ScalarReplAggregates.cpp revision 9e9a0d5fc26878e51a58a8b57900fcbf952c2691
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/PromoteMemToReg.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/IRBuilder.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/Statistic.h"
44using namespace llvm;
45
46STATISTIC(NumReplaced,  "Number of allocas broken up");
47STATISTIC(NumPromoted,  "Number of allocas promoted");
48STATISTIC(NumConverted, "Number of aggregates converted to scalar");
49STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
50
51namespace {
52  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
53    static char ID; // Pass identification, replacement for typeid
54    explicit SROA(signed T = -1) : FunctionPass(&ID) {
55      if (T == -1)
56        SRThreshold = 128;
57      else
58        SRThreshold = T;
59    }
60
61    bool runOnFunction(Function &F);
62
63    bool performScalarRepl(Function &F);
64    bool performPromotion(Function &F);
65
66    // getAnalysisUsage - This pass does not require any passes, but we know it
67    // will not alter the CFG, so say so.
68    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69      AU.addRequired<DominatorTree>();
70      AU.addRequired<DominanceFrontier>();
71      AU.addRequired<TargetData>();
72      AU.setPreservesCFG();
73    }
74
75  private:
76    TargetData *TD;
77
78    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
79    /// information about the uses.  All these fields are initialized to false
80    /// and set to true when something is learned.
81    struct AllocaInfo {
82      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
83      bool isUnsafe : 1;
84
85      /// needsCleanup - This is set to true if there is some use of the alloca
86      /// that requires cleanup.
87      bool needsCleanup : 1;
88
89      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
90      bool isMemCpySrc : 1;
91
92      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
93      bool isMemCpyDst : 1;
94
95      AllocaInfo()
96        : isUnsafe(false), needsCleanup(false),
97          isMemCpySrc(false), isMemCpyDst(false) {}
98    };
99
100    unsigned SRThreshold;
101
102    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
103
104    int isSafeAllocaToScalarRepl(AllocationInst *AI);
105
106    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
107                               AllocaInfo &Info);
108    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
109                         AllocaInfo &Info);
110    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
111                                        unsigned OpNo, AllocaInfo &Info);
112    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
113                                        AllocaInfo &Info);
114
115    void DoScalarReplacement(AllocationInst *AI,
116                             std::vector<AllocationInst*> &WorkList);
117    void CleanupGEP(GetElementPtrInst *GEP);
118    void CleanupAllocaUsers(AllocationInst *AI);
119    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
120
121    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
122                                    SmallVector<AllocaInst*, 32> &NewElts);
123
124    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
125                                      AllocationInst *AI,
126                                      SmallVector<AllocaInst*, 32> &NewElts);
127    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
128                                       SmallVector<AllocaInst*, 32> &NewElts);
129    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
130                                      SmallVector<AllocaInst*, 32> &NewElts);
131
132    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
133                            bool &SawVec, uint64_t Offset, unsigned AllocaSize);
134    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
135    Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
136                                     uint64_t Offset, IRBuilder<> &Builder);
137    Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
138                                     uint64_t Offset, IRBuilder<> &Builder);
139    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
140  };
141}
142
143char SROA::ID = 0;
144static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
145
146// Public interface to the ScalarReplAggregates pass
147FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
148  return new SROA(Threshold);
149}
150
151
152bool SROA::runOnFunction(Function &F) {
153  TD = &getAnalysis<TargetData>();
154
155  bool Changed = performPromotion(F);
156  while (1) {
157    bool LocalChange = performScalarRepl(F);
158    if (!LocalChange) break;   // No need to repromote if no scalarrepl
159    Changed = true;
160    LocalChange = performPromotion(F);
161    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
162  }
163
164  return Changed;
165}
166
167
168bool SROA::performPromotion(Function &F) {
169  std::vector<AllocaInst*> Allocas;
170  DominatorTree         &DT = getAnalysis<DominatorTree>();
171  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
172
173  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
174
175  bool Changed = false;
176
177  while (1) {
178    Allocas.clear();
179
180    // Find allocas that are safe to promote, by looking at all instructions in
181    // the entry node
182    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
183      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
184        if (isAllocaPromotable(AI))
185          Allocas.push_back(AI);
186
187    if (Allocas.empty()) break;
188
189    PromoteMemToReg(Allocas, DT, DF, F.getContext());
190    NumPromoted += Allocas.size();
191    Changed = true;
192  }
193
194  return Changed;
195}
196
197/// getNumSAElements - Return the number of elements in the specific struct or
198/// array.
199static uint64_t getNumSAElements(const Type *T) {
200  if (const StructType *ST = dyn_cast<StructType>(T))
201    return ST->getNumElements();
202  return cast<ArrayType>(T)->getNumElements();
203}
204
205// performScalarRepl - This algorithm is a simple worklist driven algorithm,
206// which runs on all of the malloc/alloca instructions in the function, removing
207// them if they are only used by getelementptr instructions.
208//
209bool SROA::performScalarRepl(Function &F) {
210  std::vector<AllocationInst*> WorkList;
211
212  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
213  BasicBlock &BB = F.getEntryBlock();
214  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
215    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
216      WorkList.push_back(A);
217
218  // Process the worklist
219  bool Changed = false;
220  while (!WorkList.empty()) {
221    AllocationInst *AI = WorkList.back();
222    WorkList.pop_back();
223
224    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
225    // with unused elements.
226    if (AI->use_empty()) {
227      AI->eraseFromParent();
228      continue;
229    }
230
231    // If this alloca is impossible for us to promote, reject it early.
232    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
233      continue;
234
235    // Check to see if this allocation is only modified by a memcpy/memmove from
236    // a constant global.  If this is the case, we can change all users to use
237    // the constant global instead.  This is commonly produced by the CFE by
238    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
239    // is only subsequently read.
240    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
241      DOUT << "Found alloca equal to global: " << *AI;
242      DOUT << "  memcpy = " << *TheCopy;
243      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
244      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
245      TheCopy->eraseFromParent();  // Don't mutate the global.
246      AI->eraseFromParent();
247      ++NumGlobals;
248      Changed = true;
249      continue;
250    }
251
252    // Check to see if we can perform the core SROA transformation.  We cannot
253    // transform the allocation instruction if it is an array allocation
254    // (allocations OF arrays are ok though), and an allocation of a scalar
255    // value cannot be decomposed at all.
256    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
257
258    // Do not promote any struct whose size is too big.
259    if (AllocaSize > SRThreshold) continue;
260
261    if ((isa<StructType>(AI->getAllocatedType()) ||
262         isa<ArrayType>(AI->getAllocatedType())) &&
263        // Do not promote any struct into more than "32" separate vars.
264        getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
265      // Check that all of the users of the allocation are capable of being
266      // transformed.
267      switch (isSafeAllocaToScalarRepl(AI)) {
268      default: llvm_unreachable("Unexpected value!");
269      case 0:  // Not safe to scalar replace.
270        break;
271      case 1:  // Safe, but requires cleanup/canonicalizations first
272        CleanupAllocaUsers(AI);
273        // FALL THROUGH.
274      case 3:  // Safe to scalar replace.
275        DoScalarReplacement(AI, WorkList);
276        Changed = true;
277        continue;
278      }
279    }
280
281    // If we can turn this aggregate value (potentially with casts) into a
282    // simple scalar value that can be mem2reg'd into a register value.
283    // IsNotTrivial tracks whether this is something that mem2reg could have
284    // promoted itself.  If so, we don't want to transform it needlessly.  Note
285    // that we can't just check based on the type: the alloca may be of an i32
286    // but that has pointer arithmetic to set byte 3 of it or something.
287    bool IsNotTrivial = false;
288    const Type *VectorTy = 0;
289    bool HadAVector = false;
290    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
291                           0, unsigned(AllocaSize)) && IsNotTrivial) {
292      AllocaInst *NewAI;
293      // If we were able to find a vector type that can handle this with
294      // insert/extract elements, and if there was at least one use that had
295      // a vector type, promote this to a vector.  We don't want to promote
296      // random stuff that doesn't use vectors (e.g. <9 x double>) because then
297      // we just get a lot of insert/extracts.  If at least one vector is
298      // involved, then we probably really do have a union of vector/array.
299      if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
300        DOUT << "CONVERT TO VECTOR: " << *AI << "  TYPE = " << *VectorTy <<"\n";
301
302        // Create and insert the vector alloca.
303        NewAI = new AllocaInst(VectorTy, 0, "",  AI->getParent()->begin());
304        ConvertUsesToScalar(AI, NewAI, 0);
305      } else {
306        DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
307
308        // Create and insert the integer alloca.
309        const Type *NewTy = IntegerType::get(AllocaSize*8);
310        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
311        ConvertUsesToScalar(AI, NewAI, 0);
312      }
313      NewAI->takeName(AI);
314      AI->eraseFromParent();
315      ++NumConverted;
316      Changed = true;
317      continue;
318    }
319
320    // Otherwise, couldn't process this alloca.
321  }
322
323  return Changed;
324}
325
326/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
327/// predicate, do SROA now.
328void SROA::DoScalarReplacement(AllocationInst *AI,
329                               std::vector<AllocationInst*> &WorkList) {
330  DOUT << "Found inst to SROA: " << *AI;
331  SmallVector<AllocaInst*, 32> ElementAllocas;
332  LLVMContext &Context = AI->getContext();
333  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
334    ElementAllocas.reserve(ST->getNumContainedTypes());
335    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
336      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
337                                      AI->getAlignment(),
338                                      AI->getName() + "." + Twine(i), AI);
339      ElementAllocas.push_back(NA);
340      WorkList.push_back(NA);  // Add to worklist for recursive processing
341    }
342  } else {
343    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
344    ElementAllocas.reserve(AT->getNumElements());
345    const Type *ElTy = AT->getElementType();
346    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
347      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
348                                      AI->getName() + "." + Twine(i), AI);
349      ElementAllocas.push_back(NA);
350      WorkList.push_back(NA);  // Add to worklist for recursive processing
351    }
352  }
353
354  // Now that we have created the alloca instructions that we want to use,
355  // expand the getelementptr instructions to use them.
356  //
357  while (!AI->use_empty()) {
358    Instruction *User = cast<Instruction>(AI->use_back());
359    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
360      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
361      BCInst->eraseFromParent();
362      continue;
363    }
364
365    // Replace:
366    //   %res = load { i32, i32 }* %alloc
367    // with:
368    //   %load.0 = load i32* %alloc.0
369    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
370    //   %load.1 = load i32* %alloc.1
371    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
372    // (Also works for arrays instead of structs)
373    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
374      Value *Insert = UndefValue::get(LI->getType());
375      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
376        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
377        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
378      }
379      LI->replaceAllUsesWith(Insert);
380      LI->eraseFromParent();
381      continue;
382    }
383
384    // Replace:
385    //   store { i32, i32 } %val, { i32, i32 }* %alloc
386    // with:
387    //   %val.0 = extractvalue { i32, i32 } %val, 0
388    //   store i32 %val.0, i32* %alloc.0
389    //   %val.1 = extractvalue { i32, i32 } %val, 1
390    //   store i32 %val.1, i32* %alloc.1
391    // (Also works for arrays instead of structs)
392    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
393      Value *Val = SI->getOperand(0);
394      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
395        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
396        new StoreInst(Extract, ElementAllocas[i], SI);
397      }
398      SI->eraseFromParent();
399      continue;
400    }
401
402    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
403    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
404    unsigned Idx =
405       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
406
407    assert(Idx < ElementAllocas.size() && "Index out of range?");
408    AllocaInst *AllocaToUse = ElementAllocas[Idx];
409
410    Value *RepValue;
411    if (GEPI->getNumOperands() == 3) {
412      // Do not insert a new getelementptr instruction with zero indices, only
413      // to have it optimized out later.
414      RepValue = AllocaToUse;
415    } else {
416      // We are indexing deeply into the structure, so we still need a
417      // getelement ptr instruction to finish the indexing.  This may be
418      // expanded itself once the worklist is rerun.
419      //
420      SmallVector<Value*, 8> NewArgs;
421      NewArgs.push_back(Context.getNullValue(Type::Int32Ty));
422      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
423      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
424                                           NewArgs.end(), "", GEPI);
425      RepValue->takeName(GEPI);
426    }
427
428    // If this GEP is to the start of the aggregate, check for memcpys.
429    if (Idx == 0 && GEPI->hasAllZeroIndices())
430      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
431
432    // Move all of the users over to the new GEP.
433    GEPI->replaceAllUsesWith(RepValue);
434    // Delete the old GEP
435    GEPI->eraseFromParent();
436  }
437
438  // Finally, delete the Alloca instruction
439  AI->eraseFromParent();
440  NumReplaced++;
441}
442
443
444/// isSafeElementUse - Check to see if this use is an allowed use for a
445/// getelementptr instruction of an array aggregate allocation.  isFirstElt
446/// indicates whether Ptr is known to the start of the aggregate.
447///
448void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
449                            AllocaInfo &Info) {
450  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
451       I != E; ++I) {
452    Instruction *User = cast<Instruction>(*I);
453    switch (User->getOpcode()) {
454    case Instruction::Load:  break;
455    case Instruction::Store:
456      // Store is ok if storing INTO the pointer, not storing the pointer
457      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
458      break;
459    case Instruction::GetElementPtr: {
460      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
461      bool AreAllZeroIndices = isFirstElt;
462      if (GEP->getNumOperands() > 1) {
463        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
464            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
465          // Using pointer arithmetic to navigate the array.
466          return MarkUnsafe(Info);
467
468        if (AreAllZeroIndices)
469          AreAllZeroIndices = GEP->hasAllZeroIndices();
470      }
471      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
472      if (Info.isUnsafe) return;
473      break;
474    }
475    case Instruction::BitCast:
476      if (isFirstElt) {
477        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
478        if (Info.isUnsafe) return;
479        break;
480      }
481      DOUT << "  Transformation preventing inst: " << *User;
482      return MarkUnsafe(Info);
483    case Instruction::Call:
484      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
485        if (isFirstElt) {
486          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
487          if (Info.isUnsafe) return;
488          break;
489        }
490      }
491      DOUT << "  Transformation preventing inst: " << *User;
492      return MarkUnsafe(Info);
493    default:
494      DOUT << "  Transformation preventing inst: " << *User;
495      return MarkUnsafe(Info);
496    }
497  }
498  return;  // All users look ok :)
499}
500
501/// AllUsersAreLoads - Return true if all users of this value are loads.
502static bool AllUsersAreLoads(Value *Ptr) {
503  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
504       I != E; ++I)
505    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
506      return false;
507  return true;
508}
509
510/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
511/// aggregate allocation.
512///
513void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
514                                 AllocaInfo &Info) {
515  LLVMContext &Context = User->getContext();
516  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
517    return isSafeUseOfBitCastedAllocation(C, AI, Info);
518
519  if (LoadInst *LI = dyn_cast<LoadInst>(User))
520    if (!LI->isVolatile())
521      return;// Loads (returning a first class aggregrate) are always rewritable
522
523  if (StoreInst *SI = dyn_cast<StoreInst>(User))
524    if (!SI->isVolatile() && SI->getOperand(0) != AI)
525      return;// Store is ok if storing INTO the pointer, not storing the pointer
526
527  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
528  if (GEPI == 0)
529    return MarkUnsafe(Info);
530
531  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
532
533  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
534  if (I == E ||
535      I.getOperand() != Context.getNullValue(I.getOperand()->getType())) {
536    return MarkUnsafe(Info);
537  }
538
539  ++I;
540  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
541
542  bool IsAllZeroIndices = true;
543
544  // If the first index is a non-constant index into an array, see if we can
545  // handle it as a special case.
546  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
547    if (!isa<ConstantInt>(I.getOperand())) {
548      IsAllZeroIndices = 0;
549      uint64_t NumElements = AT->getNumElements();
550
551      // If this is an array index and the index is not constant, we cannot
552      // promote... that is unless the array has exactly one or two elements in
553      // it, in which case we CAN promote it, but we have to canonicalize this
554      // out if this is the only problem.
555      if ((NumElements == 1 || NumElements == 2) &&
556          AllUsersAreLoads(GEPI)) {
557        Info.needsCleanup = true;
558        return;  // Canonicalization required!
559      }
560      return MarkUnsafe(Info);
561    }
562  }
563
564  // Walk through the GEP type indices, checking the types that this indexes
565  // into.
566  for (; I != E; ++I) {
567    // Ignore struct elements, no extra checking needed for these.
568    if (isa<StructType>(*I))
569      continue;
570
571    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
572    if (!IdxVal) return MarkUnsafe(Info);
573
574    // Are all indices still zero?
575    IsAllZeroIndices &= IdxVal->isZero();
576
577    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
578      // This GEP indexes an array.  Verify that this is an in-range constant
579      // integer. Specifically, consider A[0][i]. We cannot know that the user
580      // isn't doing invalid things like allowing i to index an out-of-range
581      // subscript that accesses A[1].  Because of this, we have to reject SROA
582      // of any accesses into structs where any of the components are variables.
583      if (IdxVal->getZExtValue() >= AT->getNumElements())
584        return MarkUnsafe(Info);
585    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
586      if (IdxVal->getZExtValue() >= VT->getNumElements())
587        return MarkUnsafe(Info);
588    }
589  }
590
591  // If there are any non-simple uses of this getelementptr, make sure to reject
592  // them.
593  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
594}
595
596/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
597/// intrinsic can be promoted by SROA.  At this point, we know that the operand
598/// of the memintrinsic is a pointer to the beginning of the allocation.
599void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
600                                          unsigned OpNo, AllocaInfo &Info) {
601  // If not constant length, give up.
602  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
603  if (!Length) return MarkUnsafe(Info);
604
605  // If not the whole aggregate, give up.
606  if (Length->getZExtValue() !=
607      TD->getTypeAllocSize(AI->getType()->getElementType()))
608    return MarkUnsafe(Info);
609
610  // We only know about memcpy/memset/memmove.
611  if (!isa<MemIntrinsic>(MI))
612    return MarkUnsafe(Info);
613
614  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
615  // into or out of the aggregate.
616  if (OpNo == 1)
617    Info.isMemCpyDst = true;
618  else {
619    assert(OpNo == 2);
620    Info.isMemCpySrc = true;
621  }
622}
623
624/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
625/// are
626void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
627                                          AllocaInfo &Info) {
628  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
629       UI != E; ++UI) {
630    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
631      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
632    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
633      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
634    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
635      if (SI->isVolatile())
636        return MarkUnsafe(Info);
637
638      // If storing the entire alloca in one chunk through a bitcasted pointer
639      // to integer, we can transform it.  This happens (for example) when you
640      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
641      // memcpy case and occurs in various "byval" cases and emulated memcpys.
642      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
643          TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
644          TD->getTypeAllocSize(AI->getType()->getElementType())) {
645        Info.isMemCpyDst = true;
646        continue;
647      }
648      return MarkUnsafe(Info);
649    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
650      if (LI->isVolatile())
651        return MarkUnsafe(Info);
652
653      // If loading the entire alloca in one chunk through a bitcasted pointer
654      // to integer, we can transform it.  This happens (for example) when you
655      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
656      // memcpy case and occurs in various "byval" cases and emulated memcpys.
657      if (isa<IntegerType>(LI->getType()) &&
658          TD->getTypeAllocSize(LI->getType()) ==
659          TD->getTypeAllocSize(AI->getType()->getElementType())) {
660        Info.isMemCpySrc = true;
661        continue;
662      }
663      return MarkUnsafe(Info);
664    } else if (isa<DbgInfoIntrinsic>(UI)) {
665      // If one user is DbgInfoIntrinsic then check if all users are
666      // DbgInfoIntrinsics.
667      if (OnlyUsedByDbgInfoIntrinsics(BC)) {
668        Info.needsCleanup = true;
669        return;
670      }
671      else
672        MarkUnsafe(Info);
673    }
674    else {
675      return MarkUnsafe(Info);
676    }
677    if (Info.isUnsafe) return;
678  }
679}
680
681/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
682/// to its first element.  Transform users of the cast to use the new values
683/// instead.
684void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
685                                      SmallVector<AllocaInst*, 32> &NewElts) {
686  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
687  while (UI != UE) {
688    Instruction *User = cast<Instruction>(*UI++);
689    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
690      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
691      if (BCU->use_empty()) BCU->eraseFromParent();
692      continue;
693    }
694
695    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
696      // This must be memcpy/memmove/memset of the entire aggregate.
697      // Split into one per element.
698      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
699      continue;
700    }
701
702    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
703      // If this is a store of the entire alloca from an integer, rewrite it.
704      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
705      continue;
706    }
707
708    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
709      // If this is a load of the entire alloca to an integer, rewrite it.
710      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
711      continue;
712    }
713
714    // Otherwise it must be some other user of a gep of the first pointer.  Just
715    // leave these alone.
716    continue;
717  }
718}
719
720/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
721/// Rewrite it to copy or set the elements of the scalarized memory.
722void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
723                                        AllocationInst *AI,
724                                        SmallVector<AllocaInst*, 32> &NewElts) {
725
726  // If this is a memcpy/memmove, construct the other pointer as the
727  // appropriate type.  The "Other" pointer is the pointer that goes to memory
728  // that doesn't have anything to do with the alloca that we are promoting. For
729  // memset, this Value* stays null.
730  Value *OtherPtr = 0;
731  LLVMContext &Context = MI->getContext();
732  unsigned MemAlignment = MI->getAlignment();
733  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
734    if (BCInst == MTI->getRawDest())
735      OtherPtr = MTI->getRawSource();
736    else {
737      assert(BCInst == MTI->getRawSource());
738      OtherPtr = MTI->getRawDest();
739    }
740  }
741
742  // If there is an other pointer, we want to convert it to the same pointer
743  // type as AI has, so we can GEP through it safely.
744  if (OtherPtr) {
745    // It is likely that OtherPtr is a bitcast, if so, remove it.
746    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
747      OtherPtr = BC->getOperand(0);
748    // All zero GEPs are effectively bitcasts.
749    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
750      if (GEP->hasAllZeroIndices())
751        OtherPtr = GEP->getOperand(0);
752
753    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
754      if (BCE->getOpcode() == Instruction::BitCast)
755        OtherPtr = BCE->getOperand(0);
756
757    // If the pointer is not the right type, insert a bitcast to the right
758    // type.
759    if (OtherPtr->getType() != AI->getType())
760      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
761                                 MI);
762  }
763
764  // Process each element of the aggregate.
765  Value *TheFn = MI->getOperand(0);
766  const Type *BytePtrTy = MI->getRawDest()->getType();
767  bool SROADest = MI->getRawDest() == BCInst;
768
769  Constant *Zero = Context.getNullValue(Type::Int32Ty);
770
771  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
772    // If this is a memcpy/memmove, emit a GEP of the other element address.
773    Value *OtherElt = 0;
774    unsigned OtherEltAlign = MemAlignment;
775
776    if (OtherPtr) {
777      Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
778      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
779                                           OtherPtr->getNameStr()+"."+Twine(i),
780                                           MI);
781      uint64_t EltOffset;
782      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
783      if (const StructType *ST =
784            dyn_cast<StructType>(OtherPtrTy->getElementType())) {
785        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
786      } else {
787        const Type *EltTy =
788          cast<SequentialType>(OtherPtr->getType())->getElementType();
789        EltOffset = TD->getTypeAllocSize(EltTy)*i;
790      }
791
792      // The alignment of the other pointer is the guaranteed alignment of the
793      // element, which is affected by both the known alignment of the whole
794      // mem intrinsic and the alignment of the element.  If the alignment of
795      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
796      // known alignment is just 4 bytes.
797      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
798    }
799
800    Value *EltPtr = NewElts[i];
801    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
802
803    // If we got down to a scalar, insert a load or store as appropriate.
804    if (EltTy->isSingleValueType()) {
805      if (isa<MemTransferInst>(MI)) {
806        if (SROADest) {
807          // From Other to Alloca.
808          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
809          new StoreInst(Elt, EltPtr, MI);
810        } else {
811          // From Alloca to Other.
812          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
813          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
814        }
815        continue;
816      }
817      assert(isa<MemSetInst>(MI));
818
819      // If the stored element is zero (common case), just store a null
820      // constant.
821      Constant *StoreVal;
822      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
823        if (CI->isZero()) {
824          StoreVal = Context.getNullValue(EltTy);  // 0.0, null, 0, <0,0>
825        } else {
826          // If EltTy is a vector type, get the element type.
827          const Type *ValTy = EltTy->getScalarType();
828
829          // Construct an integer with the right value.
830          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
831          APInt OneVal(EltSize, CI->getZExtValue());
832          APInt TotalVal(OneVal);
833          // Set each byte.
834          for (unsigned i = 0; 8*i < EltSize; ++i) {
835            TotalVal = TotalVal.shl(8);
836            TotalVal |= OneVal;
837          }
838
839          // Convert the integer value to the appropriate type.
840          StoreVal = ConstantInt::get(Context, TotalVal);
841          if (isa<PointerType>(ValTy))
842            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
843          else if (ValTy->isFloatingPoint())
844            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
845          assert(StoreVal->getType() == ValTy && "Type mismatch!");
846
847          // If the requested value was a vector constant, create it.
848          if (EltTy != ValTy) {
849            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
850            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
851            StoreVal = ConstantVector::get(&Elts[0], NumElts);
852          }
853        }
854        new StoreInst(StoreVal, EltPtr, MI);
855        continue;
856      }
857      // Otherwise, if we're storing a byte variable, use a memset call for
858      // this element.
859    }
860
861    // Cast the element pointer to BytePtrTy.
862    if (EltPtr->getType() != BytePtrTy)
863      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
864
865    // Cast the other pointer (if we have one) to BytePtrTy.
866    if (OtherElt && OtherElt->getType() != BytePtrTy)
867      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
868                                 MI);
869
870    unsigned EltSize = TD->getTypeAllocSize(EltTy);
871
872    // Finally, insert the meminst for this element.
873    if (isa<MemTransferInst>(MI)) {
874      Value *Ops[] = {
875        SROADest ? EltPtr : OtherElt,  // Dest ptr
876        SROADest ? OtherElt : EltPtr,  // Src ptr
877        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
878        ConstantInt::get(Type::Int32Ty, OtherEltAlign)  // Align
879      };
880      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
881    } else {
882      assert(isa<MemSetInst>(MI));
883      Value *Ops[] = {
884        EltPtr, MI->getOperand(2),  // Dest, Value,
885        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
886        Zero  // Align
887      };
888      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
889    }
890  }
891  MI->eraseFromParent();
892}
893
894/// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
895/// overwrites the entire allocation.  Extract out the pieces of the stored
896/// integer and store them individually.
897void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
898                                         AllocationInst *AI,
899                                         SmallVector<AllocaInst*, 32> &NewElts){
900  // Extract each element out of the integer according to its structure offset
901  // and store the element value to the individual alloca.
902  Value *SrcVal = SI->getOperand(0);
903  const Type *AllocaEltTy = AI->getType()->getElementType();
904  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
905
906  // If this isn't a store of an integer to the whole alloca, it may be a store
907  // to the first element.  Just ignore the store in this case and normal SROA
908  // will handle it.
909  if (!isa<IntegerType>(SrcVal->getType()) ||
910      TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
911    return;
912  // Handle tail padding by extending the operand
913  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
914    SrcVal = new ZExtInst(SrcVal,
915                          IntegerType::get(AllocaSizeBits), "", SI);
916
917  DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
918
919  // There are two forms here: AI could be an array or struct.  Both cases
920  // have different ways to compute the element offset.
921  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
922    const StructLayout *Layout = TD->getStructLayout(EltSTy);
923
924    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
925      // Get the number of bits to shift SrcVal to get the value.
926      const Type *FieldTy = EltSTy->getElementType(i);
927      uint64_t Shift = Layout->getElementOffsetInBits(i);
928
929      if (TD->isBigEndian())
930        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
931
932      Value *EltVal = SrcVal;
933      if (Shift) {
934        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
935        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
936                                            "sroa.store.elt", SI);
937      }
938
939      // Truncate down to an integer of the right size.
940      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
941
942      // Ignore zero sized fields like {}, they obviously contain no data.
943      if (FieldSizeBits == 0) continue;
944
945      if (FieldSizeBits != AllocaSizeBits)
946        EltVal = new TruncInst(EltVal,
947                               IntegerType::get(FieldSizeBits), "", SI);
948      Value *DestField = NewElts[i];
949      if (EltVal->getType() == FieldTy) {
950        // Storing to an integer field of this size, just do it.
951      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
952        // Bitcast to the right element type (for fp/vector values).
953        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
954      } else {
955        // Otherwise, bitcast the dest pointer (for aggregates).
956        DestField = new BitCastInst(DestField,
957                              PointerType::getUnqual(EltVal->getType()),
958                                    "", SI);
959      }
960      new StoreInst(EltVal, DestField, SI);
961    }
962
963  } else {
964    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
965    const Type *ArrayEltTy = ATy->getElementType();
966    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
967    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
968
969    uint64_t Shift;
970
971    if (TD->isBigEndian())
972      Shift = AllocaSizeBits-ElementOffset;
973    else
974      Shift = 0;
975
976    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
977      // Ignore zero sized fields like {}, they obviously contain no data.
978      if (ElementSizeBits == 0) continue;
979
980      Value *EltVal = SrcVal;
981      if (Shift) {
982        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
983        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
984                                            "sroa.store.elt", SI);
985      }
986
987      // Truncate down to an integer of the right size.
988      if (ElementSizeBits != AllocaSizeBits)
989        EltVal = new TruncInst(EltVal,
990                               IntegerType::get(ElementSizeBits),"",SI);
991      Value *DestField = NewElts[i];
992      if (EltVal->getType() == ArrayEltTy) {
993        // Storing to an integer field of this size, just do it.
994      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
995        // Bitcast to the right element type (for fp/vector values).
996        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
997      } else {
998        // Otherwise, bitcast the dest pointer (for aggregates).
999        DestField = new BitCastInst(DestField,
1000                              PointerType::getUnqual(EltVal->getType()),
1001                                    "", SI);
1002      }
1003      new StoreInst(EltVal, DestField, SI);
1004
1005      if (TD->isBigEndian())
1006        Shift -= ElementOffset;
1007      else
1008        Shift += ElementOffset;
1009    }
1010  }
1011
1012  SI->eraseFromParent();
1013}
1014
1015/// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
1016/// an integer.  Load the individual pieces to form the aggregate value.
1017void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
1018                                        SmallVector<AllocaInst*, 32> &NewElts) {
1019  // Extract each element out of the NewElts according to its structure offset
1020  // and form the result value.
1021  const Type *AllocaEltTy = AI->getType()->getElementType();
1022  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1023
1024  // If this isn't a load of the whole alloca to an integer, it may be a load
1025  // of the first element.  Just ignore the load in this case and normal SROA
1026  // will handle it.
1027  if (!isa<IntegerType>(LI->getType()) ||
1028      TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
1029    return;
1030
1031  DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
1032
1033  // There are two forms here: AI could be an array or struct.  Both cases
1034  // have different ways to compute the element offset.
1035  const StructLayout *Layout = 0;
1036  uint64_t ArrayEltBitOffset = 0;
1037  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1038    Layout = TD->getStructLayout(EltSTy);
1039  } else {
1040    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1041    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1042  }
1043
1044  LLVMContext &Context = LI->getContext();
1045
1046  Value *ResultVal =
1047    Context.getNullValue(IntegerType::get(AllocaSizeBits));
1048
1049  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1050    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1051    // the pointer to an integer of the same size before doing the load.
1052    Value *SrcField = NewElts[i];
1053    const Type *FieldTy =
1054      cast<PointerType>(SrcField->getType())->getElementType();
1055    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1056
1057    // Ignore zero sized fields like {}, they obviously contain no data.
1058    if (FieldSizeBits == 0) continue;
1059
1060    const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits);
1061    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1062        !isa<VectorType>(FieldTy))
1063      SrcField = new BitCastInst(SrcField,
1064                                 PointerType::getUnqual(FieldIntTy),
1065                                 "", LI);
1066    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1067
1068    // If SrcField is a fp or vector of the right size but that isn't an
1069    // integer type, bitcast to an integer so we can shift it.
1070    if (SrcField->getType() != FieldIntTy)
1071      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1072
1073    // Zero extend the field to be the same size as the final alloca so that
1074    // we can shift and insert it.
1075    if (SrcField->getType() != ResultVal->getType())
1076      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1077
1078    // Determine the number of bits to shift SrcField.
1079    uint64_t Shift;
1080    if (Layout) // Struct case.
1081      Shift = Layout->getElementOffsetInBits(i);
1082    else  // Array case.
1083      Shift = i*ArrayEltBitOffset;
1084
1085    if (TD->isBigEndian())
1086      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1087
1088    if (Shift) {
1089      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1090      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1091    }
1092
1093    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1094  }
1095
1096  // Handle tail padding by truncating the result
1097  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1098    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1099
1100  LI->replaceAllUsesWith(ResultVal);
1101  LI->eraseFromParent();
1102}
1103
1104
1105/// HasPadding - Return true if the specified type has any structure or
1106/// alignment padding, false otherwise.
1107static bool HasPadding(const Type *Ty, const TargetData &TD) {
1108  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1109    const StructLayout *SL = TD.getStructLayout(STy);
1110    unsigned PrevFieldBitOffset = 0;
1111    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1112      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1113
1114      // Padding in sub-elements?
1115      if (HasPadding(STy->getElementType(i), TD))
1116        return true;
1117
1118      // Check to see if there is any padding between this element and the
1119      // previous one.
1120      if (i) {
1121        unsigned PrevFieldEnd =
1122        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1123        if (PrevFieldEnd < FieldBitOffset)
1124          return true;
1125      }
1126
1127      PrevFieldBitOffset = FieldBitOffset;
1128    }
1129
1130    //  Check for tail padding.
1131    if (unsigned EltCount = STy->getNumElements()) {
1132      unsigned PrevFieldEnd = PrevFieldBitOffset +
1133                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1134      if (PrevFieldEnd < SL->getSizeInBits())
1135        return true;
1136    }
1137
1138  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1139    return HasPadding(ATy->getElementType(), TD);
1140  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1141    return HasPadding(VTy->getElementType(), TD);
1142  }
1143  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1144}
1145
1146/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1147/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1148/// or 1 if safe after canonicalization has been performed.
1149///
1150int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
1151  // Loop over the use list of the alloca.  We can only transform it if all of
1152  // the users are safe to transform.
1153  AllocaInfo Info;
1154
1155  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1156       I != E; ++I) {
1157    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1158    if (Info.isUnsafe) {
1159      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
1160      return 0;
1161    }
1162  }
1163
1164  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1165  // source and destination, we have to be careful.  In particular, the memcpy
1166  // could be moving around elements that live in structure padding of the LLVM
1167  // types, but may actually be used.  In these cases, we refuse to promote the
1168  // struct.
1169  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1170      HasPadding(AI->getType()->getElementType(), *TD))
1171    return 0;
1172
1173  // If we require cleanup, return 1, otherwise return 3.
1174  return Info.needsCleanup ? 1 : 3;
1175}
1176
1177/// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
1178/// is canonicalized here.
1179void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
1180  gep_type_iterator I = gep_type_begin(GEPI);
1181  ++I;
1182
1183  const ArrayType *AT = dyn_cast<ArrayType>(*I);
1184  if (!AT)
1185    return;
1186
1187  uint64_t NumElements = AT->getNumElements();
1188
1189  if (isa<ConstantInt>(I.getOperand()))
1190    return;
1191
1192  LLVMContext &Context = GEPI->getContext();
1193
1194  if (NumElements == 1) {
1195    GEPI->setOperand(2, Context.getNullValue(Type::Int32Ty));
1196    return;
1197  }
1198
1199  assert(NumElements == 2 && "Unhandled case!");
1200  // All users of the GEP must be loads.  At each use of the GEP, insert
1201  // two loads of the appropriate indexed GEP and select between them.
1202  Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
1203                              Context.getNullValue(I.getOperand()->getType()),
1204                              "isone");
1205  // Insert the new GEP instructions, which are properly indexed.
1206  SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1207  Indices[1] = Context.getNullValue(Type::Int32Ty);
1208  Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1209                                             Indices.begin(),
1210                                             Indices.end(),
1211                                             GEPI->getName()+".0", GEPI);
1212  Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
1213  Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1214                                            Indices.begin(),
1215                                            Indices.end(),
1216                                            GEPI->getName()+".1", GEPI);
1217  // Replace all loads of the variable index GEP with loads from both
1218  // indexes and a select.
1219  while (!GEPI->use_empty()) {
1220    LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1221    Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1222    Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
1223    Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1224    LI->replaceAllUsesWith(R);
1225    LI->eraseFromParent();
1226  }
1227  GEPI->eraseFromParent();
1228}
1229
1230
1231/// CleanupAllocaUsers - If SROA reported that it can promote the specified
1232/// allocation, but only if cleaned up, perform the cleanups required.
1233void SROA::CleanupAllocaUsers(AllocationInst *AI) {
1234  // At this point, we know that the end result will be SROA'd and promoted, so
1235  // we can insert ugly code if required so long as sroa+mem2reg will clean it
1236  // up.
1237  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1238       UI != E; ) {
1239    User *U = *UI++;
1240    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
1241      CleanupGEP(GEPI);
1242    else {
1243      Instruction *I = cast<Instruction>(U);
1244      SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1245      if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1246        // Safe to remove debug info uses.
1247        while (!DbgInUses.empty()) {
1248          DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1249          DI->eraseFromParent();
1250        }
1251        I->eraseFromParent();
1252      }
1253    }
1254  }
1255}
1256
1257/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1258/// the offset specified by Offset (which is specified in bytes).
1259///
1260/// There are two cases we handle here:
1261///   1) A union of vector types of the same size and potentially its elements.
1262///      Here we turn element accesses into insert/extract element operations.
1263///      This promotes a <4 x float> with a store of float to the third element
1264///      into a <4 x float> that uses insert element.
1265///   2) A fully general blob of memory, which we turn into some (potentially
1266///      large) integer type with extract and insert operations where the loads
1267///      and stores would mutate the memory.
1268static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1269                        unsigned AllocaSize, const TargetData &TD,
1270                        LLVMContext &Context) {
1271  // If this could be contributing to a vector, analyze it.
1272  if (VecTy != Type::VoidTy) { // either null or a vector type.
1273
1274    // If the In type is a vector that is the same size as the alloca, see if it
1275    // matches the existing VecTy.
1276    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1277      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1278        // If we're storing/loading a vector of the right size, allow it as a
1279        // vector.  If this the first vector we see, remember the type so that
1280        // we know the element size.
1281        if (VecTy == 0)
1282          VecTy = VInTy;
1283        return;
1284      }
1285    } else if (In == Type::FloatTy || In == Type::DoubleTy ||
1286               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1287                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1288      // If we're accessing something that could be an element of a vector, see
1289      // if the implied vector agrees with what we already have and if Offset is
1290      // compatible with it.
1291      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1292      if (Offset % EltSize == 0 &&
1293          AllocaSize % EltSize == 0 &&
1294          (VecTy == 0 ||
1295           cast<VectorType>(VecTy)->getElementType()
1296                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1297        if (VecTy == 0)
1298          VecTy = VectorType::get(In, AllocaSize/EltSize);
1299        return;
1300      }
1301    }
1302  }
1303
1304  // Otherwise, we have a case that we can't handle with an optimized vector
1305  // form.  We can still turn this into a large integer.
1306  VecTy = Type::VoidTy;
1307}
1308
1309/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1310/// its accesses to use a to single vector type, return true, and set VecTy to
1311/// the new type.  If we could convert the alloca into a single promotable
1312/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
1313/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
1314/// is the current offset from the base of the alloca being analyzed.
1315///
1316/// If we see at least one access to the value that is as a vector type, set the
1317/// SawVec flag.
1318///
1319bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1320                              bool &SawVec, uint64_t Offset,
1321                              unsigned AllocaSize) {
1322  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1323    Instruction *User = cast<Instruction>(*UI);
1324
1325    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1326      // Don't break volatile loads.
1327      if (LI->isVolatile())
1328        return false;
1329      MergeInType(LI->getType(), Offset, VecTy,
1330                  AllocaSize, *TD, V->getContext());
1331      SawVec |= isa<VectorType>(LI->getType());
1332      continue;
1333    }
1334
1335    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1336      // Storing the pointer, not into the value?
1337      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1338      MergeInType(SI->getOperand(0)->getType(), Offset,
1339                  VecTy, AllocaSize, *TD, V->getContext());
1340      SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1341      continue;
1342    }
1343
1344    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1345      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1346                              AllocaSize))
1347        return false;
1348      IsNotTrivial = true;
1349      continue;
1350    }
1351
1352    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1353      // If this is a GEP with a variable indices, we can't handle it.
1354      if (!GEP->hasAllConstantIndices())
1355        return false;
1356
1357      // Compute the offset that this GEP adds to the pointer.
1358      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1359      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1360                                                &Indices[0], Indices.size());
1361      // See if all uses can be converted.
1362      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1363                              AllocaSize))
1364        return false;
1365      IsNotTrivial = true;
1366      continue;
1367    }
1368
1369    // If this is a constant sized memset of a constant value (e.g. 0) we can
1370    // handle it.
1371    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1372      // Store of constant value and constant size.
1373      if (isa<ConstantInt>(MSI->getValue()) &&
1374          isa<ConstantInt>(MSI->getLength())) {
1375        IsNotTrivial = true;
1376        continue;
1377      }
1378    }
1379
1380    // If this is a memcpy or memmove into or out of the whole allocation, we
1381    // can handle it like a load or store of the scalar type.
1382    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1383      if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
1384        if (Len->getZExtValue() == AllocaSize && Offset == 0) {
1385          IsNotTrivial = true;
1386          continue;
1387        }
1388    }
1389
1390    // Ignore dbg intrinsic.
1391    if (isa<DbgInfoIntrinsic>(User))
1392      continue;
1393
1394    // Otherwise, we cannot handle this!
1395    return false;
1396  }
1397
1398  return true;
1399}
1400
1401
1402/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1403/// directly.  This happens when we are converting an "integer union" to a
1404/// single integer scalar, or when we are converting a "vector union" to a
1405/// vector with insert/extractelement instructions.
1406///
1407/// Offset is an offset from the original alloca, in bits that need to be
1408/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1409void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1410  while (!Ptr->use_empty()) {
1411    Instruction *User = cast<Instruction>(Ptr->use_back());
1412
1413    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1414      ConvertUsesToScalar(CI, NewAI, Offset);
1415      CI->eraseFromParent();
1416      continue;
1417    }
1418
1419    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1420      // Compute the offset that this GEP adds to the pointer.
1421      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1422      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1423                                                &Indices[0], Indices.size());
1424      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1425      GEP->eraseFromParent();
1426      continue;
1427    }
1428
1429    IRBuilder<> Builder(User->getParent(), User);
1430
1431    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1432      // The load is a bit extract from NewAI shifted right by Offset bits.
1433      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1434      Value *NewLoadVal
1435        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1436      LI->replaceAllUsesWith(NewLoadVal);
1437      LI->eraseFromParent();
1438      continue;
1439    }
1440
1441    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1442      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1443      // FIXME: Remove once builder has Twine API.
1444      Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").str().c_str());
1445      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1446                                             Builder);
1447      Builder.CreateStore(New, NewAI);
1448      SI->eraseFromParent();
1449      continue;
1450    }
1451
1452    // If this is a constant sized memset of a constant value (e.g. 0) we can
1453    // transform it into a store of the expanded constant value.
1454    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1455      assert(MSI->getRawDest() == Ptr && "Consistency error!");
1456      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1457      if (NumBytes != 0) {
1458        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1459
1460        // Compute the value replicated the right number of times.
1461        APInt APVal(NumBytes*8, Val);
1462
1463        // Splat the value if non-zero.
1464        if (Val)
1465          for (unsigned i = 1; i != NumBytes; ++i)
1466            APVal |= APVal << 8;
1467
1468        // FIXME: Remove once builder has Twine API.
1469        Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").str().c_str());
1470        Value *New = ConvertScalar_InsertValue(
1471                                    ConstantInt::get(User->getContext(), APVal),
1472                                               Old, Offset, Builder);
1473        Builder.CreateStore(New, NewAI);
1474      }
1475      MSI->eraseFromParent();
1476      continue;
1477    }
1478
1479    // If this is a memcpy or memmove into or out of the whole allocation, we
1480    // can handle it like a load or store of the scalar type.
1481    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1482      assert(Offset == 0 && "must be store to start of alloca");
1483
1484      // If the source and destination are both to the same alloca, then this is
1485      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
1486      // as appropriate.
1487      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
1488
1489      if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
1490        // Dest must be OrigAI, change this to be a load from the original
1491        // pointer (bitcasted), then a store to our new alloca.
1492        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
1493        Value *SrcPtr = MTI->getSource();
1494        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
1495
1496        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
1497        SrcVal->setAlignment(MTI->getAlignment());
1498        Builder.CreateStore(SrcVal, NewAI);
1499      } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
1500        // Src must be OrigAI, change this to be a load from NewAI then a store
1501        // through the original dest pointer (bitcasted).
1502        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
1503        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
1504
1505        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
1506        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
1507        NewStore->setAlignment(MTI->getAlignment());
1508      } else {
1509        // Noop transfer. Src == Dst
1510      }
1511
1512
1513      MTI->eraseFromParent();
1514      continue;
1515    }
1516
1517    // If user is a dbg info intrinsic then it is safe to remove it.
1518    if (isa<DbgInfoIntrinsic>(User)) {
1519      User->eraseFromParent();
1520      continue;
1521    }
1522
1523    llvm_unreachable("Unsupported operation!");
1524  }
1525}
1526
1527/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1528/// or vector value FromVal, extracting the bits from the offset specified by
1529/// Offset.  This returns the value, which is of type ToType.
1530///
1531/// This happens when we are converting an "integer union" to a single
1532/// integer scalar, or when we are converting a "vector union" to a vector with
1533/// insert/extractelement instructions.
1534///
1535/// Offset is an offset from the original alloca, in bits that need to be
1536/// shifted to the right.
1537Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1538                                        uint64_t Offset, IRBuilder<> &Builder) {
1539  // If the load is of the whole new alloca, no conversion is needed.
1540  if (FromVal->getType() == ToType && Offset == 0)
1541    return FromVal;
1542
1543  // If the result alloca is a vector type, this is either an element
1544  // access or a bitcast to another vector type of the same size.
1545  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1546    if (isa<VectorType>(ToType))
1547      return Builder.CreateBitCast(FromVal, ToType, "tmp");
1548
1549    // Otherwise it must be an element access.
1550    unsigned Elt = 0;
1551    if (Offset) {
1552      unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1553      Elt = Offset/EltSize;
1554      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1555    }
1556    // Return the element extracted out of it.
1557    Value *V = Builder.CreateExtractElement(FromVal,
1558                                    ConstantInt::get(Type::Int32Ty,Elt),
1559                                            "tmp");
1560    if (V->getType() != ToType)
1561      V = Builder.CreateBitCast(V, ToType, "tmp");
1562    return V;
1563  }
1564
1565  // If ToType is a first class aggregate, extract out each of the pieces and
1566  // use insertvalue's to form the FCA.
1567  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1568    const StructLayout &Layout = *TD->getStructLayout(ST);
1569    Value *Res = UndefValue::get(ST);
1570    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1571      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1572                                        Offset+Layout.getElementOffsetInBits(i),
1573                                              Builder);
1574      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1575    }
1576    return Res;
1577  }
1578
1579  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1580    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1581    Value *Res = UndefValue::get(AT);
1582    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1583      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1584                                              Offset+i*EltSize, Builder);
1585      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1586    }
1587    return Res;
1588  }
1589
1590  // Otherwise, this must be a union that was converted to an integer value.
1591  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1592
1593  // If this is a big-endian system and the load is narrower than the
1594  // full alloca type, we need to do a shift to get the right bits.
1595  int ShAmt = 0;
1596  if (TD->isBigEndian()) {
1597    // On big-endian machines, the lowest bit is stored at the bit offset
1598    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1599    // integers with a bitwidth that is not a multiple of 8.
1600    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1601            TD->getTypeStoreSizeInBits(ToType) - Offset;
1602  } else {
1603    ShAmt = Offset;
1604  }
1605
1606  // Note: we support negative bitwidths (with shl) which are not defined.
1607  // We do this to support (f.e.) loads off the end of a structure where
1608  // only some bits are used.
1609  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1610    FromVal = Builder.CreateLShr(FromVal,
1611                                 ConstantInt::get(FromVal->getType(),
1612                                                           ShAmt), "tmp");
1613  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1614    FromVal = Builder.CreateShl(FromVal,
1615                                ConstantInt::get(FromVal->getType(),
1616                                                          -ShAmt), "tmp");
1617
1618  // Finally, unconditionally truncate the integer to the right width.
1619  unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1620  if (LIBitWidth < NTy->getBitWidth())
1621    FromVal =
1622      Builder.CreateTrunc(FromVal, IntegerType::get(LIBitWidth), "tmp");
1623  else if (LIBitWidth > NTy->getBitWidth())
1624    FromVal =
1625       Builder.CreateZExt(FromVal, IntegerType::get(LIBitWidth), "tmp");
1626
1627  // If the result is an integer, this is a trunc or bitcast.
1628  if (isa<IntegerType>(ToType)) {
1629    // Should be done.
1630  } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1631    // Just do a bitcast, we know the sizes match up.
1632    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1633  } else {
1634    // Otherwise must be a pointer.
1635    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1636  }
1637  assert(FromVal->getType() == ToType && "Didn't convert right?");
1638  return FromVal;
1639}
1640
1641
1642/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1643/// or vector value "Old" at the offset specified by Offset.
1644///
1645/// This happens when we are converting an "integer union" to a
1646/// single integer scalar, or when we are converting a "vector union" to a
1647/// vector with insert/extractelement instructions.
1648///
1649/// Offset is an offset from the original alloca, in bits that need to be
1650/// shifted to the right.
1651Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1652                                       uint64_t Offset, IRBuilder<> &Builder) {
1653
1654  // Convert the stored type to the actual type, shift it left to insert
1655  // then 'or' into place.
1656  const Type *AllocaType = Old->getType();
1657  LLVMContext &Context = Old->getContext();
1658
1659  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1660    uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
1661    uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
1662
1663    // Changing the whole vector with memset or with an access of a different
1664    // vector type?
1665    if (ValSize == VecSize)
1666      return Builder.CreateBitCast(SV, AllocaType, "tmp");
1667
1668    uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1669
1670    // Must be an element insertion.
1671    unsigned Elt = Offset/EltSize;
1672
1673    if (SV->getType() != VTy->getElementType())
1674      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1675
1676    SV = Builder.CreateInsertElement(Old, SV,
1677                                   ConstantInt::get(Type::Int32Ty, Elt),
1678                                     "tmp");
1679    return SV;
1680  }
1681
1682  // If SV is a first-class aggregate value, insert each value recursively.
1683  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1684    const StructLayout &Layout = *TD->getStructLayout(ST);
1685    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1686      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1687      Old = ConvertScalar_InsertValue(Elt, Old,
1688                                      Offset+Layout.getElementOffsetInBits(i),
1689                                      Builder);
1690    }
1691    return Old;
1692  }
1693
1694  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1695    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1696    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1697      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1698      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1699    }
1700    return Old;
1701  }
1702
1703  // If SV is a float, convert it to the appropriate integer type.
1704  // If it is a pointer, do the same.
1705  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1706  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1707  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1708  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1709  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1710    SV = Builder.CreateBitCast(SV, IntegerType::get(SrcWidth), "tmp");
1711  else if (isa<PointerType>(SV->getType()))
1712    SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(), "tmp");
1713
1714  // Zero extend or truncate the value if needed.
1715  if (SV->getType() != AllocaType) {
1716    if (SV->getType()->getPrimitiveSizeInBits() <
1717             AllocaType->getPrimitiveSizeInBits())
1718      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1719    else {
1720      // Truncation may be needed if storing more than the alloca can hold
1721      // (undefined behavior).
1722      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1723      SrcWidth = DestWidth;
1724      SrcStoreWidth = DestStoreWidth;
1725    }
1726  }
1727
1728  // If this is a big-endian system and the store is narrower than the
1729  // full alloca type, we need to do a shift to get the right bits.
1730  int ShAmt = 0;
1731  if (TD->isBigEndian()) {
1732    // On big-endian machines, the lowest bit is stored at the bit offset
1733    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1734    // integers with a bitwidth that is not a multiple of 8.
1735    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1736  } else {
1737    ShAmt = Offset;
1738  }
1739
1740  // Note: we support negative bitwidths (with shr) which are not defined.
1741  // We do this to support (f.e.) stores off the end of a structure where
1742  // only some bits in the structure are set.
1743  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1744  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1745    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1746                           ShAmt), "tmp");
1747    Mask <<= ShAmt;
1748  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1749    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1750                            -ShAmt), "tmp");
1751    Mask = Mask.lshr(-ShAmt);
1752  }
1753
1754  // Mask out the bits we are about to insert from the old value, and or
1755  // in the new bits.
1756  if (SrcWidth != DestWidth) {
1757    assert(DestWidth > SrcWidth);
1758    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1759    SV = Builder.CreateOr(Old, SV, "ins");
1760  }
1761  return SV;
1762}
1763
1764
1765
1766/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1767/// some part of a constant global variable.  This intentionally only accepts
1768/// constant expressions because we don't can't rewrite arbitrary instructions.
1769static bool PointsToConstantGlobal(Value *V) {
1770  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1771    return GV->isConstant();
1772  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1773    if (CE->getOpcode() == Instruction::BitCast ||
1774        CE->getOpcode() == Instruction::GetElementPtr)
1775      return PointsToConstantGlobal(CE->getOperand(0));
1776  return false;
1777}
1778
1779/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1780/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1781/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1782/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1783/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1784/// the alloca, and if the source pointer is a pointer to a constant  global, we
1785/// can optimize this.
1786static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1787                                           bool isOffset) {
1788  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1789    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1790      // Ignore non-volatile loads, they are always ok.
1791      if (!LI->isVolatile())
1792        continue;
1793
1794    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1795      // If uses of the bitcast are ok, we are ok.
1796      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1797        return false;
1798      continue;
1799    }
1800    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1801      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1802      // doesn't, it does.
1803      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1804                                         isOffset || !GEP->hasAllZeroIndices()))
1805        return false;
1806      continue;
1807    }
1808
1809    // If this is isn't our memcpy/memmove, reject it as something we can't
1810    // handle.
1811    if (!isa<MemTransferInst>(*UI))
1812      return false;
1813
1814    // If we already have seen a copy, reject the second one.
1815    if (TheCopy) return false;
1816
1817    // If the pointer has been offset from the start of the alloca, we can't
1818    // safely handle this.
1819    if (isOffset) return false;
1820
1821    // If the memintrinsic isn't using the alloca as the dest, reject it.
1822    if (UI.getOperandNo() != 1) return false;
1823
1824    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1825
1826    // If the source of the memcpy/move is not a constant global, reject it.
1827    if (!PointsToConstantGlobal(MI->getOperand(2)))
1828      return false;
1829
1830    // Otherwise, the transform is safe.  Remember the copy instruction.
1831    TheCopy = MI;
1832  }
1833  return true;
1834}
1835
1836/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1837/// modified by a copy from a constant global.  If we can prove this, we can
1838/// replace any uses of the alloca with uses of the global directly.
1839Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1840  Instruction *TheCopy = 0;
1841  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1842    return TheCopy;
1843  return 0;
1844}
1845