirstElt) {
454          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
455          if (Info.isUnsafe) return;
456          break;
457        }
458      }
459      DOUT << "  Transformation preventing inst: " << *User;
460      return MarkUnsafe(Info);
461    default:
462      DOUT << "  Transformation preventing inst: " << *User;
463      return MarkUnsafe(Info);
464    }
465  }
466  return;  // All users look ok :)
467}
468
469/// AllUsersAreLoads - Return true if all users of this value are loads.
470static bool AllUsersAreLoads(Value *Ptr) {
471  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
472       I != E; ++I)
473    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
474      return false;
475  return true;
476}
477
478/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
479/// aggregate allocation.
480///
481void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
482                                 AllocaInfo &Info) {
483  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
484    return isSafeUseOfBitCastedAllocation(C, AI, Info);
485
486  if (LoadInst *LI = dyn_cast<LoadInst>(User))
487    if (!LI->isVolatile())
488      return;// Loads (returning a first class aggregrate) are always rewritable
489
490  if (StoreInst *SI = dyn_cast<StoreInst>(User))
491    if (!SI->isVolatile() && SI->getOperand(0) != AI)
492      return;// Store is ok if storing INTO the pointer, not storing the pointer
493
494  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
495  if (GEPI == 0)
496    return MarkUnsafe(Info);
497
498  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
499
500  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
501  if (I == E ||
502      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
503    return MarkUnsafe(Info);
504  }
505
506  ++I;
507  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
508
509  bool IsAllZeroIndices = true;
510
511  // If the first index is a non-constant index into an array, see if we can
512  // handle it as a special case.
513  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
514    if (!isa<ConstantInt>(I.getOperand())) {
515      IsAllZeroIndices = 0;
516      uint64_t NumElements = AT->getNumElements();
517
518      // If this is an array index and the index is not constant, we cannot
519      // promote... that is unless the array has exactly one or two elements in
520      // it, in which case we CAN promote it, but we have to canonicalize this
521      // out if this is the only problem.
522      if ((NumElements == 1 || NumElements == 2) &&
523          AllUsersAreLoads(GEPI)) {
524        Info.needsCanon = true;
525        return;  // Canonicalization required!
526      }
527      return MarkUnsafe(Info);
528    }
529  }
530
531  // Walk through the GEP type indices, checking the types that this indexes
532  // into.
533  for (; I != E; ++I) {
534    // Ignore struct elements, no extra checking needed for these.
535    if (isa<StructType>(*I))
536      continue;
537
538    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
539    if (!IdxVal) return MarkUnsafe(Info);
540
541    // Are all indices still zero?
542    IsAllZeroIndices &= IdxVal->isZero();
543
544    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
545      // This GEP indexes an array.  Verify that this is an in-range constant
546      // integer. Specifically, consider A[0][i]. We cannot know that the user
547      // isn't doing invalid things like allowing i to index an out-of-range
548      // subscript that accesses A[1].  Because of this, we have to reject SROA
549      // of any accesses into structs where any of the components are variables.
550      if (IdxVal->getZExtValue() >= AT->getNumElements())
551        return MarkUnsafe(Info);
552    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
553      if (IdxVal->getZExtValue() >= VT->getNumElements())
554        return MarkUnsafe(Info);
555    }
556  }
557
558  // If there are any non-simple uses of this getelementptr, make sure to reject
559  // them.
560  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
561}
562
563/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
564/// intrinsic can be promoted by SROA.  At this point, we know that the operand
565/// of the memintrinsic is a pointer to the beginning of the allocation.
566void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
567                                          unsigned OpNo, AllocaInfo &Info) {
568  // If not constant length, give up.
569  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
570  if (!Length) return MarkUnsafe(Info);
571
572  // If not the whole aggregate, give up.
573  if (Length->getZExtValue() !=
574      TD->getTypePaddedSize(AI->getType()->getElementType()))
575    return MarkUnsafe(Info);
576
577  // We only know about memcpy/memset/memmove.
578  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
579    return MarkUnsafe(Info);
580
581  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
582  // into or out of the aggregate.
583  if (OpNo == 1)
584    Info.isMemCpyDst = true;
585  else {
586    assert(OpNo == 2);
587    Info.isMemCpySrc = true;
588  }
589}
590
591/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
592/// are
593void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
594                                          AllocaInfo &Info) {
595  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
596       UI != E; ++UI) {
597    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
598      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
599    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
600      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
601    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
602      if (SI->isVolatile())
603        return MarkUnsafe(Info);
604
605      // If storing the entire alloca in one chunk through a bitcasted pointer
606      // to integer, we can transform it.  This happens (for example) when you
607      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
608      // memcpy case and occurs in various "byval" cases and emulated memcpys.
609      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
610          TD->getTypePaddedSize(SI->getOperand(0)->getType()) ==
611          TD->getTypePaddedSize(AI->getType()->getElementType())) {
612        Info.isMemCpyDst = true;
613        continue;
614      }
615      return MarkUnsafe(Info);
616    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
617      if (LI->isVolatile())
618        return MarkUnsafe(Info);
619
620      // If loading the entire alloca in one chunk through a bitcasted pointer
621      // to integer, we can transform it.  This happens (for example) when you
622      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
623      // memcpy case and occurs in various "byval" cases and emulated memcpys.
624      if (isa<IntegerType>(LI->getType()) &&
625          TD->getTypePaddedSize(LI->getType()) ==
626          TD->getTypePaddedSize(AI->getType()->getElementType())) {
627        Info.isMemCpySrc = true;
628        continue;
629      }
630      return MarkUnsafe(Info);
631    } else {
632      return MarkUnsafe(Info);
633    }
634    if (Info.isUnsafe) return;
635  }
636}
637
638/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
639/// to its first element.  Transform users of the cast to use the new values
640/// instead.
641void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
642                                      SmallVector<AllocaInst*, 32> &NewElts) {
643  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
644  while (UI != UE) {
645    Instruction *User = cast<Instruction>(*UI++);
646    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
647      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
648      if (BCU->use_empty()) BCU->eraseFromParent();
649      continue;
650    }
651
652    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
653      // This must be memcpy/memmove/memset of the entire aggregate.
654      // Split into one per element.
655      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
656      continue;
657    }
658
659    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
660      // If this is a store of the entire alloca from an integer, rewrite it.
661      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
662      continue;
663    }
664
665    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
666      // If this is a load of the entire alloca to an integer, rewrite it.
667      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
668      continue;
669    }
670
671    // Otherwise it must be some other user of a gep of the first pointer.  Just
672    // leave these alone.
673    continue;
674  }
675}
676
677/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
678/// Rewrite it to copy or set the elements of the scalarized memory.
679void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
680                                        AllocationInst *AI,
681                                        SmallVector<AllocaInst*, 32> &NewElts) {
682
683  // If this is a memcpy/memmove, construct the other pointer as the
684  // appropriate type.
685  Value *OtherPtr = 0;
686  if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
687    if (BCInst == MCI->getRawDest())
688      OtherPtr = MCI->getRawSource();
689    else {
690      assert(BCInst == MCI->getRawSource());
691      OtherPtr = MCI->getRawDest();
692    }
693  } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
694    if (BCInst == MMI->getRawDest())
695      OtherPtr = MMI->getRawSource();
696    else {
697      assert(BCInst == MMI->getRawSource());
698      OtherPtr = MMI->getRawDest();
699    }
700  }
701
702  // If there is an other pointer, we want to convert it to the same pointer
703  // type as AI has, so we can GEP through it safely.
704  if (OtherPtr) {
705    // It is likely that OtherPtr is a bitcast, if so, remove it.
706    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
707      OtherPtr = BC->getOperand(0);
708    // All zero GEPs are effectively bitcasts.
709    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
710      if (GEP->hasAllZeroIndices())
711        OtherPtr = GEP->getOperand(0);
712
713    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
714      if (BCE->getOpcode() == Instruction::BitCast)
715        OtherPtr = BCE->getOperand(0);
716
717    // If the pointer is not the right type, insert a bitcast to the right
718    // type.
719    if (OtherPtr->getType() != AI->getType())
720      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
721                                 MI);
722  }
723
724  // Process each element of the aggregate.
725  Value *TheFn = MI->getOperand(0);
726  const Type *BytePtrTy = MI->getRawDest()->getType();
727  bool SROADest = MI->getRawDest() == BCInst;
728
729  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
730
731  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
732    // If this is a memcpy/memmove, emit a GEP of the other element address.
733    Value *OtherElt = 0;
734    if (OtherPtr) {
735      Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
736      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
737                                           OtherPtr->getNameStr()+"."+utostr(i),
738                                           MI);
739    }
740
741    Value *EltPtr = NewElts[i];
742    const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
743
744    // If we got down to a scalar, insert a load or store as appropriate.
745    if (EltTy->isSingleValueType()) {
746      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
747        Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
748                                  MI);
749        new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
750        continue;
751      }
752      assert(isa<MemSetInst>(MI));
753
754      // If the stored element is zero (common case), just store a null
755      // constant.
756      Constant *StoreVal;
757      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
758        if (CI->isZero()) {
759          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
760        } else {
761          // If EltTy is a vector type, get the element type.
762          const Type *ValTy = EltTy;
763          if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
764            ValTy = VTy->getElementType();
765
766          // Construct an integer with the right value.
767          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
768          APInt OneVal(EltSize, CI->getZExtValue());
769          APInt TotalVal(OneVal);
770          // Set each byte.
771          for (unsigned i = 0; 8*i < EltSize; ++i) {
772            TotalVal = TotalVal.shl(8);
773            TotalVal |= OneVal;
774          }
775
776          // Convert the integer value to the appropriate type.
777          StoreVal = ConstantInt::get(TotalVal);
778          if (isa<PointerType>(ValTy))
779            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
780          else if (ValTy->isFloatingPoint())
781            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
782          assert(StoreVal->getType() == ValTy && "Type mismatch!");
783
784          // If the requested value was a vector constant, create it.
785          if (EltTy != ValTy) {
786            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
787            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
788            StoreVal = ConstantVector::get(&Elts[0], NumElts);
789          }
790        }
791        new StoreInst(StoreVal, EltPtr, MI);
792        continue;
793      }
794      // Otherwise, if we're storing a byte variable, use a memset call for
795      // this element.
796    }
797
798    // Cast the element pointer to BytePtrTy.
799    if (EltPtr->getType() != BytePtrTy)
800      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
801
802    // Cast the other pointer (if we have one) to BytePtrTy.
803    if (OtherElt && OtherElt->getType() != BytePtrTy)
804      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
805                                 MI);
806
807    unsigned EltSize = TD->getTypePaddedSize(EltTy);
808
809    // Finally, insert the meminst for this element.
810    if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
811      Value *Ops[] = {
812        SROADest ? EltPtr : OtherElt,  // Dest ptr
813        SROADest ? OtherElt : EltPtr,  // Src ptr
814        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
815        Zero  // Align
816      };
817      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
818    } else {
819      assert(isa<MemSetInst>(MI));
820      Value *Ops[] = {
821        EltPtr, MI->getOperand(2),  // Dest, Value,
822        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
823        Zero  // Align
824      };
825      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
826    }
827  }
828  MI->eraseFromParent();
829}
830
831/// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
832/// overwrites the entire allocation.  Extract out the pieces of the stored
833/// integer and store them individually.
834void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
835                                         AllocationInst *AI,
836                                         SmallVector<AllocaInst*, 32> &NewElts){
837  // Extract each element out of the integer according to its structure offset
838  // and store the element value to the individual alloca.
839  Value *SrcVal = SI->getOperand(0);
840  const Type *AllocaEltTy = AI->getType()->getElementType();
841  uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
842
843  // If this isn't a store of an integer to the whole alloca, it may be a store
844  // to the first element.  Just ignore the store in this case and normal SROA
845  // will handle it.
846  if (!isa<IntegerType>(SrcVal->getType()) ||
847      TD->getTypePaddedSizeInBits(SrcVal->getType()) != AllocaSizeBits)
848    return;
849
850  DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
851
852  // There are two forms here: AI could be an array or struct.  Both cases
853  // have different ways to compute the element offset.
854  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
855    const StructLayout *Layout = TD->getStructLayout(EltSTy);
856
857    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
858      // Get the number of bits to shift SrcVal to get the value.
859      const Type *FieldTy = EltSTy->getElementType(i);
860      uint64_t Shift = Layout->getElementOffsetInBits(i);
861
862      if (TD->isBigEndian())
863        Shift = AllocaSizeBits-Shift-TD->getTypePaddedSizeInBits(FieldTy);
864
865      Value *EltVal = SrcVal;
866      if (Shift) {
867        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
868        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
869                                            "sroa.store.elt", SI);
870      }
871
872      // Truncate down to an integer of the right size.
873      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
874
875      // Ignore zero sized fields like {}, they obviously contain no data.
876      if (FieldSizeBits == 0) continue;
877
878      if (FieldSizeBits != AllocaSizeBits)
879        EltVal = new TruncInst(EltVal, IntegerType::get(FieldSizeBits), "", SI);
880      Value *DestField = NewElts[i];
881      if (EltVal->getType() == FieldTy) {
882        // Storing to an integer field of this size, just do it.
883      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
884        // Bitcast to the right element type (for fp/vector values).
885        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
886      } else {
887        // Otherwise, bitcast the dest pointer (for aggregates).
888        DestField = new BitCastInst(DestField,
889                                    PointerType::getUnqual(EltVal->getType()),
890                                    "", SI);
891      }
892      new StoreInst(EltVal, DestField, SI);
893    }
894
895  } else {
896    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
897    const Type *ArrayEltTy = ATy->getElementType();
898    uint64_t ElementOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
899    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
900
901    uint64_t Shift;
902
903    if (TD->isBigEndian())
904      Shift = AllocaSizeBits-ElementOffset;
905    else
906      Shift = 0;
907
908    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
909      // Ignore zero sized fields like {}, they obviously contain no data.
910      if (ElementSizeBits == 0) continue;
911
912      Value *EltVal = SrcVal;
913      if (Shift) {
914        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
915        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
916                                            "sroa.store.elt", SI);
917      }
918
919      // Truncate down to an integer of the right size.
920      if (ElementSizeBits != AllocaSizeBits)
921        EltVal = new TruncInst(EltVal, IntegerType::get(ElementSizeBits),"",SI);
922      Value *DestField = NewElts[i];
923      if (EltVal->getType() == ArrayEltTy) {
924        // Storing to an integer field of this size, just do it.
925      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
926        // Bitcast to the right element type (for fp/vector values).
927        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
928      } else {
929        // Otherwise, bitcast the dest pointer (for aggregates).
930        DestField = new BitCastInst(DestField,
931                                    PointerType::getUnqual(EltVal->getType()),
932                                    "", SI);
933      }
934      new StoreInst(EltVal, DestField, SI);
935
936      if (TD->isBigEndian())
937        Shift -= ElementOffset;
938      else
939        Shift += ElementOffset;
940    }
941  }
942
943  SI->eraseFromParent();
944}
945
946/// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
947/// an integer.  Load the individual pieces to form the aggregate value.
948void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
949                                        SmallVector<AllocaInst*, 32> &NewElts) {
950  // Extract each element out of the NewElts according to its structure offset
951  // and form the result value.
952  const Type *AllocaEltTy = AI->getType()->getElementType();
953  uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
954
955  // If this isn't a load of the whole alloca to an integer, it may be a load
956  // of the first element.  Just ignore the load in this case and normal SROA
957  // will handle it.
958  if (!isa<IntegerType>(LI->getType()) ||
959      TD->getTypePaddedSizeInBits(LI->getType()) != AllocaSizeBits)
960    return;
961
962  DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
963
964  // There are two forms here: AI could be an array or struct.  Both cases
965  // have different ways to compute the element offset.
966  const StructLayout *Layout = 0;
967  uint64_t ArrayEltBitOffset = 0;
968  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
969    Layout = TD->getStructLayout(EltSTy);
970  } else {
971    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
972    ArrayEltBitOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
973  }
974
975  Value *ResultVal = Constant::getNullValue(LI->getType());
976
977  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
978    // Load the value from the alloca.  If the NewElt is an aggregate, cast
979    // the pointer to an integer of the same size before doing the load.
980    Value *SrcField = NewElts[i];
981    const Type *FieldTy =
982      cast<PointerType>(SrcField->getType())->getElementType();
983    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
984
985    // Ignore zero sized fields like {}, they obviously contain no data.
986    if (FieldSizeBits == 0) continue;
987
988    const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits);
989    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
990        !isa<VectorType>(FieldTy))
991      SrcField = new BitCastInst(SrcField, PointerType::getUnqual(FieldIntTy),
992                                 "", LI);
993    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
994
995    // If SrcField is a fp or vector of the right size but that isn't an
996    // integer type, bitcast to an integer so we can shift it.
997    if (SrcField->getType() != FieldIntTy)
998      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
999
1000    // Zero extend the field to be the same size as the final alloca so that
1001    // we can shift and insert it.
1002    if (SrcField->getType() != ResultVal->getType())
1003      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1004
1005    // Determine the number of bits to shift SrcField.
1006    uint64_t Shift;
1007    if (Layout) // Struct case.
1008      Shift = Layout->getElementOffsetInBits(i);
1009    else  // Array case.
1010      Shift = i*ArrayEltBitOffset;
1011
1012    if (TD->isBigEndian())
1013      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1014
1015    if (Shift) {
1016      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1017      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1018    }
1019
1020    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1021  }
1022
1023  LI->replaceAllUsesWith(ResultVal);
1024  LI->eraseFromParent();
1025}
1026
1027
1028/// HasPadding - Return true if the specified type has any structure or
1029/// alignment padding, false otherwise.
1030static bool HasPadding(const Type *Ty, const TargetData &TD) {
1031  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1032    const StructLayout *SL = TD.getStructLayout(STy);
1033    unsigned PrevFieldBitOffset = 0;
1034    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1035      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1036
1037      // Padding in sub-elements?
1038      if (HasPadding(STy->getElementType(i), TD))
1039        return true;
1040
1041      // Check to see if there is any padding between this element and the
1042      // previous one.
1043      if (i) {
1044        unsigned PrevFieldEnd =
1045        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1046        if (PrevFieldEnd < FieldBitOffset)
1047          return true;
1048      }
1049
1050      PrevFieldBitOffset = FieldBitOffset;
1051    }
1052
1053    //  Check for tail padding.
1054    if (unsigned EltCount = STy->getNumElements()) {
1055      unsigned PrevFieldEnd = PrevFieldBitOffset +
1056                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1057      if (PrevFieldEnd < SL->getSizeInBits())
1058        return true;
1059    }
1060
1061  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1062    return HasPadding(ATy->getElementType(), TD);
1063  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1064    return HasPadding(VTy->getElementType(), TD);
1065  }
1066  return TD.getTypeSizeInBits(Ty) != TD.getTypePaddedSizeInBits(Ty);
1067}
1068
1069/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1070/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1071/// or 1 if safe after canonicalization has been performed.
1072///
1073int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
1074  // Loop over the use list of the alloca.  We can only transform it if all of
1075  // the users are safe to transform.
1076  AllocaInfo Info;
1077
1078  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1079       I != E; ++I) {
1080    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1081    if (Info.isUnsafe) {
1082      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
1083      return 0;
1084    }
1085  }
1086
1087  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1088  // source and destination, we have to be careful.  In particular, the memcpy
1089  // could be moving around elements that live in structure padding of the LLVM
1090  // types, but may actually be used.  In these cases, we refuse to promote the
1091  // struct.
1092  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1093      HasPadding(AI->getType()->getElementType(), *TD))
1094    return 0;
1095
1096  // If we require cleanup, return 1, otherwise return 3.
1097  return Info.needsCanon ? 1 : 3;
1098}
1099
1100/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
1101/// allocation, but only if cleaned up, perform the cleanups required.
1102void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
1103  // At this point, we know that the end result will be SROA'd and promoted, so
1104  // we can insert ugly code if required so long as sroa+mem2reg will clean it
1105  // up.
1106  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1107       UI != E; ) {
1108    GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
1109    if (!GEPI) continue;
1110    gep_type_iterator I = gep_type_begin(GEPI);
1111    ++I;
1112
1113    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
1114      uint64_t NumElements = AT->getNumElements();
1115
1116      if (!isa<ConstantInt>(I.getOperand())) {
1117        if (NumElements == 1) {
1118          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
1119        } else {
1120          assert(NumElements == 2 && "Unhandled case!");
1121          // All users of the GEP must be loads.  At each use of the GEP, insert
1122          // two loads of the appropriate indexed GEP and select between them.
1123          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
1124                              Constant::getNullValue(I.getOperand()->getType()),
1125             "isone", GEPI);
1126          // Insert the new GEP instructions, which are properly indexed.
1127          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1128          Indices[1] = Constant::getNullValue(Type::Int32Ty);
1129          Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1130                                                     Indices.begin(),
1131                                                     Indices.end(),
1132                                                     GEPI->getName()+".0", GEPI);
1133          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
1134          Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1135                                                    Indices.begin(),
1136                                                    Indices.end(),
1137                                                    GEPI->getName()+".1", GEPI);
1138          // Replace all loads of the variable index GEP with loads from both
1139          // indexes and a select.
1140          while (!GEPI->use_empty()) {
1141            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1142            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1143            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
1144            Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1145            LI->replaceAllUsesWith(R);
1146            LI->eraseFromParent();
1147          }
1148          GEPI->eraseFromParent();
1149        }
1150      }
1151    }
1152  }
1153}
1154
1155/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1156/// the offset specified by Offset (which is specified in bytes).
1157///
1158/// There are two cases we handle here:
1159///   1) A union of vector types of the same size and potentially its elements.
1160///      Here we turn element accesses into insert/extract element operations.
1161///      This promotes a <4 x float> with a store of float to the third element
1162///      into a <4 x float> that uses insert element.
1163///   2) A fully general blob of memory, which we turn into some (potentially
1164///      large) integer type with extract and insert operations where the loads
1165///      and stores would mutate the memory.
1166static void MergeInType(const Type *In, uint64_t Offset, const Type *&Accum,
1167                        const TargetData &TD) {
1168  // If this is our first type, just use it.
1169  if ((Accum == 0 && Offset == 0) || In == Type::VoidTy ||
1170      // Or if this is a same type, keep it.
1171      (In == Accum && Offset == 0)) {
1172    Accum = In;
1173    return;
1174  }
1175
1176  // Merging something like i32 into offset 8 means that a "field" is merged in
1177  // before the basic type is.  Make sure to consider the offset below.
1178  if (Accum == 0)
1179    Accum = Type::Int8Ty;
1180
1181  if (const VectorType *VATy = dyn_cast<VectorType>(Accum)) {
1182    if (VATy->getElementType() == In &&
1183        Offset % TD.getTypePaddedSize(In) == 0 &&
1184        Offset < TD.getTypePaddedSize(VATy))
1185      return;  // Accum is a vector, and we are accessing an element: ok.
1186    if (const VectorType *VInTy = dyn_cast<VectorType>(In))
1187      if (VInTy->getBitWidth() == VATy->getBitWidth() && Offset == 0)
1188        return; // Two vectors of the same size: keep either one of them.
1189  }
1190
1191  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1192    // In is a vector, and we are accessing an element: keep V.
1193    if (VInTy->getElementType() == Accum &&
1194        Offset % TD.getTypePaddedSize(Accum) == 0 &&
1195        Offset < TD.getTypePaddedSize(VInTy)) {
1196      Accum = VInTy;
1197      return;
1198    }
1199  }
1200
1201  // Otherwise, we have a case that we can't handle with an optimized form.
1202  // Convert the alloca to an integer that is as large as the largest store size
1203  // of the value values.
1204  uint64_t InSize = TD.getTypeStoreSizeInBits(In)+8*Offset;
1205  uint64_t ASize  = TD.getTypeStoreSizeInBits(Accum);
1206  if (InSize > ASize) ASize = InSize;
1207  Accum = IntegerType::get(ASize);
1208}
1209
1210/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1211/// its accesses to use a to single scalar type, return true, and set ResTy to
1212/// the new type.  Further, if the use is not a completely trivial use that
1213/// mem2reg could promote, set IsNotTrivial.  Offset is the current offset from
1214/// the base of the alloca being analyzed.
1215///
1216bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial,
1217                              const Type *&ResTy, uint64_t Offset) {
1218  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1219    Instruction *User = cast<Instruction>(*UI);
1220
1221    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1222      // Don't break volatile loads.
1223      if (LI->isVolatile())
1224        return false;
1225      MergeInType(LI->getType(), Offset, ResTy, *TD);
1226      continue;
1227    }
1228
1229    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1230      // Storing the pointer, not into the value?
1231      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1232      MergeInType(SI->getOperand(0)->getType(), Offset, ResTy, *TD);
1233      continue;
1234    }
1235
1236    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1237      if (!CanConvertToScalar(BCI, IsNotTrivial, ResTy, Offset))
1238        return false;
1239      IsNotTrivial = true;
1240      continue;
1241    }
1242
1243    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1244      // If this is a GEP with a variable indices, we can't handle it.
1245      if (!GEP->hasAllConstantIndices())
1246        return false;
1247
1248      // Compute the offset that this GEP adds to the pointer.
1249      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1250      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1251                                                &Indices[0], Indices.size());
1252      // See if all uses can be converted.
1253      if (!CanConvertToScalar(GEP, IsNotTrivial, ResTy, Offset+GEPOffset))
1254        return false;
1255      IsNotTrivial = true;
1256      continue;
1257    }
1258
1259    // Otherwise, we cannot handle this!
1260    return false;
1261  }
1262
1263  return true;
1264}
1265
1266/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
1267/// predicate and is non-trivial.  Convert it to something that can be trivially
1268/// promoted into a register by mem2reg.
1269void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
1270  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = " << *ActualTy << "\n";
1271  ++NumConverted;
1272
1273  // Create and insert the alloca.
1274  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
1275                                     AI->getParent()->begin());
1276  ConvertUsesToScalar(AI, NewAI, 0);
1277  AI->eraseFromParent();
1278}
1279
1280
1281/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1282/// directly.  This happens when we are converting an "integer union" to a
1283/// single integer scalar, or when we are converting a "vector union" to a
1284/// vector with insert/extractelement instructions.
1285///
1286/// Offset is an offset from the original alloca, in bits that need to be
1287/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1288void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1289  while (!Ptr->use_empty()) {
1290    Instruction *User = cast<Instruction>(Ptr->use_back());
1291
1292    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1293      LI->replaceAllUsesWith(ConvertUsesOfLoadToScalar(LI, NewAI, Offset));
1294      LI->eraseFromParent();
1295      continue;
1296    }
1297
1298    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1299      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1300      new StoreInst(ConvertUsesOfStoreToScalar(SI, NewAI, Offset), NewAI, SI);
1301      SI->eraseFromParent();
1302      continue;
1303    }
1304
1305    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1306      ConvertUsesToScalar(CI, NewAI, Offset);
1307      CI->eraseFromParent();
1308      continue;
1309    }
1310
1311    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1312      // Compute the offset that this GEP adds to the pointer.
1313      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1314      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1315                                                &Indices[0], Indices.size());
1316      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1317      GEP->eraseFromParent();
1318      continue;
1319    }
1320    assert(0 && "Unsupported operation!");
1321    abort();
1322  }
1323}
1324
1325/// ConvertUsesOfLoadToScalar - Convert all of the users of the specified load
1326/// to use the new alloca directly, returning the value that should replace the
1327/// load.  This happens when we are converting an "integer union" to a single
1328/// integer scalar, or when we are converting a "vector union" to a vector with
1329/// insert/extractelement instructions.
1330///
1331/// Offset is an offset from the original alloca, in bits that need to be
1332/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1333Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
1334                                       uint64_t Offset) {
1335  // The load is a bit extract from NewAI shifted right by Offset bits.
1336  Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1337
1338  // If the load is of the whole new alloca, no conversion is needed.
1339  if (NV->getType() == LI->getType() && Offset == 0)
1340    return NV;
1341
1342  // If the result alloca is a vector type, this is either an element
1343  // access or a bitcast to another vector type of the same size.
1344  if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) {
1345    if (isa<VectorType>(LI->getType()))
1346      return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1347
1348    // Otherwise it must be an element access.
1349    unsigned Elt = 0;
1350    if (Offset) {
1351      unsigned EltSize = TD->getTypePaddedSizeInBits(VTy->getElementType());
1352      Elt = Offset/EltSize;
1353      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1354    }
1355    // Return the element extracted out of it.
1356    return new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
1357                                  "tmp", LI);
1358  }
1359
1360  // Otherwise, this must be a union that was converted to an integer value.
1361  const IntegerType *NTy = cast<IntegerType>(NV->getType());
1362
1363  // If this is a big-endian system and the load is narrower than the
1364  // full alloca type, we need to do a shift to get the right bits.
1365  int ShAmt = 0;
1366  if (TD->isBigEndian()) {
1367    // On big-endian machines, the lowest bit is stored at the bit offset
1368    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1369    // integers with a bitwidth that is not a multiple of 8.
1370    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1371            TD->getTypeStoreSizeInBits(LI->getType()) - Offset;
1372  } else {
1373    ShAmt = Offset;
1374  }
1375
1376  // Note: we support negative bitwidths (with shl) which are not defined.
1377  // We do this to support (f.e.) loads off the end of a structure where
1378  // only some bits are used.
1379  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1380    NV = BinaryOperator::CreateLShr(NV,
1381                                    ConstantInt::get(NV->getType(), ShAmt),
1382                                    LI->getName(), LI);
1383  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1384    NV = BinaryOperator::CreateShl(NV,
1385                                   ConstantInt::get(NV->getType(), -ShAmt),
1386                                   LI->getName(), LI);
1387
1388  // Finally, unconditionally truncate the integer to the right width.
1389  unsigned LIBitWidth = TD->getTypeSizeInBits(LI->getType());
1390  if (LIBitWidth < NTy->getBitWidth())
1391    NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
1392                       LI->getName(), LI);
1393
1394  // If the result is an integer, this is a trunc or bitcast.
1395  if (isa<IntegerType>(LI->getType())) {
1396    // Should be done.
1397  } else if (LI->getType()->isFloatingPoint() ||
1398             isa<VectorType>(LI->getType())) {
1399    // Just do a bitcast, we know the sizes match up.
1400    NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1401  } else {
1402    // Otherwise must be a pointer.
1403    NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1404  }
1405  assert(NV->getType() == LI->getType() && "Didn't convert right?");
1406  return NV;
1407}
1408
1409
1410/// ConvertUsesOfStoreToScalar - Convert the specified store to a load+store
1411/// pair of the new alloca directly, returning the value that should be stored
1412/// to the alloca.  This happens when we are converting an "integer union" to a
1413/// single integer scalar, or when we are converting a "vector union" to a
1414/// vector with insert/extractelement instructions.
1415///
1416/// Offset is an offset from the original alloca, in bits that need to be
1417/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1418Value *SROA::ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
1419                                        uint64_t Offset) {
1420
1421  // Convert the stored type to the actual type, shift it left to insert
1422  // then 'or' into place.
1423  Value *SV = SI->getOperand(0);
1424  const Type *AllocaType = NewAI->getType()->getElementType();
1425  if (SV->getType() == AllocaType && Offset == 0) {
1426    return SV;
1427  }
1428
1429  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1430    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1431
1432    // If the result alloca is a vector type, this is either an element
1433    // access or a bitcast to another vector type.
1434    if (isa<VectorType>(SV->getType())) {
1435      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1436    } else {
1437      // Must be an element insertion.
1438      unsigned Elt = Offset/TD->getTypePaddedSizeInBits(VTy->getElementType());
1439      SV = InsertElementInst::Create(Old, SV,
1440                                     ConstantInt::get(Type::Int32Ty, Elt),
1441                                     "tmp", SI);
1442    }
1443    return SV;
1444  }
1445
1446
1447  Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1448
1449  // If SV is a float, convert it to the appropriate integer type.
1450  // If it is a pointer, do the same, and also handle ptr->ptr casts
1451  // here.
1452  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1453  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1454  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1455  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1456  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1457    SV = new BitCastInst(SV, IntegerType::get(SrcWidth), SV->getName(), SI);
1458  else if (isa<PointerType>(SV->getType()))
1459    SV = new PtrToIntInst(SV, TD->getIntPtrType(), SV->getName(), SI);
1460
1461  // Always zero extend the value if needed.
1462  if (SV->getType() != AllocaType)
1463    SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
1464
1465  // If this is a big-endian system and the store is narrower than the
1466  // full alloca type, we need to do a shift to get the right bits.
1467  int ShAmt = 0;
1468  if (TD->isBigEndian()) {
1469    // On big-endian machines, the lowest bit is stored at the bit offset
1470    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1471    // integers with a bitwidth that is not a multiple of 8.
1472    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1473  } else {
1474    ShAmt = Offset;
1475  }
1476
1477  // Note: we support negative bitwidths (with shr) which are not defined.
1478  // We do this to support (f.e.) stores off the end of a structure where
1479  // only some bits in the structure are set.
1480  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1481  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1482    SV = BinaryOperator::CreateShl(SV,
1483                                   ConstantInt::get(SV->getType(), ShAmt),
1484                                   SV->getName(), SI);
1485    Mask <<= ShAmt;
1486  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1487    SV = BinaryOperator::CreateLShr(SV,
1488                                    ConstantInt::get(SV->getType(),-ShAmt),
1489                                    SV->getName(), SI);
1490    Mask = Mask.lshr(-ShAmt);
1491  }
1492
1493  // Mask out the bits we are about to insert from the old value, and or
1494  // in the new bits.
1495  if (SrcWidth != DestWidth) {
1496    assert(DestWidth > SrcWidth);
1497    Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
1498                                    Old->getName()+".mask", SI);
1499    SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", SI);
1500  }
1501  return SV;
1502}
1503
1504
1505
1506/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1507/// some part of a constant global variable.  This intentionally only accepts
1508/// constant expressions because we don't can't rewrite arbitrary instructions.
1509static bool PointsToConstantGlobal(Value *V) {
1510  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1511    return GV->isConstant();
1512  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1513    if (CE->getOpcode() == Instruction::BitCast ||
1514        CE->getOpcode() == Instruction::GetElementPtr)
1515      return PointsToConstantGlobal(CE->getOperand(0));
1516  return false;
1517}
1518
1519/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1520/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1521/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1522/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1523/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1524/// the alloca, and if the source pointer is a pointer to a constant  global, we
1525/// can optimize this.
1526static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1527                                           bool isOffset) {
1528  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1529    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1530      // Ignore non-volatile loads, they are always ok.
1531      if (!LI->isVolatile())
1532        continue;
1533
1534    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1535      // If uses of the bitcast are ok, we are ok.
1536      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1537        return false;
1538      continue;
1539    }
1540    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1541      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1542      // doesn't, it does.
1543      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1544                                         isOffset || !GEP->hasAllZeroIndices()))
1545        return false;
1546      continue;
1547    }
1548
1549    // If this is isn't our memcpy/memmove, reject it as something we can't
1550    // handle.
1551    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1552      return false;
1553
1554    // If we already have seen a copy, reject the second one.
1555    if (TheCopy) return false;
1556
1557    // If the pointer has been offset from the start of the alloca, we can't
1558    // safely handle this.
1559    if (isOffset) return false;
1560
1561    // If the memintrinsic isn't using the alloca as the dest, reject it.
1562    if (UI.getOperandNo() != 1) return false;
1563
1564    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1565
1566    // If the source of the memcpy/move is not a constant global, reject it.
1567    if (!PointsToConstantGlobal(MI->getOperand(2)))
1568      return false;
1569
1570    // Otherwise, the transform is safe.  Remember the copy instruction.
1571    TheCopy = MI;
1572  }
1573  return true;
1574}
1575
1576/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1577/// modified by a copy from a constant global.  If we can prove this, we can
1578/// replace any uses of the alloca with uses of the global directly.
1579Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1580  Instruction *TheCopy = 0;
1581  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1582    return TheCopy;
1583  return 0;
1584}
1585