ScalarReplAggregates.cpp revision a0fcc08e6542a0376917b5c76a0af3eb2650c535
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced,  "Number of allocas broken up");
44STATISTIC(NumPromoted,  "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
47
48namespace {
49  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50    static char ID; // Pass identification, replacement for typeid
51    explicit SROA(signed T = -1) : FunctionPass((intptr_t)&ID) {
52      if (T == -1)
53        SRThreshold = 128;
54      else
55        SRThreshold = T;
56    }
57
58    bool runOnFunction(Function &F);
59
60    bool performScalarRepl(Function &F);
61    bool performPromotion(Function &F);
62
63    // getAnalysisUsage - This pass does not require any passes, but we know it
64    // will not alter the CFG, so say so.
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequired<DominatorTree>();
67      AU.addRequired<DominanceFrontier>();
68      AU.addRequired<TargetData>();
69      AU.setPreservesCFG();
70    }
71
72  private:
73    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
74    /// information about the uses.  All these fields are initialized to false
75    /// and set to true when something is learned.
76    struct AllocaInfo {
77      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
78      bool isUnsafe : 1;
79
80      /// needsCanon - This is set to true if there is some use of the alloca
81      /// that requires canonicalization.
82      bool needsCanon : 1;
83
84      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
85      bool isMemCpySrc : 1;
86
87      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
88      bool isMemCpyDst : 1;
89
90      AllocaInfo()
91        : isUnsafe(false), needsCanon(false),
92          isMemCpySrc(false), isMemCpyDst(false) {}
93    };
94
95    unsigned SRThreshold;
96
97    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
98
99    int isSafeAllocaToScalarRepl(AllocationInst *AI);
100
101    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
102                               AllocaInfo &Info);
103    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
104                         AllocaInfo &Info);
105    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
106                                        unsigned OpNo, AllocaInfo &Info);
107    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
108                                        AllocaInfo &Info);
109
110    void DoScalarReplacement(AllocationInst *AI,
111                             std::vector<AllocationInst*> &WorkList);
112    void CanonicalizeAllocaUsers(AllocationInst *AI);
113    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
114
115    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
116                                    SmallVector<AllocaInst*, 32> &NewElts);
117
118    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
119    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
120    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
121    Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
122                                     unsigned Offset);
123    Value *ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
124                                      unsigned Offset);
125    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
126  };
127}
128
129char SROA::ID = 0;
130static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
131
132// Public interface to the ScalarReplAggregates pass
133FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
134  return new SROA(Threshold);
135}
136
137
138bool SROA::runOnFunction(Function &F) {
139  bool Changed = performPromotion(F);
140  while (1) {
141    bool LocalChange = performScalarRepl(F);
142    if (!LocalChange) break;   // No need to repromote if no scalarrepl
143    Changed = true;
144    LocalChange = performPromotion(F);
145    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
146  }
147
148  return Changed;
149}
150
151
152bool SROA::performPromotion(Function &F) {
153  std::vector<AllocaInst*> Allocas;
154  DominatorTree         &DT = getAnalysis<DominatorTree>();
155  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
156
157  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
158
159  bool Changed = false;
160
161  while (1) {
162    Allocas.clear();
163
164    // Find allocas that are safe to promote, by looking at all instructions in
165    // the entry node
166    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
167      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
168        if (isAllocaPromotable(AI))
169          Allocas.push_back(AI);
170
171    if (Allocas.empty()) break;
172
173    PromoteMemToReg(Allocas, DT, DF);
174    NumPromoted += Allocas.size();
175    Changed = true;
176  }
177
178  return Changed;
179}
180
181// performScalarRepl - This algorithm is a simple worklist driven algorithm,
182// which runs on all of the malloc/alloca instructions in the function, removing
183// them if they are only used by getelementptr instructions.
184//
185bool SROA::performScalarRepl(Function &F) {
186  std::vector<AllocationInst*> WorkList;
187
188  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
189  BasicBlock &BB = F.getEntryBlock();
190  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
191    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
192      WorkList.push_back(A);
193
194  const TargetData &TD = getAnalysis<TargetData>();
195
196  // Process the worklist
197  bool Changed = false;
198  while (!WorkList.empty()) {
199    AllocationInst *AI = WorkList.back();
200    WorkList.pop_back();
201
202    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
203    // with unused elements.
204    if (AI->use_empty()) {
205      AI->eraseFromParent();
206      continue;
207    }
208
209    // If we can turn this aggregate value (potentially with casts) into a
210    // simple scalar value that can be mem2reg'd into a register value.
211    bool IsNotTrivial = false;
212    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
213      if (IsNotTrivial && ActualType != Type::VoidTy) {
214        ConvertToScalar(AI, ActualType);
215        Changed = true;
216        continue;
217      }
218
219    // Check to see if we can perform the core SROA transformation.  We cannot
220    // transform the allocation instruction if it is an array allocation
221    // (allocations OF arrays are ok though), and an allocation of a scalar
222    // value cannot be decomposed at all.
223    if (!AI->isArrayAllocation() &&
224        (isa<StructType>(AI->getAllocatedType()) ||
225         isa<ArrayType>(AI->getAllocatedType())) &&
226        AI->getAllocatedType()->isSized() &&
227        TD.getABITypeSize(AI->getAllocatedType()) < SRThreshold) {
228      // Check that all of the users of the allocation are capable of being
229      // transformed.
230      switch (isSafeAllocaToScalarRepl(AI)) {
231      default: assert(0 && "Unexpected value!");
232      case 0:  // Not safe to scalar replace.
233        break;
234      case 1:  // Safe, but requires cleanup/canonicalizations first
235        CanonicalizeAllocaUsers(AI);
236        // FALL THROUGH.
237      case 3:  // Safe to scalar replace.
238        DoScalarReplacement(AI, WorkList);
239        Changed = true;
240        continue;
241      }
242    }
243
244    // Check to see if this allocation is only modified by a memcpy/memmove from
245    // a constant global.  If this is the case, we can change all users to use
246    // the constant global instead.  This is commonly produced by the CFE by
247    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
248    // is only subsequently read.
249    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
250      DOUT << "Found alloca equal to global: " << *AI;
251      DOUT << "  memcpy = " << *TheCopy;
252      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
253      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
254      TheCopy->eraseFromParent();  // Don't mutate the global.
255      AI->eraseFromParent();
256      ++NumGlobals;
257      Changed = true;
258      continue;
259    }
260
261    // Otherwise, couldn't process this.
262  }
263
264  return Changed;
265}
266
267/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
268/// predicate, do SROA now.
269void SROA::DoScalarReplacement(AllocationInst *AI,
270                               std::vector<AllocationInst*> &WorkList) {
271  DOUT << "Found inst to SROA: " << *AI;
272  SmallVector<AllocaInst*, 32> ElementAllocas;
273  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
274    ElementAllocas.reserve(ST->getNumContainedTypes());
275    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
276      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
277                                      AI->getAlignment(),
278                                      AI->getName() + "." + utostr(i), AI);
279      ElementAllocas.push_back(NA);
280      WorkList.push_back(NA);  // Add to worklist for recursive processing
281    }
282  } else {
283    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
284    ElementAllocas.reserve(AT->getNumElements());
285    const Type *ElTy = AT->getElementType();
286    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
287      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
288                                      AI->getName() + "." + utostr(i), AI);
289      ElementAllocas.push_back(NA);
290      WorkList.push_back(NA);  // Add to worklist for recursive processing
291    }
292  }
293
294  // Now that we have created the alloca instructions that we want to use,
295  // expand the getelementptr instructions to use them.
296  //
297  while (!AI->use_empty()) {
298    Instruction *User = cast<Instruction>(AI->use_back());
299    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
300      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
301      BCInst->eraseFromParent();
302      continue;
303    }
304
305    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
306    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
307    unsigned Idx =
308       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
309
310    assert(Idx < ElementAllocas.size() && "Index out of range?");
311    AllocaInst *AllocaToUse = ElementAllocas[Idx];
312
313    Value *RepValue;
314    if (GEPI->getNumOperands() == 3) {
315      // Do not insert a new getelementptr instruction with zero indices, only
316      // to have it optimized out later.
317      RepValue = AllocaToUse;
318    } else {
319      // We are indexing deeply into the structure, so we still need a
320      // getelement ptr instruction to finish the indexing.  This may be
321      // expanded itself once the worklist is rerun.
322      //
323      SmallVector<Value*, 8> NewArgs;
324      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
325      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
326      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
327                                           NewArgs.end(), "", GEPI);
328      RepValue->takeName(GEPI);
329    }
330
331    // If this GEP is to the start of the aggregate, check for memcpys.
332    if (Idx == 0) {
333      bool IsStartOfAggregateGEP = true;
334      for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) {
335        if (!isa<ConstantInt>(GEPI->getOperand(i))) {
336          IsStartOfAggregateGEP = false;
337          break;
338        }
339        if (!cast<ConstantInt>(GEPI->getOperand(i))->isZero()) {
340          IsStartOfAggregateGEP = false;
341          break;
342        }
343      }
344
345      if (IsStartOfAggregateGEP)
346        RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
347    }
348
349
350    // Move all of the users over to the new GEP.
351    GEPI->replaceAllUsesWith(RepValue);
352    // Delete the old GEP
353    GEPI->eraseFromParent();
354  }
355
356  // Finally, delete the Alloca instruction
357  AI->eraseFromParent();
358  NumReplaced++;
359}
360
361
362/// isSafeElementUse - Check to see if this use is an allowed use for a
363/// getelementptr instruction of an array aggregate allocation.  isFirstElt
364/// indicates whether Ptr is known to the start of the aggregate.
365///
366void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
367                            AllocaInfo &Info) {
368  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
369       I != E; ++I) {
370    Instruction *User = cast<Instruction>(*I);
371    switch (User->getOpcode()) {
372    case Instruction::Load:  break;
373    case Instruction::Store:
374      // Store is ok if storing INTO the pointer, not storing the pointer
375      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
376      break;
377    case Instruction::GetElementPtr: {
378      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
379      bool AreAllZeroIndices = isFirstElt;
380      if (GEP->getNumOperands() > 1) {
381        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
382            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
383          // Using pointer arithmetic to navigate the array.
384          return MarkUnsafe(Info);
385
386        if (AreAllZeroIndices) {
387          for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) {
388            if (!isa<ConstantInt>(GEP->getOperand(i)) ||
389                !cast<ConstantInt>(GEP->getOperand(i))->isZero()) {
390              AreAllZeroIndices = false;
391              break;
392            }
393          }
394        }
395      }
396      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
397      if (Info.isUnsafe) return;
398      break;
399    }
400    case Instruction::BitCast:
401      if (isFirstElt) {
402        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
403        if (Info.isUnsafe) return;
404        break;
405      }
406      DOUT << "  Transformation preventing inst: " << *User;
407      return MarkUnsafe(Info);
408    case Instruction::Call:
409      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
410        if (isFirstElt) {
411          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
412          if (Info.isUnsafe) return;
413          break;
414        }
415      }
416      DOUT << "  Transformation preventing inst: " << *User;
417      return MarkUnsafe(Info);
418    default:
419      DOUT << "  Transformation preventing inst: " << *User;
420      return MarkUnsafe(Info);
421    }
422  }
423  return;  // All users look ok :)
424}
425
426/// AllUsersAreLoads - Return true if all users of this value are loads.
427static bool AllUsersAreLoads(Value *Ptr) {
428  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
429       I != E; ++I)
430    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
431      return false;
432  return true;
433}
434
435/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
436/// aggregate allocation.
437///
438void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
439                                 AllocaInfo &Info) {
440  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
441    return isSafeUseOfBitCastedAllocation(C, AI, Info);
442
443  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
444  if (GEPI == 0)
445    return MarkUnsafe(Info);
446
447  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
448
449  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
450  if (I == E ||
451      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
452    return MarkUnsafe(Info);
453  }
454
455  ++I;
456  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
457
458  bool IsAllZeroIndices = true;
459
460  // If this is a use of an array allocation, do a bit more checking for sanity.
461  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
462    uint64_t NumElements = AT->getNumElements();
463
464    if (ConstantInt *Idx = dyn_cast<ConstantInt>(I.getOperand())) {
465      IsAllZeroIndices &= Idx->isZero();
466
467      // Check to make sure that index falls within the array.  If not,
468      // something funny is going on, so we won't do the optimization.
469      //
470      if (Idx->getZExtValue() >= NumElements)
471        return MarkUnsafe(Info);
472
473      // We cannot scalar repl this level of the array unless any array
474      // sub-indices are in-range constants.  In particular, consider:
475      // A[0][i].  We cannot know that the user isn't doing invalid things like
476      // allowing i to index an out-of-range subscript that accesses A[1].
477      //
478      // Scalar replacing *just* the outer index of the array is probably not
479      // going to be a win anyway, so just give up.
480      for (++I; I != E && (isa<ArrayType>(*I) || isa<VectorType>(*I)); ++I) {
481        uint64_t NumElements;
482        if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
483          NumElements = SubArrayTy->getNumElements();
484        else
485          NumElements = cast<VectorType>(*I)->getNumElements();
486
487        ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
488        if (!IdxVal) return MarkUnsafe(Info);
489        if (IdxVal->getZExtValue() >= NumElements)
490          return MarkUnsafe(Info);
491        IsAllZeroIndices &= IdxVal->isZero();
492      }
493
494    } else {
495      IsAllZeroIndices = 0;
496
497      // If this is an array index and the index is not constant, we cannot
498      // promote... that is unless the array has exactly one or two elements in
499      // it, in which case we CAN promote it, but we have to canonicalize this
500      // out if this is the only problem.
501      if ((NumElements == 1 || NumElements == 2) &&
502          AllUsersAreLoads(GEPI)) {
503        Info.needsCanon = true;
504        return;  // Canonicalization required!
505      }
506      return MarkUnsafe(Info);
507    }
508  }
509
510  // If there are any non-simple uses of this getelementptr, make sure to reject
511  // them.
512  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
513}
514
515/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
516/// intrinsic can be promoted by SROA.  At this point, we know that the operand
517/// of the memintrinsic is a pointer to the beginning of the allocation.
518void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
519                                          unsigned OpNo, AllocaInfo &Info) {
520  // If not constant length, give up.
521  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
522  if (!Length) return MarkUnsafe(Info);
523
524  // If not the whole aggregate, give up.
525  const TargetData &TD = getAnalysis<TargetData>();
526  if (Length->getZExtValue() !=
527      TD.getABITypeSize(AI->getType()->getElementType()))
528    return MarkUnsafe(Info);
529
530  // We only know about memcpy/memset/memmove.
531  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
532    return MarkUnsafe(Info);
533
534  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
535  // into or out of the aggregate.
536  if (OpNo == 1)
537    Info.isMemCpyDst = true;
538  else {
539    assert(OpNo == 2);
540    Info.isMemCpySrc = true;
541  }
542}
543
544/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
545/// are
546void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
547                                          AllocaInfo &Info) {
548  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
549       UI != E; ++UI) {
550    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
551      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
552    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
553      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
554    } else {
555      return MarkUnsafe(Info);
556    }
557    if (Info.isUnsafe) return;
558  }
559}
560
561/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
562/// to its first element.  Transform users of the cast to use the new values
563/// instead.
564void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
565                                      SmallVector<AllocaInst*, 32> &NewElts) {
566  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
567  const TargetData &TD = getAnalysis<TargetData>();
568
569  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
570  while (UI != UE) {
571    if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) {
572      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
573      ++UI;
574      BCU->eraseFromParent();
575      continue;
576    }
577
578    // Otherwise, must be memcpy/memmove/memset of the entire aggregate.  Split
579    // into one per element.
580    MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI);
581
582    // If it's not a mem intrinsic, it must be some other user of a gep of the
583    // first pointer.  Just leave these alone.
584    if (!MI) {
585      ++UI;
586      continue;
587    }
588
589    // If this is a memcpy/memmove, construct the other pointer as the
590    // appropriate type.
591    Value *OtherPtr = 0;
592    if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
593      if (BCInst == MCI->getRawDest())
594        OtherPtr = MCI->getRawSource();
595      else {
596        assert(BCInst == MCI->getRawSource());
597        OtherPtr = MCI->getRawDest();
598      }
599    } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
600      if (BCInst == MMI->getRawDest())
601        OtherPtr = MMI->getRawSource();
602      else {
603        assert(BCInst == MMI->getRawSource());
604        OtherPtr = MMI->getRawDest();
605      }
606    }
607
608    // If there is an other pointer, we want to convert it to the same pointer
609    // type as AI has, so we can GEP through it.
610    if (OtherPtr) {
611      // It is likely that OtherPtr is a bitcast, if so, remove it.
612      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
613        OtherPtr = BC->getOperand(0);
614      if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
615        if (BCE->getOpcode() == Instruction::BitCast)
616          OtherPtr = BCE->getOperand(0);
617
618      // If the pointer is not the right type, insert a bitcast to the right
619      // type.
620      if (OtherPtr->getType() != AI->getType())
621        OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
622                                   MI);
623    }
624
625    // Process each element of the aggregate.
626    Value *TheFn = MI->getOperand(0);
627    const Type *BytePtrTy = MI->getRawDest()->getType();
628    bool SROADest = MI->getRawDest() == BCInst;
629
630    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
631      // If this is a memcpy/memmove, emit a GEP of the other element address.
632      Value *OtherElt = 0;
633      if (OtherPtr) {
634        Value *Idx[2];
635        Idx[0] = Zero;
636        Idx[1] = ConstantInt::get(Type::Int32Ty, i);
637        OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
638                                             OtherPtr->getNameStr()+"."+utostr(i),
639                                             MI);
640      }
641
642      Value *EltPtr = NewElts[i];
643      const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
644
645      // If we got down to a scalar, insert a load or store as appropriate.
646      if (EltTy->isSingleValueType()) {
647        if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
648          Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
649                                    MI);
650          new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
651          continue;
652        } else {
653          assert(isa<MemSetInst>(MI));
654
655          // If the stored element is zero (common case), just store a null
656          // constant.
657          Constant *StoreVal;
658          if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
659            if (CI->isZero()) {
660              StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
661            } else {
662              // If EltTy is a vector type, get the element type.
663              const Type *ValTy = EltTy;
664              if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
665                ValTy = VTy->getElementType();
666
667              // Construct an integer with the right value.
668              unsigned EltSize = TD.getTypeSizeInBits(ValTy);
669              APInt OneVal(EltSize, CI->getZExtValue());
670              APInt TotalVal(OneVal);
671              // Set each byte.
672              for (unsigned i = 0; 8*i < EltSize; ++i) {
673                TotalVal = TotalVal.shl(8);
674                TotalVal |= OneVal;
675              }
676
677              // Convert the integer value to the appropriate type.
678              StoreVal = ConstantInt::get(TotalVal);
679              if (isa<PointerType>(ValTy))
680                StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
681              else if (ValTy->isFloatingPoint())
682                StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
683              assert(StoreVal->getType() == ValTy && "Type mismatch!");
684
685              // If the requested value was a vector constant, create it.
686              if (EltTy != ValTy) {
687                unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
688                SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
689                StoreVal = ConstantVector::get(&Elts[0], NumElts);
690              }
691            }
692            new StoreInst(StoreVal, EltPtr, MI);
693            continue;
694          }
695          // Otherwise, if we're storing a byte variable, use a memset call for
696          // this element.
697        }
698      }
699
700      // Cast the element pointer to BytePtrTy.
701      if (EltPtr->getType() != BytePtrTy)
702        EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
703
704      // Cast the other pointer (if we have one) to BytePtrTy.
705      if (OtherElt && OtherElt->getType() != BytePtrTy)
706        OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
707                                   MI);
708
709      unsigned EltSize = TD.getABITypeSize(EltTy);
710
711      // Finally, insert the meminst for this element.
712      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
713        Value *Ops[] = {
714          SROADest ? EltPtr : OtherElt,  // Dest ptr
715          SROADest ? OtherElt : EltPtr,  // Src ptr
716          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
717          Zero  // Align
718        };
719        CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
720      } else {
721        assert(isa<MemSetInst>(MI));
722        Value *Ops[] = {
723          EltPtr, MI->getOperand(2),  // Dest, Value,
724          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
725          Zero  // Align
726        };
727        CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
728      }
729    }
730
731    // Finally, MI is now dead, as we've modified its actions to occur on all of
732    // the elements of the aggregate.
733    ++UI;
734    MI->eraseFromParent();
735  }
736}
737
738/// HasPadding - Return true if the specified type has any structure or
739/// alignment padding, false otherwise.
740static bool HasPadding(const Type *Ty, const TargetData &TD) {
741  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
742    const StructLayout *SL = TD.getStructLayout(STy);
743    unsigned PrevFieldBitOffset = 0;
744    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
745      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
746
747      // Padding in sub-elements?
748      if (HasPadding(STy->getElementType(i), TD))
749        return true;
750
751      // Check to see if there is any padding between this element and the
752      // previous one.
753      if (i) {
754        unsigned PrevFieldEnd =
755        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
756        if (PrevFieldEnd < FieldBitOffset)
757          return true;
758      }
759
760      PrevFieldBitOffset = FieldBitOffset;
761    }
762
763    //  Check for tail padding.
764    if (unsigned EltCount = STy->getNumElements()) {
765      unsigned PrevFieldEnd = PrevFieldBitOffset +
766                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
767      if (PrevFieldEnd < SL->getSizeInBits())
768        return true;
769    }
770
771  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
772    return HasPadding(ATy->getElementType(), TD);
773  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
774    return HasPadding(VTy->getElementType(), TD);
775  }
776  return TD.getTypeSizeInBits(Ty) != TD.getABITypeSizeInBits(Ty);
777}
778
779/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
780/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
781/// or 1 if safe after canonicalization has been performed.
782///
783int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
784  // Loop over the use list of the alloca.  We can only transform it if all of
785  // the users are safe to transform.
786  AllocaInfo Info;
787
788  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
789       I != E; ++I) {
790    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
791    if (Info.isUnsafe) {
792      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
793      return 0;
794    }
795  }
796
797  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
798  // source and destination, we have to be careful.  In particular, the memcpy
799  // could be moving around elements that live in structure padding of the LLVM
800  // types, but may actually be used.  In these cases, we refuse to promote the
801  // struct.
802  if (Info.isMemCpySrc && Info.isMemCpyDst &&
803      HasPadding(AI->getType()->getElementType(), getAnalysis<TargetData>()))
804    return 0;
805
806  // If we require cleanup, return 1, otherwise return 3.
807  return Info.needsCanon ? 1 : 3;
808}
809
810/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
811/// allocation, but only if cleaned up, perform the cleanups required.
812void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
813  // At this point, we know that the end result will be SROA'd and promoted, so
814  // we can insert ugly code if required so long as sroa+mem2reg will clean it
815  // up.
816  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
817       UI != E; ) {
818    GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
819    if (!GEPI) continue;
820    gep_type_iterator I = gep_type_begin(GEPI);
821    ++I;
822
823    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
824      uint64_t NumElements = AT->getNumElements();
825
826      if (!isa<ConstantInt>(I.getOperand())) {
827        if (NumElements == 1) {
828          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
829        } else {
830          assert(NumElements == 2 && "Unhandled case!");
831          // All users of the GEP must be loads.  At each use of the GEP, insert
832          // two loads of the appropriate indexed GEP and select between them.
833          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
834                              Constant::getNullValue(I.getOperand()->getType()),
835             "isone", GEPI);
836          // Insert the new GEP instructions, which are properly indexed.
837          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
838          Indices[1] = Constant::getNullValue(Type::Int32Ty);
839          Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
840                                                     Indices.begin(),
841                                                     Indices.end(),
842                                                     GEPI->getName()+".0", GEPI);
843          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
844          Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
845                                                    Indices.begin(),
846                                                    Indices.end(),
847                                                    GEPI->getName()+".1", GEPI);
848          // Replace all loads of the variable index GEP with loads from both
849          // indexes and a select.
850          while (!GEPI->use_empty()) {
851            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
852            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
853            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
854            Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
855            LI->replaceAllUsesWith(R);
856            LI->eraseFromParent();
857          }
858          GEPI->eraseFromParent();
859        }
860      }
861    }
862  }
863}
864
865/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
866/// types are incompatible, return true, otherwise update Accum and return
867/// false.
868///
869/// There are three cases we handle here:
870///   1) An effectively-integer union, where the pieces are stored into as
871///      smaller integers (common with byte swap and other idioms).
872///   2) A union of vector types of the same size and potentially its elements.
873///      Here we turn element accesses into insert/extract element operations.
874///   3) A union of scalar types, such as int/float or int/pointer.  Here we
875///      merge together into integers, allowing the xform to work with #1 as
876///      well.
877static bool MergeInType(const Type *In, const Type *&Accum,
878                        const TargetData &TD) {
879  // If this is our first type, just use it.
880  const VectorType *PTy;
881  if (Accum == Type::VoidTy || In == Accum) {
882    Accum = In;
883  } else if (In == Type::VoidTy) {
884    // Noop.
885  } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
886    // Otherwise pick whichever type is larger.
887    if (cast<IntegerType>(In)->getBitWidth() >
888        cast<IntegerType>(Accum)->getBitWidth())
889      Accum = In;
890  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
891    // Pointer unions just stay as one of the pointers.
892  } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
893    if ((PTy = dyn_cast<VectorType>(Accum)) &&
894        PTy->getElementType() == In) {
895      // Accum is a vector, and we are accessing an element: ok.
896    } else if ((PTy = dyn_cast<VectorType>(In)) &&
897               PTy->getElementType() == Accum) {
898      // In is a vector, and accum is an element: ok, remember In.
899      Accum = In;
900    } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
901               PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
902      // Two vectors of the same size: keep Accum.
903    } else {
904      // Cannot insert an short into a <4 x int> or handle
905      // <2 x int> -> <4 x int>
906      return true;
907    }
908  } else {
909    // Pointer/FP/Integer unions merge together as integers.
910    switch (Accum->getTypeID()) {
911    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
912    case Type::FloatTyID:   Accum = Type::Int32Ty; break;
913    case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
914    case Type::X86_FP80TyID:  return true;
915    case Type::FP128TyID: return true;
916    case Type::PPC_FP128TyID: return true;
917    default:
918      assert(Accum->isInteger() && "Unknown FP type!");
919      break;
920    }
921
922    switch (In->getTypeID()) {
923    case Type::PointerTyID: In = TD.getIntPtrType(); break;
924    case Type::FloatTyID:   In = Type::Int32Ty; break;
925    case Type::DoubleTyID:  In = Type::Int64Ty; break;
926    case Type::X86_FP80TyID:  return true;
927    case Type::FP128TyID: return true;
928    case Type::PPC_FP128TyID: return true;
929    default:
930      assert(In->isInteger() && "Unknown FP type!");
931      break;
932    }
933    return MergeInType(In, Accum, TD);
934  }
935  return false;
936}
937
938/// getUIntAtLeastAsBigAs - Return an unsigned integer type that is at least
939/// as big as the specified type.  If there is no suitable type, this returns
940/// null.
941const Type *getUIntAtLeastAsBigAs(unsigned NumBits) {
942  if (NumBits > 64) return 0;
943  if (NumBits > 32) return Type::Int64Ty;
944  if (NumBits > 16) return Type::Int32Ty;
945  if (NumBits > 8) return Type::Int16Ty;
946  return Type::Int8Ty;
947}
948
949/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
950/// single scalar integer type, return that type.  Further, if the use is not
951/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
952/// there are no uses of this pointer, return Type::VoidTy to differentiate from
953/// failure.
954///
955const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
956  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
957  const TargetData &TD = getAnalysis<TargetData>();
958  const PointerType *PTy = cast<PointerType>(V->getType());
959
960  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
961    Instruction *User = cast<Instruction>(*UI);
962
963    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
964      if (MergeInType(LI->getType(), UsedType, TD))
965        return 0;
966
967    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
968      // Storing the pointer, not into the value?
969      if (SI->getOperand(0) == V) return 0;
970
971      // NOTE: We could handle storing of FP imms into integers here!
972
973      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
974        return 0;
975    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
976      IsNotTrivial = true;
977      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
978      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
979    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
980      // Check to see if this is stepping over an element: GEP Ptr, int C
981      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
982        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
983        unsigned ElSize = TD.getABITypeSize(PTy->getElementType());
984        unsigned BitOffset = Idx*ElSize*8;
985        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
986
987        IsNotTrivial = true;
988        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
989        if (SubElt == 0) return 0;
990        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
991          const Type *NewTy =
992            getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(SubElt)+BitOffset);
993          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
994          continue;
995        }
996      } else if (GEP->getNumOperands() == 3 &&
997                 isa<ConstantInt>(GEP->getOperand(1)) &&
998                 isa<ConstantInt>(GEP->getOperand(2)) &&
999                 cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
1000        // We are stepping into an element, e.g. a structure or an array:
1001        // GEP Ptr, int 0, uint C
1002        const Type *AggTy = PTy->getElementType();
1003        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1004
1005        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
1006          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
1007        } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
1008          // Getting an element of the vector.
1009          if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.
1010
1011          // Merge in the vector type.
1012          if (MergeInType(VectorTy, UsedType, TD)) return 0;
1013
1014          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1015          if (SubTy == 0) return 0;
1016
1017          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1018            return 0;
1019
1020          // We'll need to change this to an insert/extract element operation.
1021          IsNotTrivial = true;
1022          continue;    // Everything looks ok
1023
1024        } else if (isa<StructType>(AggTy)) {
1025          // Structs are always ok.
1026        } else {
1027          return 0;
1028        }
1029        const Type *NTy = getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(AggTy));
1030        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
1031        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1032        if (SubTy == 0) return 0;
1033        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1034          return 0;
1035        continue;    // Everything looks ok
1036      }
1037      return 0;
1038    } else {
1039      // Cannot handle this!
1040      return 0;
1041    }
1042  }
1043
1044  return UsedType;
1045}
1046
1047/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
1048/// predicate and is non-trivial.  Convert it to something that can be trivially
1049/// promoted into a register by mem2reg.
1050void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
1051  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
1052       << *ActualTy << "\n";
1053  ++NumConverted;
1054
1055  BasicBlock *EntryBlock = AI->getParent();
1056  assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
1057         "Not in the entry block!");
1058  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
1059
1060  // Create and insert the alloca.
1061  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
1062                                     EntryBlock->begin());
1063  ConvertUsesToScalar(AI, NewAI, 0);
1064  delete AI;
1065}
1066
1067
1068/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1069/// directly.  This happens when we are converting an "integer union" to a
1070/// single integer scalar, or when we are converting a "vector union" to a
1071/// vector with insert/extractelement instructions.
1072///
1073/// Offset is an offset from the original alloca, in bits that need to be
1074/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1075void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
1076  while (!Ptr->use_empty()) {
1077    Instruction *User = cast<Instruction>(Ptr->use_back());
1078
1079    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1080      Value *NV = ConvertUsesOfLoadToScalar(LI, NewAI, Offset);
1081      LI->replaceAllUsesWith(NV);
1082      LI->eraseFromParent();
1083    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1084      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1085
1086      Value *SV = ConvertUsesOfStoreToScalar(SI, NewAI, Offset);
1087      new StoreInst(SV, NewAI, SI);
1088      SI->eraseFromParent();
1089
1090    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1091      ConvertUsesToScalar(CI, NewAI, Offset);
1092      CI->eraseFromParent();
1093    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1094      const PointerType *AggPtrTy =
1095        cast<PointerType>(GEP->getOperand(0)->getType());
1096      const TargetData &TD = getAnalysis<TargetData>();
1097      unsigned AggSizeInBits =
1098        TD.getABITypeSizeInBits(AggPtrTy->getElementType());
1099
1100      // Check to see if this is stepping over an element: GEP Ptr, int C
1101      unsigned NewOffset = Offset;
1102      if (GEP->getNumOperands() == 2) {
1103        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1104        unsigned BitOffset = Idx*AggSizeInBits;
1105
1106        NewOffset += BitOffset;
1107      } else if (GEP->getNumOperands() == 3) {
1108        // We know that operand #2 is zero.
1109        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1110        const Type *AggTy = AggPtrTy->getElementType();
1111        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
1112          unsigned ElSizeBits =
1113            TD.getABITypeSizeInBits(SeqTy->getElementType());
1114
1115          NewOffset += ElSizeBits*Idx;
1116        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
1117          unsigned EltBitOffset =
1118            TD.getStructLayout(STy)->getElementOffsetInBits(Idx);
1119
1120          NewOffset += EltBitOffset;
1121        } else {
1122          assert(0 && "Unsupported operation!");
1123          abort();
1124        }
1125      } else {
1126        assert(0 && "Unsupported operation!");
1127        abort();
1128      }
1129      ConvertUsesToScalar(GEP, NewAI, NewOffset);
1130      GEP->eraseFromParent();
1131    } else {
1132      assert(0 && "Unsupported operation!");
1133      abort();
1134    }
1135  }
1136}
1137
1138/// ConvertUsesOfLoadToScalar - Convert all of the users the specified load to
1139/// use the new alloca directly, returning the value that should replace the
1140/// load.  This happens when we are converting an "integer union" to a
1141/// single integer scalar, or when we are converting a "vector union" to a
1142/// vector with insert/extractelement instructions.
1143///
1144/// Offset is an offset from the original alloca, in bits that need to be
1145/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1146Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
1147                                       unsigned Offset) {
1148  // The load is a bit extract from NewAI shifted right by Offset bits.
1149  Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1150
1151  if (NV->getType() == LI->getType() && Offset == 0) {
1152    // We win, no conversion needed.
1153    return NV;
1154  }
1155
1156  // If the result type of the 'union' is a pointer, then this must be ptr->ptr
1157  // cast.  Anything else would result in NV being an integer.
1158  if (isa<PointerType>(NV->getType())) {
1159    assert(isa<PointerType>(LI->getType()));
1160    return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1161  }
1162
1163  if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) {
1164    // If the result alloca is a vector type, this is either an element
1165    // access or a bitcast to another vector type.
1166    if (isa<VectorType>(LI->getType()))
1167      return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1168
1169    // Otherwise it must be an element access.
1170    const TargetData &TD = getAnalysis<TargetData>();
1171    unsigned Elt = 0;
1172    if (Offset) {
1173      unsigned EltSize = TD.getABITypeSizeInBits(VTy->getElementType());
1174      Elt = Offset/EltSize;
1175      Offset -= EltSize*Elt;
1176    }
1177    NV = new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
1178                                "tmp", LI);
1179
1180    // If we're done, return this element.
1181    if (NV->getType() == LI->getType() && Offset == 0)
1182      return NV;
1183  }
1184
1185  const IntegerType *NTy = cast<IntegerType>(NV->getType());
1186
1187  // If this is a big-endian system and the load is narrower than the
1188  // full alloca type, we need to do a shift to get the right bits.
1189  int ShAmt = 0;
1190  const TargetData &TD = getAnalysis<TargetData>();
1191  if (TD.isBigEndian()) {
1192    // On big-endian machines, the lowest bit is stored at the bit offset
1193    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1194    // integers with a bitwidth that is not a multiple of 8.
1195    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
1196    TD.getTypeStoreSizeInBits(LI->getType()) - Offset;
1197  } else {
1198    ShAmt = Offset;
1199  }
1200
1201  // Note: we support negative bitwidths (with shl) which are not defined.
1202  // We do this to support (f.e.) loads off the end of a structure where
1203  // only some bits are used.
1204  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1205    NV = BinaryOperator::CreateLShr(NV,
1206                                    ConstantInt::get(NV->getType(),ShAmt),
1207                                    LI->getName(), LI);
1208  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1209    NV = BinaryOperator::CreateShl(NV,
1210                                   ConstantInt::get(NV->getType(),-ShAmt),
1211                                   LI->getName(), LI);
1212
1213  // Finally, unconditionally truncate the integer to the right width.
1214  unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType());
1215  if (LIBitWidth < NTy->getBitWidth())
1216    NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
1217                       LI->getName(), LI);
1218
1219  // If the result is an integer, this is a trunc or bitcast.
1220  if (isa<IntegerType>(LI->getType())) {
1221    // Should be done.
1222  } else if (LI->getType()->isFloatingPoint()) {
1223    // Just do a bitcast, we know the sizes match up.
1224    NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1225  } else {
1226    // Otherwise must be a pointer.
1227    NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1228  }
1229  assert(NV->getType() == LI->getType() && "Didn't convert right?");
1230  return NV;
1231}
1232
1233
1234/// ConvertUsesOfStoreToScalar - Convert the specified store to a load+store
1235/// pair of the new alloca directly, returning the value that should be stored
1236/// to the alloca.  This happens when we are converting an "integer union" to a
1237/// single integer scalar, or when we are converting a "vector union" to a
1238/// vector with insert/extractelement instructions.
1239///
1240/// Offset is an offset from the original alloca, in bits that need to be
1241/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1242Value *SROA::ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
1243                                        unsigned Offset) {
1244
1245  // Convert the stored type to the actual type, shift it left to insert
1246  // then 'or' into place.
1247  Value *SV = SI->getOperand(0);
1248  const Type *AllocaType = NewAI->getType()->getElementType();
1249  if (SV->getType() == AllocaType && Offset == 0) {
1250    // All is well.
1251  } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
1252    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1253
1254    // If the result alloca is a vector type, this is either an element
1255    // access or a bitcast to another vector type.
1256    if (isa<VectorType>(SV->getType())) {
1257      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1258    } else {
1259      // Must be an element insertion.
1260      const TargetData &TD = getAnalysis<TargetData>();
1261      unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType());
1262      SV = InsertElementInst::Create(Old, SV,
1263                                     ConstantInt::get(Type::Int32Ty, Elt),
1264                                     "tmp", SI);
1265    }
1266  } else if (isa<PointerType>(AllocaType)) {
1267    // If the alloca type is a pointer, then all the elements must be
1268    // pointers.
1269    if (SV->getType() != AllocaType)
1270      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1271  } else {
1272    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1273
1274    // If SV is a float, convert it to the appropriate integer type.
1275    // If it is a pointer, do the same, and also handle ptr->ptr casts
1276    // here.
1277    const TargetData &TD = getAnalysis<TargetData>();
1278    unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1279    unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
1280    unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
1281    unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
1282    if (SV->getType()->isFloatingPoint())
1283      SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
1284                           SV->getName(), SI);
1285    else if (isa<PointerType>(SV->getType()))
1286      SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
1287
1288    // Always zero extend the value if needed.
1289    if (SV->getType() != AllocaType)
1290      SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
1291
1292    // If this is a big-endian system and the store is narrower than the
1293    // full alloca type, we need to do a shift to get the right bits.
1294    int ShAmt = 0;
1295    if (TD.isBigEndian()) {
1296      // On big-endian machines, the lowest bit is stored at the bit offset
1297      // from the pointer given by getTypeStoreSizeInBits.  This matters for
1298      // integers with a bitwidth that is not a multiple of 8.
1299      ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1300    } else {
1301      ShAmt = Offset;
1302    }
1303
1304    // Note: we support negative bitwidths (with shr) which are not defined.
1305    // We do this to support (f.e.) stores off the end of a structure where
1306    // only some bits in the structure are set.
1307    APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1308    if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1309      SV = BinaryOperator::CreateShl(SV,
1310                                     ConstantInt::get(SV->getType(), ShAmt),
1311                                     SV->getName(), SI);
1312      Mask <<= ShAmt;
1313    } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1314      SV = BinaryOperator::CreateLShr(SV,
1315                                      ConstantInt::get(SV->getType(),-ShAmt),
1316                                      SV->getName(), SI);
1317      Mask = Mask.lshr(ShAmt);
1318    }
1319
1320    // Mask out the bits we are about to insert from the old value, and or
1321    // in the new bits.
1322    if (SrcWidth != DestWidth) {
1323      assert(DestWidth > SrcWidth);
1324      Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
1325                                      Old->getName()+".mask", SI);
1326      SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", SI);
1327    }
1328  }
1329  return SV;
1330}
1331
1332
1333
1334/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1335/// some part of a constant global variable.  This intentionally only accepts
1336/// constant expressions because we don't can't rewrite arbitrary instructions.
1337static bool PointsToConstantGlobal(Value *V) {
1338  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1339    return GV->isConstant();
1340  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1341    if (CE->getOpcode() == Instruction::BitCast ||
1342        CE->getOpcode() == Instruction::GetElementPtr)
1343      return PointsToConstantGlobal(CE->getOperand(0));
1344  return false;
1345}
1346
1347/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1348/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1349/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1350/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1351/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1352/// the alloca, and if the source pointer is a pointer to a constant  global, we
1353/// can optimize this.
1354static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1355                                           bool isOffset) {
1356  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1357    if (isa<LoadInst>(*UI)) {
1358      // Ignore loads, they are always ok.
1359      continue;
1360    }
1361    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1362      // If uses of the bitcast are ok, we are ok.
1363      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1364        return false;
1365      continue;
1366    }
1367    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1368      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1369      // doesn't, it does.
1370      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1371                                         isOffset || !GEP->hasAllZeroIndices()))
1372        return false;
1373      continue;
1374    }
1375
1376    // If this is isn't our memcpy/memmove, reject it as something we can't
1377    // handle.
1378    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1379      return false;
1380
1381    // If we already have seen a copy, reject the second one.
1382    if (TheCopy) return false;
1383
1384    // If the pointer has been offset from the start of the alloca, we can't
1385    // safely handle this.
1386    if (isOffset) return false;
1387
1388    // If the memintrinsic isn't using the alloca as the dest, reject it.
1389    if (UI.getOperandNo() != 1) return false;
1390
1391    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1392
1393    // If the source of the memcpy/move is not a constant global, reject it.
1394    if (!PointsToConstantGlobal(MI->getOperand(2)))
1395      return false;
1396
1397    // Otherwise, the transform is safe.  Remember the copy instruction.
1398    TheCopy = MI;
1399  }
1400  return true;
1401}
1402
1403/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1404/// modified by a copy from a constant global.  If we can prove this, we can
1405/// replace any uses of the alloca with uses of the global directly.
1406Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1407  Instruction *TheCopy = 0;
1408  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1409    return TheCopy;
1410  return 0;
1411}
1412