ScalarReplAggregates.cpp revision ae5d51c9c915f93fbf9b3e644a165c96d6b0ddbd
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Scalar.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/Pass.h"
27#include "llvm/Instructions.h"
28#include "llvm/Analysis/Dominators.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Transforms/Utils/PromoteMemToReg.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/ADT/StringExtras.h"
37#include <iostream>
38using namespace llvm;
39
40namespace {
41  Statistic<> NumReplaced("scalarrepl", "Number of allocas broken up");
42  Statistic<> NumPromoted("scalarrepl", "Number of allocas promoted");
43  Statistic<> NumConverted("scalarrepl",
44                           "Number of aggregates converted to scalar");
45
46  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
47    bool runOnFunction(Function &F);
48
49    bool performScalarRepl(Function &F);
50    bool performPromotion(Function &F);
51
52    // getAnalysisUsage - This pass does not require any passes, but we know it
53    // will not alter the CFG, so say so.
54    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
55      AU.addRequired<DominatorTree>();
56      AU.addRequired<DominanceFrontier>();
57      AU.addRequired<TargetData>();
58      AU.setPreservesCFG();
59    }
60
61  private:
62    int isSafeElementUse(Value *Ptr);
63    int isSafeUseOfAllocation(Instruction *User);
64    int isSafeAllocaToScalarRepl(AllocationInst *AI);
65    void CanonicalizeAllocaUsers(AllocationInst *AI);
66    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
67
68    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
69    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
70    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
71  };
72
73  RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
74}
75
76// Public interface to the ScalarReplAggregates pass
77FunctionPass *llvm::createScalarReplAggregatesPass() { return new SROA(); }
78
79
80bool SROA::runOnFunction(Function &F) {
81  bool Changed = performPromotion(F);
82  while (1) {
83    bool LocalChange = performScalarRepl(F);
84    if (!LocalChange) break;   // No need to repromote if no scalarrepl
85    Changed = true;
86    LocalChange = performPromotion(F);
87    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
88  }
89
90  return Changed;
91}
92
93
94bool SROA::performPromotion(Function &F) {
95  std::vector<AllocaInst*> Allocas;
96  const TargetData &TD = getAnalysis<TargetData>();
97  DominatorTree     &DT = getAnalysis<DominatorTree>();
98  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
99
100  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
101
102  bool Changed = false;
103
104  while (1) {
105    Allocas.clear();
106
107    // Find allocas that are safe to promote, by looking at all instructions in
108    // the entry node
109    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
110      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
111        if (isAllocaPromotable(AI, TD))
112          Allocas.push_back(AI);
113
114    if (Allocas.empty()) break;
115
116    PromoteMemToReg(Allocas, DT, DF, TD);
117    NumPromoted += Allocas.size();
118    Changed = true;
119  }
120
121  return Changed;
122}
123
124// performScalarRepl - This algorithm is a simple worklist driven algorithm,
125// which runs on all of the malloc/alloca instructions in the function, removing
126// them if they are only used by getelementptr instructions.
127//
128bool SROA::performScalarRepl(Function &F) {
129  std::vector<AllocationInst*> WorkList;
130
131  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
132  BasicBlock &BB = F.getEntryBlock();
133  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
134    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
135      WorkList.push_back(A);
136
137  // Process the worklist
138  bool Changed = false;
139  while (!WorkList.empty()) {
140    AllocationInst *AI = WorkList.back();
141    WorkList.pop_back();
142
143    // If we can turn this aggregate value (potentially with casts) into a
144    // simple scalar value that can be mem2reg'd into a register value.
145    bool IsNotTrivial = false;
146    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
147      if (IsNotTrivial && ActualType != Type::VoidTy) {
148        ConvertToScalar(AI, ActualType);
149        Changed = true;
150        continue;
151      }
152
153    // We cannot transform the allocation instruction if it is an array
154    // allocation (allocations OF arrays are ok though), and an allocation of a
155    // scalar value cannot be decomposed at all.
156    //
157    if (AI->isArrayAllocation() ||
158        (!isa<StructType>(AI->getAllocatedType()) &&
159         !isa<ArrayType>(AI->getAllocatedType()))) continue;
160
161    // Check that all of the users of the allocation are capable of being
162    // transformed.
163    switch (isSafeAllocaToScalarRepl(AI)) {
164    default: assert(0 && "Unexpected value!");
165    case 0:  // Not safe to scalar replace.
166      continue;
167    case 1:  // Safe, but requires cleanup/canonicalizations first
168      CanonicalizeAllocaUsers(AI);
169    case 3:  // Safe to scalar replace.
170      break;
171    }
172
173    DEBUG(std::cerr << "Found inst to xform: " << *AI);
174    Changed = true;
175
176    std::vector<AllocaInst*> ElementAllocas;
177    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
178      ElementAllocas.reserve(ST->getNumContainedTypes());
179      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
180        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
181                                        AI->getAlignment(),
182                                        AI->getName() + "." + utostr(i), AI);
183        ElementAllocas.push_back(NA);
184        WorkList.push_back(NA);  // Add to worklist for recursive processing
185      }
186    } else {
187      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
188      ElementAllocas.reserve(AT->getNumElements());
189      const Type *ElTy = AT->getElementType();
190      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
191        AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
192                                        AI->getName() + "." + utostr(i), AI);
193        ElementAllocas.push_back(NA);
194        WorkList.push_back(NA);  // Add to worklist for recursive processing
195      }
196    }
197
198    // Now that we have created the alloca instructions that we want to use,
199    // expand the getelementptr instructions to use them.
200    //
201    while (!AI->use_empty()) {
202      Instruction *User = cast<Instruction>(AI->use_back());
203      GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
204      // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
205      unsigned Idx =
206         (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
207
208      assert(Idx < ElementAllocas.size() && "Index out of range?");
209      AllocaInst *AllocaToUse = ElementAllocas[Idx];
210
211      Value *RepValue;
212      if (GEPI->getNumOperands() == 3) {
213        // Do not insert a new getelementptr instruction with zero indices, only
214        // to have it optimized out later.
215        RepValue = AllocaToUse;
216      } else {
217        // We are indexing deeply into the structure, so we still need a
218        // getelement ptr instruction to finish the indexing.  This may be
219        // expanded itself once the worklist is rerun.
220        //
221        std::string OldName = GEPI->getName();  // Steal the old name.
222        std::vector<Value*> NewArgs;
223        NewArgs.push_back(Constant::getNullValue(Type::IntTy));
224        NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end());
225        GEPI->setName("");
226        RepValue = new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI);
227      }
228
229      // Move all of the users over to the new GEP.
230      GEPI->replaceAllUsesWith(RepValue);
231      // Delete the old GEP
232      GEPI->eraseFromParent();
233    }
234
235    // Finally, delete the Alloca instruction
236    AI->getParent()->getInstList().erase(AI);
237    NumReplaced++;
238  }
239
240  return Changed;
241}
242
243
244/// isSafeElementUse - Check to see if this use is an allowed use for a
245/// getelementptr instruction of an array aggregate allocation.
246///
247int SROA::isSafeElementUse(Value *Ptr) {
248  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
249       I != E; ++I) {
250    Instruction *User = cast<Instruction>(*I);
251    switch (User->getOpcode()) {
252    case Instruction::Load:  break;
253    case Instruction::Store:
254      // Store is ok if storing INTO the pointer, not storing the pointer
255      if (User->getOperand(0) == Ptr) return 0;
256      break;
257    case Instruction::GetElementPtr: {
258      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
259      if (GEP->getNumOperands() > 1) {
260        if (!isa<Constant>(GEP->getOperand(1)) ||
261            !cast<Constant>(GEP->getOperand(1))->isNullValue())
262          return 0;  // Using pointer arithmetic to navigate the array...
263      }
264      if (!isSafeElementUse(GEP)) return 0;
265      break;
266    }
267    default:
268      DEBUG(std::cerr << "  Transformation preventing inst: " << *User);
269      return 0;
270    }
271  }
272  return 3;  // All users look ok :)
273}
274
275/// AllUsersAreLoads - Return true if all users of this value are loads.
276static bool AllUsersAreLoads(Value *Ptr) {
277  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
278       I != E; ++I)
279    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
280      return false;
281  return true;
282}
283
284/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
285/// aggregate allocation.
286///
287int SROA::isSafeUseOfAllocation(Instruction *User) {
288  if (!isa<GetElementPtrInst>(User)) return 0;
289
290  GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
291  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
292
293  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
294  if (I == E ||
295      I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
296    return 0;
297
298  ++I;
299  if (I == E) return 0;  // ran out of GEP indices??
300
301  // If this is a use of an array allocation, do a bit more checking for sanity.
302  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
303    uint64_t NumElements = AT->getNumElements();
304
305    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
306      // Check to make sure that index falls within the array.  If not,
307      // something funny is going on, so we won't do the optimization.
308      //
309      if (cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue() >= NumElements)
310        return 0;
311
312      // We cannot scalar repl this level of the array unless any array
313      // sub-indices are in-range constants.  In particular, consider:
314      // A[0][i].  We cannot know that the user isn't doing invalid things like
315      // allowing i to index an out-of-range subscript that accesses A[1].
316      //
317      // Scalar replacing *just* the outer index of the array is probably not
318      // going to be a win anyway, so just give up.
319      for (++I; I != E && isa<ArrayType>(*I); ++I) {
320        const ArrayType *SubArrayTy = cast<ArrayType>(*I);
321        uint64_t NumElements = SubArrayTy->getNumElements();
322        if (!isa<ConstantInt>(I.getOperand())) return 0;
323        if (cast<ConstantInt>(I.getOperand())->getZExtValue() >= NumElements)
324          return 0;
325      }
326
327    } else {
328      // If this is an array index and the index is not constant, we cannot
329      // promote... that is unless the array has exactly one or two elements in
330      // it, in which case we CAN promote it, but we have to canonicalize this
331      // out if this is the only problem.
332      if ((NumElements == 1 || NumElements == 2) &&
333          AllUsersAreLoads(GEPI))
334        return 1;  // Canonicalization required!
335      return 0;
336    }
337  }
338
339  // If there are any non-simple uses of this getelementptr, make sure to reject
340  // them.
341  return isSafeElementUse(GEPI);
342}
343
344/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
345/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
346/// or 1 if safe after canonicalization has been performed.
347///
348int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
349  // Loop over the use list of the alloca.  We can only transform it if all of
350  // the users are safe to transform.
351  //
352  int isSafe = 3;
353  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
354       I != E; ++I) {
355    isSafe &= isSafeUseOfAllocation(cast<Instruction>(*I));
356    if (isSafe == 0) {
357      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
358            << **I);
359      return 0;
360    }
361  }
362  // If we require cleanup, isSafe is now 1, otherwise it is 3.
363  return isSafe;
364}
365
366/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
367/// allocation, but only if cleaned up, perform the cleanups required.
368void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
369  // At this point, we know that the end result will be SROA'd and promoted, so
370  // we can insert ugly code if required so long as sroa+mem2reg will clean it
371  // up.
372  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
373       UI != E; ) {
374    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(*UI++);
375    gep_type_iterator I = gep_type_begin(GEPI);
376    ++I;
377
378    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
379      uint64_t NumElements = AT->getNumElements();
380
381      if (!isa<ConstantInt>(I.getOperand())) {
382        if (NumElements == 1) {
383          GEPI->setOperand(2, Constant::getNullValue(Type::IntTy));
384        } else {
385          assert(NumElements == 2 && "Unhandled case!");
386          // All users of the GEP must be loads.  At each use of the GEP, insert
387          // two loads of the appropriate indexed GEP and select between them.
388          Value *IsOne = BinaryOperator::createSetNE(I.getOperand(),
389                              Constant::getNullValue(I.getOperand()->getType()),
390                                                     "isone", GEPI);
391          // Insert the new GEP instructions, which are properly indexed.
392          std::vector<Value*> Indices(GEPI->op_begin()+1, GEPI->op_end());
393          Indices[1] = Constant::getNullValue(Type::IntTy);
394          Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
395                                                 GEPI->getName()+".0", GEPI);
396          Indices[1] = ConstantInt::get(Type::IntTy, 1);
397          Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
398                                                GEPI->getName()+".1", GEPI);
399          // Replace all loads of the variable index GEP with loads from both
400          // indexes and a select.
401          while (!GEPI->use_empty()) {
402            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
403            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
404            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
405            Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
406            LI->replaceAllUsesWith(R);
407            LI->eraseFromParent();
408          }
409          GEPI->eraseFromParent();
410        }
411      }
412    }
413  }
414}
415
416/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
417/// types are incompatible, return true, otherwise update Accum and return
418/// false.
419///
420/// There are two cases we handle here:
421///   1) An effectively integer union, where the pieces are stored into as
422///      smaller integers (common with byte swap and other idioms).
423///   2) A union of a vector and its elements.  Here we turn element accesses
424///      into insert/extract element operations.
425static bool MergeInType(const Type *In, const Type *&Accum,
426                        const TargetData &TD) {
427  // If this is our first type, just use it.
428  const PackedType *PTy;
429  if (Accum == Type::VoidTy || In == Accum) {
430    Accum = In;
431  } else if (In->isIntegral() && Accum->isIntegral()) {   // integer union.
432    // Otherwise pick whichever type is larger.
433    if (In->getTypeID() > Accum->getTypeID())
434      Accum = In;
435  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
436    // Pointer unions just stay as one of the pointers.
437  } else if ((PTy = dyn_cast<PackedType>(Accum)) &&
438             PTy->getElementType() == In) {
439    // Accum is a vector, and we are accessing an element: ok.
440  } else if ((PTy = dyn_cast<PackedType>(In)) &&
441             PTy->getElementType() == Accum) {
442    // In is a vector, and accum is an element: ok, remember In.
443    Accum = In;
444  } else if (isa<PointerType>(In) && Accum->isIntegral()) {
445    // Pointer/Integer unions merge together as integers.
446    return MergeInType(TD.getIntPtrType(), Accum, TD);
447  } else if (isa<PointerType>(Accum) && In->isIntegral()) {
448    // Pointer/Integer unions merge together as integers.
449    Accum = TD.getIntPtrType();
450    return MergeInType(In, Accum, TD);
451  } else {
452    return true;
453  }
454  return false;
455}
456
457/// getUIntAtLeastAsBitAs - Return an unsigned integer type that is at least
458/// as big as the specified type.  If there is no suitable type, this returns
459/// null.
460const Type *getUIntAtLeastAsBitAs(unsigned NumBits) {
461  if (NumBits > 64) return 0;
462  if (NumBits > 32) return Type::ULongTy;
463  if (NumBits > 16) return Type::UIntTy;
464  if (NumBits > 8) return Type::UShortTy;
465  return Type::UByteTy;
466}
467
468/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
469/// single scalar integer type, return that type.  Further, if the use is not
470/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
471/// there are no uses of this pointer, return Type::VoidTy to differentiate from
472/// failure.
473///
474const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
475  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
476  const TargetData &TD = getAnalysis<TargetData>();
477  const PointerType *PTy = cast<PointerType>(V->getType());
478
479  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
480    Instruction *User = cast<Instruction>(*UI);
481
482    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
483      if (MergeInType(LI->getType(), UsedType, TD))
484        return 0;
485
486    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
487      // Storing the pointer, not the into the value?
488      if (SI->getOperand(0) == V) return 0;
489
490      // NOTE: We could handle storing of FP imms into integers here!
491
492      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
493        return 0;
494    } else if (CastInst *CI = dyn_cast<CastInst>(User)) {
495      if (!isa<PointerType>(CI->getType())) return 0;
496      IsNotTrivial = true;
497      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
498      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
499    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
500      // Check to see if this is stepping over an element: GEP Ptr, int C
501      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
502        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
503        unsigned ElSize = TD.getTypeSize(PTy->getElementType());
504        unsigned BitOffset = Idx*ElSize*8;
505        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
506
507        IsNotTrivial = true;
508        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
509        if (SubElt == 0) return 0;
510        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
511          const Type *NewTy =
512            getUIntAtLeastAsBitAs(TD.getTypeSize(SubElt)*8+BitOffset);
513          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
514          continue;
515        }
516      } else if (GEP->getNumOperands() == 3 &&
517                 isa<ConstantInt>(GEP->getOperand(1)) &&
518                 isa<ConstantInt>(GEP->getOperand(2)) &&
519                 cast<Constant>(GEP->getOperand(1))->isNullValue()) {
520        // We are stepping into an element, e.g. a structure or an array:
521        // GEP Ptr, int 0, uint C
522        const Type *AggTy = PTy->getElementType();
523        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
524
525        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
526          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
527        } else if (const PackedType *PackedTy = dyn_cast<PackedType>(AggTy)) {
528          // Getting an element of the packed vector.
529          if (Idx >= PackedTy->getNumElements()) return 0;  // Out of range.
530
531          // Merge in the packed type.
532          if (MergeInType(PackedTy, UsedType, TD)) return 0;
533
534          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
535          if (SubTy == 0) return 0;
536
537          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
538            return 0;
539
540          // We'll need to change this to an insert/extract element operation.
541          IsNotTrivial = true;
542          continue;    // Everything looks ok
543
544        } else if (isa<StructType>(AggTy)) {
545          // Structs are always ok.
546        } else {
547          return 0;
548        }
549        const Type *NTy = getUIntAtLeastAsBitAs(TD.getTypeSize(AggTy)*8);
550        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
551        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
552        if (SubTy == 0) return 0;
553        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
554          return 0;
555        continue;    // Everything looks ok
556      }
557      return 0;
558    } else {
559      // Cannot handle this!
560      return 0;
561    }
562  }
563
564  return UsedType;
565}
566
567/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
568/// predicate and is non-trivial.  Convert it to something that can be trivially
569/// promoted into a register by mem2reg.
570void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
571  DEBUG(std::cerr << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
572                  << *ActualTy << "\n");
573  ++NumConverted;
574
575  BasicBlock *EntryBlock = AI->getParent();
576  assert(EntryBlock == &EntryBlock->getParent()->front() &&
577         "Not in the entry block!");
578  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
579
580  if (ActualTy->isInteger())
581    ActualTy = ActualTy->getUnsignedVersion();
582
583  // Create and insert the alloca.
584  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
585                                     EntryBlock->begin());
586  ConvertUsesToScalar(AI, NewAI, 0);
587  delete AI;
588}
589
590
591/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
592/// directly.  This happens when we are converting an "integer union" to a
593/// single integer scalar, or when we are converting a "vector union" to a
594/// vector with insert/extractelement instructions.
595///
596/// Offset is an offset from the original alloca, in bits that need to be
597/// shifted to the right.  By the end of this, there should be no uses of Ptr.
598void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
599  bool isVectorInsert = isa<PackedType>(NewAI->getType()->getElementType());
600  const TargetData &TD = getAnalysis<TargetData>();
601  while (!Ptr->use_empty()) {
602    Instruction *User = cast<Instruction>(Ptr->use_back());
603
604    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
605      // The load is a bit extract from NewAI shifted right by Offset bits.
606      Value *NV = new LoadInst(NewAI, LI->getName(), LI);
607      if (NV->getType() != LI->getType()) {
608        if (const PackedType *PTy = dyn_cast<PackedType>(NV->getType())) {
609          // Must be an element access.
610          unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
611          NV = new ExtractElementInst(NV, ConstantInt::get(Type::UIntTy, Elt),
612                                      "tmp", LI);
613        } else {
614          if (Offset) {
615            assert(NV->getType()->isInteger() && "Unknown promotion!");
616            if (Offset < TD.getTypeSize(NV->getType())*8)
617              NV = new ShiftInst(Instruction::Shr, NV,
618                                 ConstantInt::get(Type::UByteTy, Offset),
619                                 LI->getName(), LI);
620          } else {
621            assert((NV->getType()->isInteger() ||
622                    isa<PointerType>(NV->getType())) && "Unknown promotion!");
623          }
624          NV = new CastInst(NV, LI->getType(), LI->getName(), LI);
625        }
626      }
627      LI->replaceAllUsesWith(NV);
628      LI->eraseFromParent();
629    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
630      assert(SI->getOperand(0) != Ptr && "Consistency error!");
631
632      // Convert the stored type to the actual type, shift it left to insert
633      // then 'or' into place.
634      Value *SV = SI->getOperand(0);
635      const Type *AllocaType = NewAI->getType()->getElementType();
636      if (SV->getType() != AllocaType) {
637        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
638
639        if (const PackedType *PTy = dyn_cast<PackedType>(AllocaType)) {
640          // Must be an element insertion.
641          unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
642          SV = new InsertElementInst(Old, SV,
643                                     ConstantInt::get(Type::UIntTy, Elt),
644                                     "tmp", SI);
645        } else {
646          // If SV is signed, convert it to unsigned, so that the next cast zero
647          // extends the value.
648          if (SV->getType()->isSigned())
649            SV = new CastInst(SV, SV->getType()->getUnsignedVersion(),
650                              SV->getName(), SI);
651          SV = new CastInst(SV, Old->getType(), SV->getName(), SI);
652          if (Offset && Offset < TD.getTypeSize(SV->getType())*8)
653            SV = new ShiftInst(Instruction::Shl, SV,
654                               ConstantInt::get(Type::UByteTy, Offset),
655                               SV->getName()+".adj", SI);
656          // Mask out the bits we are about to insert from the old value.
657          unsigned TotalBits = TD.getTypeSize(SV->getType())*8;
658          unsigned InsertBits = TD.getTypeSize(SI->getOperand(0)->getType())*8;
659          if (TotalBits != InsertBits) {
660            assert(TotalBits > InsertBits);
661            uint64_t Mask = ~(((1ULL << InsertBits)-1) << Offset);
662            if (TotalBits != 64)
663              Mask = Mask & ((1ULL << TotalBits)-1);
664            Old = BinaryOperator::createAnd(Old,
665                                        ConstantInt::get(Old->getType(), Mask),
666                                            Old->getName()+".mask", SI);
667            SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
668          }
669        }
670      }
671      new StoreInst(SV, NewAI, SI);
672      SI->eraseFromParent();
673
674    } else if (CastInst *CI = dyn_cast<CastInst>(User)) {
675      unsigned NewOff = Offset;
676      const TargetData &TD = getAnalysis<TargetData>();
677      if (TD.isBigEndian() && !isVectorInsert) {
678        // Adjust the pointer.  For example, storing 16-bits into a 32-bit
679        // alloca with just a cast makes it modify the top 16-bits.
680        const Type *SrcTy = cast<PointerType>(Ptr->getType())->getElementType();
681        const Type *DstTy = cast<PointerType>(CI->getType())->getElementType();
682        int PtrDiffBits = TD.getTypeSize(SrcTy)*8-TD.getTypeSize(DstTy)*8;
683        NewOff += PtrDiffBits;
684      }
685      ConvertUsesToScalar(CI, NewAI, NewOff);
686      CI->eraseFromParent();
687    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
688      const PointerType *AggPtrTy =
689        cast<PointerType>(GEP->getOperand(0)->getType());
690      const TargetData &TD = getAnalysis<TargetData>();
691      unsigned AggSizeInBits = TD.getTypeSize(AggPtrTy->getElementType())*8;
692
693      // Check to see if this is stepping over an element: GEP Ptr, int C
694      unsigned NewOffset = Offset;
695      if (GEP->getNumOperands() == 2) {
696        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
697        unsigned BitOffset = Idx*AggSizeInBits;
698
699        if (TD.isLittleEndian() || isVectorInsert)
700          NewOffset += BitOffset;
701        else
702          NewOffset -= BitOffset;
703
704      } else if (GEP->getNumOperands() == 3) {
705        // We know that operand #2 is zero.
706        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
707        const Type *AggTy = AggPtrTy->getElementType();
708        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
709          unsigned ElSizeBits = TD.getTypeSize(SeqTy->getElementType())*8;
710
711          if (TD.isLittleEndian() || isVectorInsert)
712            NewOffset += ElSizeBits*Idx;
713          else
714            NewOffset += AggSizeInBits-ElSizeBits*(Idx+1);
715        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
716          unsigned EltBitOffset = TD.getStructLayout(STy)->MemberOffsets[Idx]*8;
717
718          if (TD.isLittleEndian() || isVectorInsert)
719            NewOffset += EltBitOffset;
720          else {
721            const PointerType *ElPtrTy = cast<PointerType>(GEP->getType());
722            unsigned ElSizeBits = TD.getTypeSize(ElPtrTy->getElementType())*8;
723            NewOffset += AggSizeInBits-(EltBitOffset+ElSizeBits);
724          }
725
726        } else {
727          assert(0 && "Unsupported operation!");
728          abort();
729        }
730      } else {
731        assert(0 && "Unsupported operation!");
732        abort();
733      }
734      ConvertUsesToScalar(GEP, NewAI, NewOffset);
735      GEP->eraseFromParent();
736    } else {
737      assert(0 && "Unsupported operation!");
738      abort();
739    }
740  }
741}
742