ScalarReplAggregates.cpp revision c055a8782ee66f6041cc00997857d98d6b9e9b4a
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DebugInfo.h"
34#include "llvm/Analysis/DIBuilder.h"
35#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/Loads.h"
37#include "llvm/Analysis/ValueTracking.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Transforms/Utils/PromoteMemToReg.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include "llvm/Transforms/Utils/SSAUpdater.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/GetElementPtrTypeIterator.h"
46#include "llvm/Support/IRBuilder.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/SetVector.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/Statistic.h"
52using namespace llvm;
53
54STATISTIC(NumReplaced,  "Number of allocas broken up");
55STATISTIC(NumPromoted,  "Number of allocas promoted");
56STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
57STATISTIC(NumConverted, "Number of aggregates converted to scalar");
58STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
59
60namespace {
61  struct SROA : public FunctionPass {
62    SROA(int T, bool hasDT, char &ID)
63      : FunctionPass(ID), HasDomTree(hasDT) {
64      if (T == -1)
65        SRThreshold = 128;
66      else
67        SRThreshold = T;
68    }
69
70    bool runOnFunction(Function &F);
71
72    bool performScalarRepl(Function &F);
73    bool performPromotion(Function &F);
74
75  private:
76    bool HasDomTree;
77    TargetData *TD;
78
79    /// DeadInsts - Keep track of instructions we have made dead, so that
80    /// we can remove them after we are done working.
81    SmallVector<Value*, 32> DeadInsts;
82
83    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
84    /// information about the uses.  All these fields are initialized to false
85    /// and set to true when something is learned.
86    struct AllocaInfo {
87      /// The alloca to promote.
88      AllocaInst *AI;
89
90      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
91      /// looping and avoid redundant work.
92      SmallPtrSet<PHINode*, 8> CheckedPHIs;
93
94      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
95      bool isUnsafe : 1;
96
97      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
98      bool isMemCpySrc : 1;
99
100      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
101      bool isMemCpyDst : 1;
102
103      /// hasSubelementAccess - This is true if a subelement of the alloca is
104      /// ever accessed, or false if the alloca is only accessed with mem
105      /// intrinsics or load/store that only access the entire alloca at once.
106      bool hasSubelementAccess : 1;
107
108      /// hasALoadOrStore - This is true if there are any loads or stores to it.
109      /// The alloca may just be accessed with memcpy, for example, which would
110      /// not set this.
111      bool hasALoadOrStore : 1;
112
113      explicit AllocaInfo(AllocaInst *ai)
114        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
115          hasSubelementAccess(false), hasALoadOrStore(false) {}
116    };
117
118    unsigned SRThreshold;
119
120    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
121      I.isUnsafe = true;
122      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
123    }
124
125    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
126
127    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
128    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
129                                         AllocaInfo &Info);
130    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
131    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
132                         Type *MemOpType, bool isStore, AllocaInfo &Info,
133                         Instruction *TheAccess, bool AllowWholeAccess);
134    bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
135    uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
136                                  Type *&IdxTy);
137
138    void DoScalarReplacement(AllocaInst *AI,
139                             std::vector<AllocaInst*> &WorkList);
140    void DeleteDeadInstructions();
141
142    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
143                              SmallVector<AllocaInst*, 32> &NewElts);
144    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
145                        SmallVector<AllocaInst*, 32> &NewElts);
146    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
147                    SmallVector<AllocaInst*, 32> &NewElts);
148    void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
149                                  uint64_t Offset,
150                                  SmallVector<AllocaInst*, 32> &NewElts);
151    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
152                                      AllocaInst *AI,
153                                      SmallVector<AllocaInst*, 32> &NewElts);
154    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
155                                       SmallVector<AllocaInst*, 32> &NewElts);
156    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
157                                      SmallVector<AllocaInst*, 32> &NewElts);
158
159    static MemTransferInst *isOnlyCopiedFromConstantGlobal(
160        AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete);
161  };
162
163  // SROA_DT - SROA that uses DominatorTree.
164  struct SROA_DT : public SROA {
165    static char ID;
166  public:
167    SROA_DT(int T = -1) : SROA(T, true, ID) {
168      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
169    }
170
171    // getAnalysisUsage - This pass does not require any passes, but we know it
172    // will not alter the CFG, so say so.
173    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
174      AU.addRequired<DominatorTree>();
175      AU.setPreservesCFG();
176    }
177  };
178
179  // SROA_SSAUp - SROA that uses SSAUpdater.
180  struct SROA_SSAUp : public SROA {
181    static char ID;
182  public:
183    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
184      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
185    }
186
187    // getAnalysisUsage - This pass does not require any passes, but we know it
188    // will not alter the CFG, so say so.
189    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
190      AU.setPreservesCFG();
191    }
192  };
193
194}
195
196char SROA_DT::ID = 0;
197char SROA_SSAUp::ID = 0;
198
199INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
200                "Scalar Replacement of Aggregates (DT)", false, false)
201INITIALIZE_PASS_DEPENDENCY(DominatorTree)
202INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
203                "Scalar Replacement of Aggregates (DT)", false, false)
204
205INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
206                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
207INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
208                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
209
210// Public interface to the ScalarReplAggregates pass
211FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
212                                                   bool UseDomTree) {
213  if (UseDomTree)
214    return new SROA_DT(Threshold);
215  return new SROA_SSAUp(Threshold);
216}
217
218
219//===----------------------------------------------------------------------===//
220// Convert To Scalar Optimization.
221//===----------------------------------------------------------------------===//
222
223namespace {
224/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
225/// optimization, which scans the uses of an alloca and determines if it can
226/// rewrite it in terms of a single new alloca that can be mem2reg'd.
227class ConvertToScalarInfo {
228  /// AllocaSize - The size of the alloca being considered in bytes.
229  unsigned AllocaSize;
230  const TargetData &TD;
231
232  /// IsNotTrivial - This is set to true if there is some access to the object
233  /// which means that mem2reg can't promote it.
234  bool IsNotTrivial;
235
236  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
237  /// computed based on the uses of the alloca rather than the LLVM type system.
238  enum {
239    Unknown,
240
241    // Accesses via GEPs that are consistent with element access of a vector
242    // type. This will not be converted into a vector unless there is a later
243    // access using an actual vector type.
244    ImplicitVector,
245
246    // Accesses via vector operations and GEPs that are consistent with the
247    // layout of a vector type.
248    Vector,
249
250    // An integer bag-of-bits with bitwise operations for insertion and
251    // extraction. Any combination of types can be converted into this kind
252    // of scalar.
253    Integer
254  } ScalarKind;
255
256  /// VectorTy - This tracks the type that we should promote the vector to if
257  /// it is possible to turn it into a vector.  This starts out null, and if it
258  /// isn't possible to turn into a vector type, it gets set to VoidTy.
259  VectorType *VectorTy;
260
261  /// HadNonMemTransferAccess - True if there is at least one access to the
262  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
263  /// large integers unless there is some potential for optimization.
264  bool HadNonMemTransferAccess;
265
266public:
267  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
268    : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
269      VectorTy(0), HadNonMemTransferAccess(false) { }
270
271  AllocaInst *TryConvert(AllocaInst *AI);
272
273private:
274  bool CanConvertToScalar(Value *V, uint64_t Offset);
275  void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
276  bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
277  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
278
279  Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
280                                    uint64_t Offset, IRBuilder<> &Builder);
281  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
282                                   uint64_t Offset, IRBuilder<> &Builder);
283};
284} // end anonymous namespace.
285
286
287/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
288/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
289/// alloca if possible or null if not.
290AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
291  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
292  // out.
293  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
294    return 0;
295
296  // If an alloca has only memset / memcpy uses, it may still have an Unknown
297  // ScalarKind. Treat it as an Integer below.
298  if (ScalarKind == Unknown)
299    ScalarKind = Integer;
300
301  if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
302    ScalarKind = Integer;
303
304  // If we were able to find a vector type that can handle this with
305  // insert/extract elements, and if there was at least one use that had
306  // a vector type, promote this to a vector.  We don't want to promote
307  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
308  // we just get a lot of insert/extracts.  If at least one vector is
309  // involved, then we probably really do have a union of vector/array.
310  Type *NewTy;
311  if (ScalarKind == Vector) {
312    assert(VectorTy && "Missing type for vector scalar.");
313    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
314          << *VectorTy << '\n');
315    NewTy = VectorTy;  // Use the vector type.
316  } else {
317    unsigned BitWidth = AllocaSize * 8;
318    if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
319        !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
320      return 0;
321
322    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
323    // Create and insert the integer alloca.
324    NewTy = IntegerType::get(AI->getContext(), BitWidth);
325  }
326  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
327  ConvertUsesToScalar(AI, NewAI, 0);
328  return NewAI;
329}
330
331/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
332/// (VectorTy) so far at the offset specified by Offset (which is specified in
333/// bytes).
334///
335/// There are two cases we handle here:
336///   1) A union of vector types of the same size and potentially its elements.
337///      Here we turn element accesses into insert/extract element operations.
338///      This promotes a <4 x float> with a store of float to the third element
339///      into a <4 x float> that uses insert element.
340///   2) A fully general blob of memory, which we turn into some (potentially
341///      large) integer type with extract and insert operations where the loads
342///      and stores would mutate the memory.  We mark this by setting VectorTy
343///      to VoidTy.
344void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
345                                                    uint64_t Offset) {
346  // If we already decided to turn this into a blob of integer memory, there is
347  // nothing to be done.
348  if (ScalarKind == Integer)
349    return;
350
351  // If this could be contributing to a vector, analyze it.
352
353  // If the In type is a vector that is the same size as the alloca, see if it
354  // matches the existing VecTy.
355  if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
356    if (MergeInVectorType(VInTy, Offset))
357      return;
358  } else if (In->isFloatTy() || In->isDoubleTy() ||
359             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
360              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
361    // Full width accesses can be ignored, because they can always be turned
362    // into bitcasts.
363    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
364    if (EltSize == AllocaSize)
365      return;
366
367    // If we're accessing something that could be an element of a vector, see
368    // if the implied vector agrees with what we already have and if Offset is
369    // compatible with it.
370    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
371        (!VectorTy || EltSize == VectorTy->getElementType()
372                                         ->getPrimitiveSizeInBits()/8)) {
373      if (!VectorTy) {
374        ScalarKind = ImplicitVector;
375        VectorTy = VectorType::get(In, AllocaSize/EltSize);
376      }
377      return;
378    }
379  }
380
381  // Otherwise, we have a case that we can't handle with an optimized vector
382  // form.  We can still turn this into a large integer.
383  ScalarKind = Integer;
384}
385
386/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
387/// returning true if the type was successfully merged and false otherwise.
388bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
389                                            uint64_t Offset) {
390  if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
391    // If we're storing/loading a vector of the right size, allow it as a
392    // vector.  If this the first vector we see, remember the type so that
393    // we know the element size. If this is a subsequent access, ignore it
394    // even if it is a differing type but the same size. Worst case we can
395    // bitcast the resultant vectors.
396    if (!VectorTy)
397      VectorTy = VInTy;
398    ScalarKind = Vector;
399    return true;
400  }
401
402  return false;
403}
404
405/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
406/// its accesses to a single vector type, return true and set VecTy to
407/// the new type.  If we could convert the alloca into a single promotable
408/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
409/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
410/// is the current offset from the base of the alloca being analyzed.
411///
412/// If we see at least one access to the value that is as a vector type, set the
413/// SawVec flag.
414bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
415  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
416    Instruction *User = cast<Instruction>(*UI);
417
418    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
419      // Don't break volatile loads.
420      if (!LI->isSimple())
421        return false;
422      // Don't touch MMX operations.
423      if (LI->getType()->isX86_MMXTy())
424        return false;
425      HadNonMemTransferAccess = true;
426      MergeInTypeForLoadOrStore(LI->getType(), Offset);
427      continue;
428    }
429
430    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
431      // Storing the pointer, not into the value?
432      if (SI->getOperand(0) == V || !SI->isSimple()) return false;
433      // Don't touch MMX operations.
434      if (SI->getOperand(0)->getType()->isX86_MMXTy())
435        return false;
436      HadNonMemTransferAccess = true;
437      MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
438      continue;
439    }
440
441    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
442      if (!onlyUsedByLifetimeMarkers(BCI))
443        IsNotTrivial = true;  // Can't be mem2reg'd.
444      if (!CanConvertToScalar(BCI, Offset))
445        return false;
446      continue;
447    }
448
449    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
450      // If this is a GEP with a variable indices, we can't handle it.
451      if (!GEP->hasAllConstantIndices())
452        return false;
453
454      // Compute the offset that this GEP adds to the pointer.
455      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
456      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
457                                               Indices);
458      // See if all uses can be converted.
459      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
460        return false;
461      IsNotTrivial = true;  // Can't be mem2reg'd.
462      HadNonMemTransferAccess = true;
463      continue;
464    }
465
466    // If this is a constant sized memset of a constant value (e.g. 0) we can
467    // handle it.
468    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
469      // Store of constant value.
470      if (!isa<ConstantInt>(MSI->getValue()))
471        return false;
472
473      // Store of constant size.
474      ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
475      if (!Len)
476        return false;
477
478      // If the size differs from the alloca, we can only convert the alloca to
479      // an integer bag-of-bits.
480      // FIXME: This should handle all of the cases that are currently accepted
481      // as vector element insertions.
482      if (Len->getZExtValue() != AllocaSize || Offset != 0)
483        ScalarKind = Integer;
484
485      IsNotTrivial = true;  // Can't be mem2reg'd.
486      HadNonMemTransferAccess = true;
487      continue;
488    }
489
490    // If this is a memcpy or memmove into or out of the whole allocation, we
491    // can handle it like a load or store of the scalar type.
492    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
493      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
494      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
495        return false;
496
497      IsNotTrivial = true;  // Can't be mem2reg'd.
498      continue;
499    }
500
501    // If this is a lifetime intrinsic, we can handle it.
502    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
503      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
504          II->getIntrinsicID() == Intrinsic::lifetime_end) {
505        continue;
506      }
507    }
508
509    // Otherwise, we cannot handle this!
510    return false;
511  }
512
513  return true;
514}
515
516/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
517/// directly.  This happens when we are converting an "integer union" to a
518/// single integer scalar, or when we are converting a "vector union" to a
519/// vector with insert/extractelement instructions.
520///
521/// Offset is an offset from the original alloca, in bits that need to be
522/// shifted to the right.  By the end of this, there should be no uses of Ptr.
523void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
524                                              uint64_t Offset) {
525  while (!Ptr->use_empty()) {
526    Instruction *User = cast<Instruction>(Ptr->use_back());
527
528    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
529      ConvertUsesToScalar(CI, NewAI, Offset);
530      CI->eraseFromParent();
531      continue;
532    }
533
534    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
535      // Compute the offset that this GEP adds to the pointer.
536      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
537      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
538                                               Indices);
539      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
540      GEP->eraseFromParent();
541      continue;
542    }
543
544    IRBuilder<> Builder(User);
545
546    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
547      // The load is a bit extract from NewAI shifted right by Offset bits.
548      Value *LoadedVal = Builder.CreateLoad(NewAI);
549      Value *NewLoadVal
550        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
551      LI->replaceAllUsesWith(NewLoadVal);
552      LI->eraseFromParent();
553      continue;
554    }
555
556    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
557      assert(SI->getOperand(0) != Ptr && "Consistency error!");
558      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
559      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
560                                             Builder);
561      Builder.CreateStore(New, NewAI);
562      SI->eraseFromParent();
563
564      // If the load we just inserted is now dead, then the inserted store
565      // overwrote the entire thing.
566      if (Old->use_empty())
567        Old->eraseFromParent();
568      continue;
569    }
570
571    // If this is a constant sized memset of a constant value (e.g. 0) we can
572    // transform it into a store of the expanded constant value.
573    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
574      assert(MSI->getRawDest() == Ptr && "Consistency error!");
575      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
576      if (NumBytes != 0) {
577        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
578
579        // Compute the value replicated the right number of times.
580        APInt APVal(NumBytes*8, Val);
581
582        // Splat the value if non-zero.
583        if (Val)
584          for (unsigned i = 1; i != NumBytes; ++i)
585            APVal |= APVal << 8;
586
587        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
588        Value *New = ConvertScalar_InsertValue(
589                                    ConstantInt::get(User->getContext(), APVal),
590                                               Old, Offset, Builder);
591        Builder.CreateStore(New, NewAI);
592
593        // If the load we just inserted is now dead, then the memset overwrote
594        // the entire thing.
595        if (Old->use_empty())
596          Old->eraseFromParent();
597      }
598      MSI->eraseFromParent();
599      continue;
600    }
601
602    // If this is a memcpy or memmove into or out of the whole allocation, we
603    // can handle it like a load or store of the scalar type.
604    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
605      assert(Offset == 0 && "must be store to start of alloca");
606
607      // If the source and destination are both to the same alloca, then this is
608      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
609      // as appropriate.
610      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
611
612      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
613        // Dest must be OrigAI, change this to be a load from the original
614        // pointer (bitcasted), then a store to our new alloca.
615        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
616        Value *SrcPtr = MTI->getSource();
617        PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
618        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
619        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
620          AIPTy = PointerType::get(AIPTy->getElementType(),
621                                   SPTy->getAddressSpace());
622        }
623        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
624
625        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
626        SrcVal->setAlignment(MTI->getAlignment());
627        Builder.CreateStore(SrcVal, NewAI);
628      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
629        // Src must be OrigAI, change this to be a load from NewAI then a store
630        // through the original dest pointer (bitcasted).
631        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
632        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
633
634        PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
635        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
636        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
637          AIPTy = PointerType::get(AIPTy->getElementType(),
638                                   DPTy->getAddressSpace());
639        }
640        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
641
642        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
643        NewStore->setAlignment(MTI->getAlignment());
644      } else {
645        // Noop transfer. Src == Dst
646      }
647
648      MTI->eraseFromParent();
649      continue;
650    }
651
652    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
653      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
654          II->getIntrinsicID() == Intrinsic::lifetime_end) {
655        // There's no need to preserve these, as the resulting alloca will be
656        // converted to a register anyways.
657        II->eraseFromParent();
658        continue;
659      }
660    }
661
662    llvm_unreachable("Unsupported operation!");
663  }
664}
665
666/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
667/// or vector value FromVal, extracting the bits from the offset specified by
668/// Offset.  This returns the value, which is of type ToType.
669///
670/// This happens when we are converting an "integer union" to a single
671/// integer scalar, or when we are converting a "vector union" to a vector with
672/// insert/extractelement instructions.
673///
674/// Offset is an offset from the original alloca, in bits that need to be
675/// shifted to the right.
676Value *ConvertToScalarInfo::
677ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
678                           uint64_t Offset, IRBuilder<> &Builder) {
679  // If the load is of the whole new alloca, no conversion is needed.
680  Type *FromType = FromVal->getType();
681  if (FromType == ToType && Offset == 0)
682    return FromVal;
683
684  // If the result alloca is a vector type, this is either an element
685  // access or a bitcast to another vector type of the same size.
686  if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
687    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
688    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
689    if (FromTypeSize == ToTypeSize)
690        return Builder.CreateBitCast(FromVal, ToType);
691
692    // Otherwise it must be an element access.
693    unsigned Elt = 0;
694    if (Offset) {
695      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
696      Elt = Offset/EltSize;
697      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
698    }
699    // Return the element extracted out of it.
700    Value *V = Builder.CreateExtractElement(FromVal, Builder.getInt32(Elt));
701    if (V->getType() != ToType)
702      V = Builder.CreateBitCast(V, ToType);
703    return V;
704  }
705
706  // If ToType is a first class aggregate, extract out each of the pieces and
707  // use insertvalue's to form the FCA.
708  if (StructType *ST = dyn_cast<StructType>(ToType)) {
709    const StructLayout &Layout = *TD.getStructLayout(ST);
710    Value *Res = UndefValue::get(ST);
711    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
712      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
713                                        Offset+Layout.getElementOffsetInBits(i),
714                                              Builder);
715      Res = Builder.CreateInsertValue(Res, Elt, i);
716    }
717    return Res;
718  }
719
720  if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
721    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
722    Value *Res = UndefValue::get(AT);
723    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
724      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
725                                              Offset+i*EltSize, Builder);
726      Res = Builder.CreateInsertValue(Res, Elt, i);
727    }
728    return Res;
729  }
730
731  // Otherwise, this must be a union that was converted to an integer value.
732  IntegerType *NTy = cast<IntegerType>(FromVal->getType());
733
734  // If this is a big-endian system and the load is narrower than the
735  // full alloca type, we need to do a shift to get the right bits.
736  int ShAmt = 0;
737  if (TD.isBigEndian()) {
738    // On big-endian machines, the lowest bit is stored at the bit offset
739    // from the pointer given by getTypeStoreSizeInBits.  This matters for
740    // integers with a bitwidth that is not a multiple of 8.
741    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
742            TD.getTypeStoreSizeInBits(ToType) - Offset;
743  } else {
744    ShAmt = Offset;
745  }
746
747  // Note: we support negative bitwidths (with shl) which are not defined.
748  // We do this to support (f.e.) loads off the end of a structure where
749  // only some bits are used.
750  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
751    FromVal = Builder.CreateLShr(FromVal,
752                                 ConstantInt::get(FromVal->getType(), ShAmt));
753  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
754    FromVal = Builder.CreateShl(FromVal,
755                                ConstantInt::get(FromVal->getType(), -ShAmt));
756
757  // Finally, unconditionally truncate the integer to the right width.
758  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
759  if (LIBitWidth < NTy->getBitWidth())
760    FromVal =
761      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
762                                                    LIBitWidth));
763  else if (LIBitWidth > NTy->getBitWidth())
764    FromVal =
765       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
766                                                    LIBitWidth));
767
768  // If the result is an integer, this is a trunc or bitcast.
769  if (ToType->isIntegerTy()) {
770    // Should be done.
771  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
772    // Just do a bitcast, we know the sizes match up.
773    FromVal = Builder.CreateBitCast(FromVal, ToType);
774  } else {
775    // Otherwise must be a pointer.
776    FromVal = Builder.CreateIntToPtr(FromVal, ToType);
777  }
778  assert(FromVal->getType() == ToType && "Didn't convert right?");
779  return FromVal;
780}
781
782/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
783/// or vector value "Old" at the offset specified by Offset.
784///
785/// This happens when we are converting an "integer union" to a
786/// single integer scalar, or when we are converting a "vector union" to a
787/// vector with insert/extractelement instructions.
788///
789/// Offset is an offset from the original alloca, in bits that need to be
790/// shifted to the right.
791Value *ConvertToScalarInfo::
792ConvertScalar_InsertValue(Value *SV, Value *Old,
793                          uint64_t Offset, IRBuilder<> &Builder) {
794  // Convert the stored type to the actual type, shift it left to insert
795  // then 'or' into place.
796  Type *AllocaType = Old->getType();
797  LLVMContext &Context = Old->getContext();
798
799  if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
800    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
801    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
802
803    // Changing the whole vector with memset or with an access of a different
804    // vector type?
805    if (ValSize == VecSize)
806        return Builder.CreateBitCast(SV, AllocaType);
807
808    // Must be an element insertion.
809    assert(SV->getType() == VTy->getElementType());
810    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
811    unsigned Elt = Offset/EltSize;
812    return Builder.CreateInsertElement(Old, SV, Builder.getInt32(Elt));
813  }
814
815  // If SV is a first-class aggregate value, insert each value recursively.
816  if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
817    const StructLayout &Layout = *TD.getStructLayout(ST);
818    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
819      Value *Elt = Builder.CreateExtractValue(SV, i);
820      Old = ConvertScalar_InsertValue(Elt, Old,
821                                      Offset+Layout.getElementOffsetInBits(i),
822                                      Builder);
823    }
824    return Old;
825  }
826
827  if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
828    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
829    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
830      Value *Elt = Builder.CreateExtractValue(SV, i);
831      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
832    }
833    return Old;
834  }
835
836  // If SV is a float, convert it to the appropriate integer type.
837  // If it is a pointer, do the same.
838  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
839  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
840  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
841  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
842  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
843    SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
844  else if (SV->getType()->isPointerTy())
845    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()));
846
847  // Zero extend or truncate the value if needed.
848  if (SV->getType() != AllocaType) {
849    if (SV->getType()->getPrimitiveSizeInBits() <
850             AllocaType->getPrimitiveSizeInBits())
851      SV = Builder.CreateZExt(SV, AllocaType);
852    else {
853      // Truncation may be needed if storing more than the alloca can hold
854      // (undefined behavior).
855      SV = Builder.CreateTrunc(SV, AllocaType);
856      SrcWidth = DestWidth;
857      SrcStoreWidth = DestStoreWidth;
858    }
859  }
860
861  // If this is a big-endian system and the store is narrower than the
862  // full alloca type, we need to do a shift to get the right bits.
863  int ShAmt = 0;
864  if (TD.isBigEndian()) {
865    // On big-endian machines, the lowest bit is stored at the bit offset
866    // from the pointer given by getTypeStoreSizeInBits.  This matters for
867    // integers with a bitwidth that is not a multiple of 8.
868    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
869  } else {
870    ShAmt = Offset;
871  }
872
873  // Note: we support negative bitwidths (with shr) which are not defined.
874  // We do this to support (f.e.) stores off the end of a structure where
875  // only some bits in the structure are set.
876  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
877  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
878    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
879    Mask <<= ShAmt;
880  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
881    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
882    Mask = Mask.lshr(-ShAmt);
883  }
884
885  // Mask out the bits we are about to insert from the old value, and or
886  // in the new bits.
887  if (SrcWidth != DestWidth) {
888    assert(DestWidth > SrcWidth);
889    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
890    SV = Builder.CreateOr(Old, SV, "ins");
891  }
892  return SV;
893}
894
895
896//===----------------------------------------------------------------------===//
897// SRoA Driver
898//===----------------------------------------------------------------------===//
899
900
901bool SROA::runOnFunction(Function &F) {
902  TD = getAnalysisIfAvailable<TargetData>();
903
904  bool Changed = performPromotion(F);
905
906  // FIXME: ScalarRepl currently depends on TargetData more than it
907  // theoretically needs to. It should be refactored in order to support
908  // target-independent IR. Until this is done, just skip the actual
909  // scalar-replacement portion of this pass.
910  if (!TD) return Changed;
911
912  while (1) {
913    bool LocalChange = performScalarRepl(F);
914    if (!LocalChange) break;   // No need to repromote if no scalarrepl
915    Changed = true;
916    LocalChange = performPromotion(F);
917    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
918  }
919
920  return Changed;
921}
922
923namespace {
924class AllocaPromoter : public LoadAndStorePromoter {
925  AllocaInst *AI;
926  DIBuilder *DIB;
927  SmallVector<DbgDeclareInst *, 4> DDIs;
928  SmallVector<DbgValueInst *, 4> DVIs;
929public:
930  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
931                 DIBuilder *DB)
932    : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
933
934  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
935    // Remember which alloca we're promoting (for isInstInList).
936    this->AI = AI;
937    if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI))
938      for (Value::use_iterator UI = DebugNode->use_begin(),
939             E = DebugNode->use_end(); UI != E; ++UI)
940        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
941          DDIs.push_back(DDI);
942        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
943          DVIs.push_back(DVI);
944
945    LoadAndStorePromoter::run(Insts);
946    AI->eraseFromParent();
947    for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(),
948           E = DDIs.end(); I != E; ++I) {
949      DbgDeclareInst *DDI = *I;
950      DDI->eraseFromParent();
951    }
952    for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(),
953           E = DVIs.end(); I != E; ++I) {
954      DbgValueInst *DVI = *I;
955      DVI->eraseFromParent();
956    }
957  }
958
959  virtual bool isInstInList(Instruction *I,
960                            const SmallVectorImpl<Instruction*> &Insts) const {
961    if (LoadInst *LI = dyn_cast<LoadInst>(I))
962      return LI->getOperand(0) == AI;
963    return cast<StoreInst>(I)->getPointerOperand() == AI;
964  }
965
966  virtual void updateDebugInfo(Instruction *Inst) const {
967    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
968           E = DDIs.end(); I != E; ++I) {
969      DbgDeclareInst *DDI = *I;
970      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
971        ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
972      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
973        ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
974    }
975    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
976           E = DVIs.end(); I != E; ++I) {
977      DbgValueInst *DVI = *I;
978      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
979        Instruction *DbgVal = NULL;
980        // If an argument is zero extended then use argument directly. The ZExt
981        // may be zapped by an optimization pass in future.
982        Argument *ExtendedArg = NULL;
983        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
984          ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
985        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
986          ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
987        if (ExtendedArg)
988          DbgVal = DIB->insertDbgValueIntrinsic(ExtendedArg, 0,
989                                                DIVariable(DVI->getVariable()),
990                                                SI);
991        else
992          DbgVal = DIB->insertDbgValueIntrinsic(SI->getOperand(0), 0,
993                                                DIVariable(DVI->getVariable()),
994                                                SI);
995        DbgVal->setDebugLoc(DVI->getDebugLoc());
996      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
997        Instruction *DbgVal =
998          DIB->insertDbgValueIntrinsic(LI->getOperand(0), 0,
999                                       DIVariable(DVI->getVariable()), LI);
1000        DbgVal->setDebugLoc(DVI->getDebugLoc());
1001      }
1002    }
1003  }
1004};
1005} // end anon namespace
1006
1007/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1008/// subsequently loaded can be rewritten to load both input pointers and then
1009/// select between the result, allowing the load of the alloca to be promoted.
1010/// From this:
1011///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1012///   %V = load i32* %P2
1013/// to:
1014///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1015///   %V2 = load i32* %Other
1016///   %V = select i1 %cond, i32 %V1, i32 %V2
1017///
1018/// We can do this to a select if its only uses are loads and if the operand to
1019/// the select can be loaded unconditionally.
1020static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1021  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1022  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1023
1024  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1025       UI != UE; ++UI) {
1026    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1027    if (LI == 0 || !LI->isSimple()) return false;
1028
1029    // Both operands to the select need to be dereferencable, either absolutely
1030    // (e.g. allocas) or at this point because we can see other accesses to it.
1031    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1032                                                    LI->getAlignment(), TD))
1033      return false;
1034    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1035                                                    LI->getAlignment(), TD))
1036      return false;
1037  }
1038
1039  return true;
1040}
1041
1042/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1043/// subsequently loaded can be rewritten to load both input pointers in the pred
1044/// blocks and then PHI the results, allowing the load of the alloca to be
1045/// promoted.
1046/// From this:
1047///   %P2 = phi [i32* %Alloca, i32* %Other]
1048///   %V = load i32* %P2
1049/// to:
1050///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1051///   ...
1052///   %V2 = load i32* %Other
1053///   ...
1054///   %V = phi [i32 %V1, i32 %V2]
1055///
1056/// We can do this to a select if its only uses are loads and if the operand to
1057/// the select can be loaded unconditionally.
1058static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1059  // For now, we can only do this promotion if the load is in the same block as
1060  // the PHI, and if there are no stores between the phi and load.
1061  // TODO: Allow recursive phi users.
1062  // TODO: Allow stores.
1063  BasicBlock *BB = PN->getParent();
1064  unsigned MaxAlign = 0;
1065  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1066       UI != UE; ++UI) {
1067    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1068    if (LI == 0 || !LI->isSimple()) return false;
1069
1070    // For now we only allow loads in the same block as the PHI.  This is a
1071    // common case that happens when instcombine merges two loads through a PHI.
1072    if (LI->getParent() != BB) return false;
1073
1074    // Ensure that there are no instructions between the PHI and the load that
1075    // could store.
1076    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1077      if (BBI->mayWriteToMemory())
1078        return false;
1079
1080    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1081  }
1082
1083  // Okay, we know that we have one or more loads in the same block as the PHI.
1084  // We can transform this if it is safe to push the loads into the predecessor
1085  // blocks.  The only thing to watch out for is that we can't put a possibly
1086  // trapping load in the predecessor if it is a critical edge.
1087  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1088    BasicBlock *Pred = PN->getIncomingBlock(i);
1089    Value *InVal = PN->getIncomingValue(i);
1090
1091    // If the terminator of the predecessor has side-effects (an invoke),
1092    // there is no safe place to put a load in the predecessor.
1093    if (Pred->getTerminator()->mayHaveSideEffects())
1094      return false;
1095
1096    // If the value is produced by the terminator of the predecessor
1097    // (an invoke), there is no valid place to put a load in the predecessor.
1098    if (Pred->getTerminator() == InVal)
1099      return false;
1100
1101    // If the predecessor has a single successor, then the edge isn't critical.
1102    if (Pred->getTerminator()->getNumSuccessors() == 1)
1103      continue;
1104
1105    // If this pointer is always safe to load, or if we can prove that there is
1106    // already a load in the block, then we can move the load to the pred block.
1107    if (InVal->isDereferenceablePointer() ||
1108        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1109      continue;
1110
1111    return false;
1112  }
1113
1114  return true;
1115}
1116
1117
1118/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1119/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1120/// not quite there, this will transform the code to allow promotion.  As such,
1121/// it is a non-pure predicate.
1122static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1123  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1124            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1125
1126  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1127       UI != UE; ++UI) {
1128    User *U = *UI;
1129    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1130      if (!LI->isSimple())
1131        return false;
1132      continue;
1133    }
1134
1135    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1136      if (SI->getOperand(0) == AI || !SI->isSimple())
1137        return false;   // Don't allow a store OF the AI, only INTO the AI.
1138      continue;
1139    }
1140
1141    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1142      // If the condition being selected on is a constant, fold the select, yes
1143      // this does (rarely) happen early on.
1144      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1145        Value *Result = SI->getOperand(1+CI->isZero());
1146        SI->replaceAllUsesWith(Result);
1147        SI->eraseFromParent();
1148
1149        // This is very rare and we just scrambled the use list of AI, start
1150        // over completely.
1151        return tryToMakeAllocaBePromotable(AI, TD);
1152      }
1153
1154      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1155      // loads, then we can transform this by rewriting the select.
1156      if (!isSafeSelectToSpeculate(SI, TD))
1157        return false;
1158
1159      InstsToRewrite.insert(SI);
1160      continue;
1161    }
1162
1163    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1164      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1165        InstsToRewrite.insert(PN);
1166        continue;
1167      }
1168
1169      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1170      // in the pred blocks, then we can transform this by rewriting the PHI.
1171      if (!isSafePHIToSpeculate(PN, TD))
1172        return false;
1173
1174      InstsToRewrite.insert(PN);
1175      continue;
1176    }
1177
1178    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1179      if (onlyUsedByLifetimeMarkers(BCI)) {
1180        InstsToRewrite.insert(BCI);
1181        continue;
1182      }
1183    }
1184
1185    return false;
1186  }
1187
1188  // If there are no instructions to rewrite, then all uses are load/stores and
1189  // we're done!
1190  if (InstsToRewrite.empty())
1191    return true;
1192
1193  // If we have instructions that need to be rewritten for this to be promotable
1194  // take care of it now.
1195  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1196    if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1197      // This could only be a bitcast used by nothing but lifetime intrinsics.
1198      for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
1199           I != E;) {
1200        Use &U = I.getUse();
1201        ++I;
1202        cast<Instruction>(U.getUser())->eraseFromParent();
1203      }
1204      BCI->eraseFromParent();
1205      continue;
1206    }
1207
1208    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1209      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1210      // loads with a new select.
1211      while (!SI->use_empty()) {
1212        LoadInst *LI = cast<LoadInst>(SI->use_back());
1213
1214        IRBuilder<> Builder(LI);
1215        LoadInst *TrueLoad =
1216          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1217        LoadInst *FalseLoad =
1218          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1219
1220        // Transfer alignment and TBAA info if present.
1221        TrueLoad->setAlignment(LI->getAlignment());
1222        FalseLoad->setAlignment(LI->getAlignment());
1223        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1224          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1225          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1226        }
1227
1228        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1229        V->takeName(LI);
1230        LI->replaceAllUsesWith(V);
1231        LI->eraseFromParent();
1232      }
1233
1234      // Now that all the loads are gone, the select is gone too.
1235      SI->eraseFromParent();
1236      continue;
1237    }
1238
1239    // Otherwise, we have a PHI node which allows us to push the loads into the
1240    // predecessors.
1241    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1242    if (PN->use_empty()) {
1243      PN->eraseFromParent();
1244      continue;
1245    }
1246
1247    Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1248    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1249                                     PN->getName()+".ld", PN);
1250
1251    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1252    // matter which one we get and if any differ, it doesn't matter.
1253    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1254    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1255    unsigned Align = SomeLoad->getAlignment();
1256
1257    // Rewrite all loads of the PN to use the new PHI.
1258    while (!PN->use_empty()) {
1259      LoadInst *LI = cast<LoadInst>(PN->use_back());
1260      LI->replaceAllUsesWith(NewPN);
1261      LI->eraseFromParent();
1262    }
1263
1264    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1265    // insert them into in case we have multiple edges from the same block.
1266    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1267
1268    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1269      BasicBlock *Pred = PN->getIncomingBlock(i);
1270      LoadInst *&Load = InsertedLoads[Pred];
1271      if (Load == 0) {
1272        Load = new LoadInst(PN->getIncomingValue(i),
1273                            PN->getName() + "." + Pred->getName(),
1274                            Pred->getTerminator());
1275        Load->setAlignment(Align);
1276        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1277      }
1278
1279      NewPN->addIncoming(Load, Pred);
1280    }
1281
1282    PN->eraseFromParent();
1283  }
1284
1285  ++NumAdjusted;
1286  return true;
1287}
1288
1289bool SROA::performPromotion(Function &F) {
1290  std::vector<AllocaInst*> Allocas;
1291  DominatorTree *DT = 0;
1292  if (HasDomTree)
1293    DT = &getAnalysis<DominatorTree>();
1294
1295  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1296  DIBuilder DIB(*F.getParent());
1297  bool Changed = false;
1298  SmallVector<Instruction*, 64> Insts;
1299  while (1) {
1300    Allocas.clear();
1301
1302    // Find allocas that are safe to promote, by looking at all instructions in
1303    // the entry node
1304    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1305      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1306        if (tryToMakeAllocaBePromotable(AI, TD))
1307          Allocas.push_back(AI);
1308
1309    if (Allocas.empty()) break;
1310
1311    if (HasDomTree)
1312      PromoteMemToReg(Allocas, *DT);
1313    else {
1314      SSAUpdater SSA;
1315      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1316        AllocaInst *AI = Allocas[i];
1317
1318        // Build list of instructions to promote.
1319        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1320             UI != E; ++UI)
1321          Insts.push_back(cast<Instruction>(*UI));
1322        AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1323        Insts.clear();
1324      }
1325    }
1326    NumPromoted += Allocas.size();
1327    Changed = true;
1328  }
1329
1330  return Changed;
1331}
1332
1333
1334/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1335/// SROA.  It must be a struct or array type with a small number of elements.
1336static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1337  Type *T = AI->getAllocatedType();
1338  // Do not promote any struct into more than 32 separate vars.
1339  if (StructType *ST = dyn_cast<StructType>(T))
1340    return ST->getNumElements() <= 32;
1341  // Arrays are much less likely to be safe for SROA; only consider
1342  // them if they are very small.
1343  if (ArrayType *AT = dyn_cast<ArrayType>(T))
1344    return AT->getNumElements() <= 8;
1345  return false;
1346}
1347
1348
1349// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1350// which runs on all of the alloca instructions in the function, removing them
1351// if they are only used by getelementptr instructions.
1352//
1353bool SROA::performScalarRepl(Function &F) {
1354  std::vector<AllocaInst*> WorkList;
1355
1356  // Scan the entry basic block, adding allocas to the worklist.
1357  BasicBlock &BB = F.getEntryBlock();
1358  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1359    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1360      WorkList.push_back(A);
1361
1362  // Process the worklist
1363  bool Changed = false;
1364  while (!WorkList.empty()) {
1365    AllocaInst *AI = WorkList.back();
1366    WorkList.pop_back();
1367
1368    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1369    // with unused elements.
1370    if (AI->use_empty()) {
1371      AI->eraseFromParent();
1372      Changed = true;
1373      continue;
1374    }
1375
1376    // If this alloca is impossible for us to promote, reject it early.
1377    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1378      continue;
1379
1380    // Check to see if this allocation is only modified by a memcpy/memmove from
1381    // a constant global.  If this is the case, we can change all users to use
1382    // the constant global instead.  This is commonly produced by the CFE by
1383    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1384    // is only subsequently read.
1385    SmallVector<Instruction *, 4> ToDelete;
1386    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) {
1387      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1388      DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
1389      for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
1390        ToDelete[i]->eraseFromParent();
1391      Constant *TheSrc = cast<Constant>(Copy->getSource());
1392      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1393      Copy->eraseFromParent();  // Don't mutate the global.
1394      AI->eraseFromParent();
1395      ++NumGlobals;
1396      Changed = true;
1397      continue;
1398    }
1399
1400    // Check to see if we can perform the core SROA transformation.  We cannot
1401    // transform the allocation instruction if it is an array allocation
1402    // (allocations OF arrays are ok though), and an allocation of a scalar
1403    // value cannot be decomposed at all.
1404    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1405
1406    // Do not promote [0 x %struct].
1407    if (AllocaSize == 0) continue;
1408
1409    // Do not promote any struct whose size is too big.
1410    if (AllocaSize > SRThreshold) continue;
1411
1412    // If the alloca looks like a good candidate for scalar replacement, and if
1413    // all its users can be transformed, then split up the aggregate into its
1414    // separate elements.
1415    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1416      DoScalarReplacement(AI, WorkList);
1417      Changed = true;
1418      continue;
1419    }
1420
1421    // If we can turn this aggregate value (potentially with casts) into a
1422    // simple scalar value that can be mem2reg'd into a register value.
1423    // IsNotTrivial tracks whether this is something that mem2reg could have
1424    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1425    // that we can't just check based on the type: the alloca may be of an i32
1426    // but that has pointer arithmetic to set byte 3 of it or something.
1427    if (AllocaInst *NewAI =
1428          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1429      NewAI->takeName(AI);
1430      AI->eraseFromParent();
1431      ++NumConverted;
1432      Changed = true;
1433      continue;
1434    }
1435
1436    // Otherwise, couldn't process this alloca.
1437  }
1438
1439  return Changed;
1440}
1441
1442/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1443/// predicate, do SROA now.
1444void SROA::DoScalarReplacement(AllocaInst *AI,
1445                               std::vector<AllocaInst*> &WorkList) {
1446  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1447  SmallVector<AllocaInst*, 32> ElementAllocas;
1448  if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1449    ElementAllocas.reserve(ST->getNumContainedTypes());
1450    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1451      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1452                                      AI->getAlignment(),
1453                                      AI->getName() + "." + Twine(i), AI);
1454      ElementAllocas.push_back(NA);
1455      WorkList.push_back(NA);  // Add to worklist for recursive processing
1456    }
1457  } else {
1458    ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1459    ElementAllocas.reserve(AT->getNumElements());
1460    Type *ElTy = AT->getElementType();
1461    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1462      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1463                                      AI->getName() + "." + Twine(i), AI);
1464      ElementAllocas.push_back(NA);
1465      WorkList.push_back(NA);  // Add to worklist for recursive processing
1466    }
1467  }
1468
1469  // Now that we have created the new alloca instructions, rewrite all the
1470  // uses of the old alloca.
1471  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1472
1473  // Now erase any instructions that were made dead while rewriting the alloca.
1474  DeleteDeadInstructions();
1475  AI->eraseFromParent();
1476
1477  ++NumReplaced;
1478}
1479
1480/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1481/// recursively including all their operands that become trivially dead.
1482void SROA::DeleteDeadInstructions() {
1483  while (!DeadInsts.empty()) {
1484    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1485
1486    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1487      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1488        // Zero out the operand and see if it becomes trivially dead.
1489        // (But, don't add allocas to the dead instruction list -- they are
1490        // already on the worklist and will be deleted separately.)
1491        *OI = 0;
1492        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1493          DeadInsts.push_back(U);
1494      }
1495
1496    I->eraseFromParent();
1497  }
1498}
1499
1500/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1501/// performing scalar replacement of alloca AI.  The results are flagged in
1502/// the Info parameter.  Offset indicates the position within AI that is
1503/// referenced by this instruction.
1504void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1505                               AllocaInfo &Info) {
1506  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1507    Instruction *User = cast<Instruction>(*UI);
1508
1509    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1510      isSafeForScalarRepl(BC, Offset, Info);
1511    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1512      uint64_t GEPOffset = Offset;
1513      isSafeGEP(GEPI, GEPOffset, Info);
1514      if (!Info.isUnsafe)
1515        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1516    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1517      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1518      if (Length == 0)
1519        return MarkUnsafe(Info, User);
1520      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1521                      UI.getOperandNo() == 0, Info, MI,
1522                      true /*AllowWholeAccess*/);
1523    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1524      if (!LI->isSimple())
1525        return MarkUnsafe(Info, User);
1526      Type *LIType = LI->getType();
1527      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1528                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1529      Info.hasALoadOrStore = true;
1530
1531    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1532      // Store is ok if storing INTO the pointer, not storing the pointer
1533      if (!SI->isSimple() || SI->getOperand(0) == I)
1534        return MarkUnsafe(Info, User);
1535
1536      Type *SIType = SI->getOperand(0)->getType();
1537      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1538                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1539      Info.hasALoadOrStore = true;
1540    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1541      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1542          II->getIntrinsicID() != Intrinsic::lifetime_end)
1543        return MarkUnsafe(Info, User);
1544    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1545      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1546    } else {
1547      return MarkUnsafe(Info, User);
1548    }
1549    if (Info.isUnsafe) return;
1550  }
1551}
1552
1553
1554/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1555/// derived from the alloca, we can often still split the alloca into elements.
1556/// This is useful if we have a large alloca where one element is phi'd
1557/// together somewhere: we can SRoA and promote all the other elements even if
1558/// we end up not being able to promote this one.
1559///
1560/// All we require is that the uses of the PHI do not index into other parts of
1561/// the alloca.  The most important use case for this is single load and stores
1562/// that are PHI'd together, which can happen due to code sinking.
1563void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1564                                           AllocaInfo &Info) {
1565  // If we've already checked this PHI, don't do it again.
1566  if (PHINode *PN = dyn_cast<PHINode>(I))
1567    if (!Info.CheckedPHIs.insert(PN))
1568      return;
1569
1570  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1571    Instruction *User = cast<Instruction>(*UI);
1572
1573    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1574      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1575    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1576      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1577      // but would have to prove that we're staying inside of an element being
1578      // promoted.
1579      if (!GEPI->hasAllZeroIndices())
1580        return MarkUnsafe(Info, User);
1581      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1582    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1583      if (!LI->isSimple())
1584        return MarkUnsafe(Info, User);
1585      Type *LIType = LI->getType();
1586      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1587                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1588      Info.hasALoadOrStore = true;
1589
1590    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1591      // Store is ok if storing INTO the pointer, not storing the pointer
1592      if (!SI->isSimple() || SI->getOperand(0) == I)
1593        return MarkUnsafe(Info, User);
1594
1595      Type *SIType = SI->getOperand(0)->getType();
1596      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1597                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1598      Info.hasALoadOrStore = true;
1599    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1600      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1601    } else {
1602      return MarkUnsafe(Info, User);
1603    }
1604    if (Info.isUnsafe) return;
1605  }
1606}
1607
1608/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1609/// replacement.  It is safe when all the indices are constant, in-bounds
1610/// references, and when the resulting offset corresponds to an element within
1611/// the alloca type.  The results are flagged in the Info parameter.  Upon
1612/// return, Offset is adjusted as specified by the GEP indices.
1613void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1614                     uint64_t &Offset, AllocaInfo &Info) {
1615  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1616  if (GEPIt == E)
1617    return;
1618
1619  // Walk through the GEP type indices, checking the types that this indexes
1620  // into.
1621  for (; GEPIt != E; ++GEPIt) {
1622    // Ignore struct elements, no extra checking needed for these.
1623    if ((*GEPIt)->isStructTy())
1624      continue;
1625
1626    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1627    if (!IdxVal)
1628      return MarkUnsafe(Info, GEPI);
1629  }
1630
1631  // Compute the offset due to this GEP and check if the alloca has a
1632  // component element at that offset.
1633  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1634  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1635  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1636    MarkUnsafe(Info, GEPI);
1637}
1638
1639/// isHomogeneousAggregate - Check if type T is a struct or array containing
1640/// elements of the same type (which is always true for arrays).  If so,
1641/// return true with NumElts and EltTy set to the number of elements and the
1642/// element type, respectively.
1643static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1644                                   Type *&EltTy) {
1645  if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1646    NumElts = AT->getNumElements();
1647    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1648    return true;
1649  }
1650  if (StructType *ST = dyn_cast<StructType>(T)) {
1651    NumElts = ST->getNumContainedTypes();
1652    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1653    for (unsigned n = 1; n < NumElts; ++n) {
1654      if (ST->getContainedType(n) != EltTy)
1655        return false;
1656    }
1657    return true;
1658  }
1659  return false;
1660}
1661
1662/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1663/// "homogeneous" aggregates with the same element type and number of elements.
1664static bool isCompatibleAggregate(Type *T1, Type *T2) {
1665  if (T1 == T2)
1666    return true;
1667
1668  unsigned NumElts1, NumElts2;
1669  Type *EltTy1, *EltTy2;
1670  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1671      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1672      NumElts1 == NumElts2 &&
1673      EltTy1 == EltTy2)
1674    return true;
1675
1676  return false;
1677}
1678
1679/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1680/// alloca or has an offset and size that corresponds to a component element
1681/// within it.  The offset checked here may have been formed from a GEP with a
1682/// pointer bitcasted to a different type.
1683///
1684/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1685/// unit.  If false, it only allows accesses known to be in a single element.
1686void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1687                           Type *MemOpType, bool isStore,
1688                           AllocaInfo &Info, Instruction *TheAccess,
1689                           bool AllowWholeAccess) {
1690  // Check if this is a load/store of the entire alloca.
1691  if (Offset == 0 && AllowWholeAccess &&
1692      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1693    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1694    // loads/stores (which are essentially the same as the MemIntrinsics with
1695    // regard to copying padding between elements).  But, if an alloca is
1696    // flagged as both a source and destination of such operations, we'll need
1697    // to check later for padding between elements.
1698    if (!MemOpType || MemOpType->isIntegerTy()) {
1699      if (isStore)
1700        Info.isMemCpyDst = true;
1701      else
1702        Info.isMemCpySrc = true;
1703      return;
1704    }
1705    // This is also safe for references using a type that is compatible with
1706    // the type of the alloca, so that loads/stores can be rewritten using
1707    // insertvalue/extractvalue.
1708    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1709      Info.hasSubelementAccess = true;
1710      return;
1711    }
1712  }
1713  // Check if the offset/size correspond to a component within the alloca type.
1714  Type *T = Info.AI->getAllocatedType();
1715  if (TypeHasComponent(T, Offset, MemSize)) {
1716    Info.hasSubelementAccess = true;
1717    return;
1718  }
1719
1720  return MarkUnsafe(Info, TheAccess);
1721}
1722
1723/// TypeHasComponent - Return true if T has a component type with the
1724/// specified offset and size.  If Size is zero, do not check the size.
1725bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
1726  Type *EltTy;
1727  uint64_t EltSize;
1728  if (StructType *ST = dyn_cast<StructType>(T)) {
1729    const StructLayout *Layout = TD->getStructLayout(ST);
1730    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1731    EltTy = ST->getContainedType(EltIdx);
1732    EltSize = TD->getTypeAllocSize(EltTy);
1733    Offset -= Layout->getElementOffset(EltIdx);
1734  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1735    EltTy = AT->getElementType();
1736    EltSize = TD->getTypeAllocSize(EltTy);
1737    if (Offset >= AT->getNumElements() * EltSize)
1738      return false;
1739    Offset %= EltSize;
1740  } else {
1741    return false;
1742  }
1743  if (Offset == 0 && (Size == 0 || EltSize == Size))
1744    return true;
1745  // Check if the component spans multiple elements.
1746  if (Offset + Size > EltSize)
1747    return false;
1748  return TypeHasComponent(EltTy, Offset, Size);
1749}
1750
1751/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1752/// the instruction I, which references it, to use the separate elements.
1753/// Offset indicates the position within AI that is referenced by this
1754/// instruction.
1755void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1756                                SmallVector<AllocaInst*, 32> &NewElts) {
1757  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1758    Use &TheUse = UI.getUse();
1759    Instruction *User = cast<Instruction>(*UI++);
1760
1761    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1762      RewriteBitCast(BC, AI, Offset, NewElts);
1763      continue;
1764    }
1765
1766    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1767      RewriteGEP(GEPI, AI, Offset, NewElts);
1768      continue;
1769    }
1770
1771    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1772      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1773      uint64_t MemSize = Length->getZExtValue();
1774      if (Offset == 0 &&
1775          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1776        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1777      // Otherwise the intrinsic can only touch a single element and the
1778      // address operand will be updated, so nothing else needs to be done.
1779      continue;
1780    }
1781
1782    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1783      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1784          II->getIntrinsicID() == Intrinsic::lifetime_end) {
1785        RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1786      }
1787      continue;
1788    }
1789
1790    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1791      Type *LIType = LI->getType();
1792
1793      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1794        // Replace:
1795        //   %res = load { i32, i32 }* %alloc
1796        // with:
1797        //   %load.0 = load i32* %alloc.0
1798        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1799        //   %load.1 = load i32* %alloc.1
1800        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1801        // (Also works for arrays instead of structs)
1802        Value *Insert = UndefValue::get(LIType);
1803        IRBuilder<> Builder(LI);
1804        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1805          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1806          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1807        }
1808        LI->replaceAllUsesWith(Insert);
1809        DeadInsts.push_back(LI);
1810      } else if (LIType->isIntegerTy() &&
1811                 TD->getTypeAllocSize(LIType) ==
1812                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1813        // If this is a load of the entire alloca to an integer, rewrite it.
1814        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1815      }
1816      continue;
1817    }
1818
1819    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1820      Value *Val = SI->getOperand(0);
1821      Type *SIType = Val->getType();
1822      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1823        // Replace:
1824        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1825        // with:
1826        //   %val.0 = extractvalue { i32, i32 } %val, 0
1827        //   store i32 %val.0, i32* %alloc.0
1828        //   %val.1 = extractvalue { i32, i32 } %val, 1
1829        //   store i32 %val.1, i32* %alloc.1
1830        // (Also works for arrays instead of structs)
1831        IRBuilder<> Builder(SI);
1832        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1833          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1834          Builder.CreateStore(Extract, NewElts[i]);
1835        }
1836        DeadInsts.push_back(SI);
1837      } else if (SIType->isIntegerTy() &&
1838                 TD->getTypeAllocSize(SIType) ==
1839                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1840        // If this is a store of the entire alloca from an integer, rewrite it.
1841        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1842      }
1843      continue;
1844    }
1845
1846    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1847      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1848      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1849      // the new pointer.
1850      if (!isa<AllocaInst>(I)) continue;
1851
1852      assert(Offset == 0 && NewElts[0] &&
1853             "Direct alloca use should have a zero offset");
1854
1855      // If we have a use of the alloca, we know the derived uses will be
1856      // utilizing just the first element of the scalarized result.  Insert a
1857      // bitcast of the first alloca before the user as required.
1858      AllocaInst *NewAI = NewElts[0];
1859      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1860      NewAI->moveBefore(BCI);
1861      TheUse = BCI;
1862      continue;
1863    }
1864  }
1865}
1866
1867/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1868/// and recursively continue updating all of its uses.
1869void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1870                          SmallVector<AllocaInst*, 32> &NewElts) {
1871  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1872  if (BC->getOperand(0) != AI)
1873    return;
1874
1875  // The bitcast references the original alloca.  Replace its uses with
1876  // references to the first new element alloca.
1877  Instruction *Val = NewElts[0];
1878  if (Val->getType() != BC->getDestTy()) {
1879    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1880    Val->takeName(BC);
1881  }
1882  BC->replaceAllUsesWith(Val);
1883  DeadInsts.push_back(BC);
1884}
1885
1886/// FindElementAndOffset - Return the index of the element containing Offset
1887/// within the specified type, which must be either a struct or an array.
1888/// Sets T to the type of the element and Offset to the offset within that
1889/// element.  IdxTy is set to the type of the index result to be used in a
1890/// GEP instruction.
1891uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
1892                                    Type *&IdxTy) {
1893  uint64_t Idx = 0;
1894  if (StructType *ST = dyn_cast<StructType>(T)) {
1895    const StructLayout *Layout = TD->getStructLayout(ST);
1896    Idx = Layout->getElementContainingOffset(Offset);
1897    T = ST->getContainedType(Idx);
1898    Offset -= Layout->getElementOffset(Idx);
1899    IdxTy = Type::getInt32Ty(T->getContext());
1900    return Idx;
1901  }
1902  ArrayType *AT = cast<ArrayType>(T);
1903  T = AT->getElementType();
1904  uint64_t EltSize = TD->getTypeAllocSize(T);
1905  Idx = Offset / EltSize;
1906  Offset -= Idx * EltSize;
1907  IdxTy = Type::getInt64Ty(T->getContext());
1908  return Idx;
1909}
1910
1911/// RewriteGEP - Check if this GEP instruction moves the pointer across
1912/// elements of the alloca that are being split apart, and if so, rewrite
1913/// the GEP to be relative to the new element.
1914void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1915                      SmallVector<AllocaInst*, 32> &NewElts) {
1916  uint64_t OldOffset = Offset;
1917  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1918  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1919
1920  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1921
1922  Type *T = AI->getAllocatedType();
1923  Type *IdxTy;
1924  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1925  if (GEPI->getOperand(0) == AI)
1926    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1927
1928  T = AI->getAllocatedType();
1929  uint64_t EltOffset = Offset;
1930  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1931
1932  // If this GEP does not move the pointer across elements of the alloca
1933  // being split, then it does not needs to be rewritten.
1934  if (Idx == OldIdx)
1935    return;
1936
1937  Type *i32Ty = Type::getInt32Ty(AI->getContext());
1938  SmallVector<Value*, 8> NewArgs;
1939  NewArgs.push_back(Constant::getNullValue(i32Ty));
1940  while (EltOffset != 0) {
1941    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1942    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1943  }
1944  Instruction *Val = NewElts[Idx];
1945  if (NewArgs.size() > 1) {
1946    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
1947    Val->takeName(GEPI);
1948  }
1949  if (Val->getType() != GEPI->getType())
1950    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1951  GEPI->replaceAllUsesWith(Val);
1952  DeadInsts.push_back(GEPI);
1953}
1954
1955/// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
1956/// to mark the lifetime of the scalarized memory.
1957void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
1958                                    uint64_t Offset,
1959                                    SmallVector<AllocaInst*, 32> &NewElts) {
1960  ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
1961  // Put matching lifetime markers on everything from Offset up to
1962  // Offset+OldSize.
1963  Type *AIType = AI->getAllocatedType();
1964  uint64_t NewOffset = Offset;
1965  Type *IdxTy;
1966  uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
1967
1968  IRBuilder<> Builder(II);
1969  uint64_t Size = OldSize->getLimitedValue();
1970
1971  if (NewOffset) {
1972    // Splice the first element and index 'NewOffset' bytes in.  SROA will
1973    // split the alloca again later.
1974    Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
1975    V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
1976
1977    IdxTy = NewElts[Idx]->getAllocatedType();
1978    uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
1979    if (EltSize > Size) {
1980      EltSize = Size;
1981      Size = 0;
1982    } else {
1983      Size -= EltSize;
1984    }
1985    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1986      Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
1987    else
1988      Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
1989    ++Idx;
1990  }
1991
1992  for (; Idx != NewElts.size() && Size; ++Idx) {
1993    IdxTy = NewElts[Idx]->getAllocatedType();
1994    uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
1995    if (EltSize > Size) {
1996      EltSize = Size;
1997      Size = 0;
1998    } else {
1999      Size -= EltSize;
2000    }
2001    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2002      Builder.CreateLifetimeStart(NewElts[Idx],
2003                                  Builder.getInt64(EltSize));
2004    else
2005      Builder.CreateLifetimeEnd(NewElts[Idx],
2006                                Builder.getInt64(EltSize));
2007  }
2008  DeadInsts.push_back(II);
2009}
2010
2011/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2012/// Rewrite it to copy or set the elements of the scalarized memory.
2013void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2014                                        AllocaInst *AI,
2015                                        SmallVector<AllocaInst*, 32> &NewElts) {
2016  // If this is a memcpy/memmove, construct the other pointer as the
2017  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2018  // that doesn't have anything to do with the alloca that we are promoting. For
2019  // memset, this Value* stays null.
2020  Value *OtherPtr = 0;
2021  unsigned MemAlignment = MI->getAlignment();
2022  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2023    if (Inst == MTI->getRawDest())
2024      OtherPtr = MTI->getRawSource();
2025    else {
2026      assert(Inst == MTI->getRawSource());
2027      OtherPtr = MTI->getRawDest();
2028    }
2029  }
2030
2031  // If there is an other pointer, we want to convert it to the same pointer
2032  // type as AI has, so we can GEP through it safely.
2033  if (OtherPtr) {
2034    unsigned AddrSpace =
2035      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2036
2037    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2038    // optimization, but it's also required to detect the corner case where
2039    // both pointer operands are referencing the same memory, and where
2040    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2041    // function is only called for mem intrinsics that access the whole
2042    // aggregate, so non-zero GEPs are not an issue here.)
2043    OtherPtr = OtherPtr->stripPointerCasts();
2044
2045    // Copying the alloca to itself is a no-op: just delete it.
2046    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2047      // This code will run twice for a no-op memcpy -- once for each operand.
2048      // Put only one reference to MI on the DeadInsts list.
2049      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2050             E = DeadInsts.end(); I != E; ++I)
2051        if (*I == MI) return;
2052      DeadInsts.push_back(MI);
2053      return;
2054    }
2055
2056    // If the pointer is not the right type, insert a bitcast to the right
2057    // type.
2058    Type *NewTy =
2059      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2060
2061    if (OtherPtr->getType() != NewTy)
2062      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2063  }
2064
2065  // Process each element of the aggregate.
2066  bool SROADest = MI->getRawDest() == Inst;
2067
2068  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2069
2070  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2071    // If this is a memcpy/memmove, emit a GEP of the other element address.
2072    Value *OtherElt = 0;
2073    unsigned OtherEltAlign = MemAlignment;
2074
2075    if (OtherPtr) {
2076      Value *Idx[2] = { Zero,
2077                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2078      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2079                                              OtherPtr->getName()+"."+Twine(i),
2080                                                   MI);
2081      uint64_t EltOffset;
2082      PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2083      Type *OtherTy = OtherPtrTy->getElementType();
2084      if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2085        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2086      } else {
2087        Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2088        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2089      }
2090
2091      // The alignment of the other pointer is the guaranteed alignment of the
2092      // element, which is affected by both the known alignment of the whole
2093      // mem intrinsic and the alignment of the element.  If the alignment of
2094      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2095      // known alignment is just 4 bytes.
2096      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2097    }
2098
2099    Value *EltPtr = NewElts[i];
2100    Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2101
2102    // If we got down to a scalar, insert a load or store as appropriate.
2103    if (EltTy->isSingleValueType()) {
2104      if (isa<MemTransferInst>(MI)) {
2105        if (SROADest) {
2106          // From Other to Alloca.
2107          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2108          new StoreInst(Elt, EltPtr, MI);
2109        } else {
2110          // From Alloca to Other.
2111          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2112          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2113        }
2114        continue;
2115      }
2116      assert(isa<MemSetInst>(MI));
2117
2118      // If the stored element is zero (common case), just store a null
2119      // constant.
2120      Constant *StoreVal;
2121      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2122        if (CI->isZero()) {
2123          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2124        } else {
2125          // If EltTy is a vector type, get the element type.
2126          Type *ValTy = EltTy->getScalarType();
2127
2128          // Construct an integer with the right value.
2129          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2130          APInt OneVal(EltSize, CI->getZExtValue());
2131          APInt TotalVal(OneVal);
2132          // Set each byte.
2133          for (unsigned i = 0; 8*i < EltSize; ++i) {
2134            TotalVal = TotalVal.shl(8);
2135            TotalVal |= OneVal;
2136          }
2137
2138          // Convert the integer value to the appropriate type.
2139          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2140          if (ValTy->isPointerTy())
2141            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2142          else if (ValTy->isFloatingPointTy())
2143            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2144          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2145
2146          // If the requested value was a vector constant, create it.
2147          if (EltTy->isVectorTy()) {
2148            unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
2149            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2150            StoreVal = ConstantVector::get(Elts);
2151          }
2152        }
2153        new StoreInst(StoreVal, EltPtr, MI);
2154        continue;
2155      }
2156      // Otherwise, if we're storing a byte variable, use a memset call for
2157      // this element.
2158    }
2159
2160    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2161
2162    IRBuilder<> Builder(MI);
2163
2164    // Finally, insert the meminst for this element.
2165    if (isa<MemSetInst>(MI)) {
2166      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2167                           MI->isVolatile());
2168    } else {
2169      assert(isa<MemTransferInst>(MI));
2170      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2171      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2172
2173      if (isa<MemCpyInst>(MI))
2174        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2175      else
2176        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2177    }
2178  }
2179  DeadInsts.push_back(MI);
2180}
2181
2182/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2183/// overwrites the entire allocation.  Extract out the pieces of the stored
2184/// integer and store them individually.
2185void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2186                                         SmallVector<AllocaInst*, 32> &NewElts){
2187  // Extract each element out of the integer according to its structure offset
2188  // and store the element value to the individual alloca.
2189  Value *SrcVal = SI->getOperand(0);
2190  Type *AllocaEltTy = AI->getAllocatedType();
2191  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2192
2193  IRBuilder<> Builder(SI);
2194
2195  // Handle tail padding by extending the operand
2196  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2197    SrcVal = Builder.CreateZExt(SrcVal,
2198                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2199
2200  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2201               << '\n');
2202
2203  // There are two forms here: AI could be an array or struct.  Both cases
2204  // have different ways to compute the element offset.
2205  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2206    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2207
2208    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2209      // Get the number of bits to shift SrcVal to get the value.
2210      Type *FieldTy = EltSTy->getElementType(i);
2211      uint64_t Shift = Layout->getElementOffsetInBits(i);
2212
2213      if (TD->isBigEndian())
2214        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2215
2216      Value *EltVal = SrcVal;
2217      if (Shift) {
2218        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2219        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2220      }
2221
2222      // Truncate down to an integer of the right size.
2223      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2224
2225      // Ignore zero sized fields like {}, they obviously contain no data.
2226      if (FieldSizeBits == 0) continue;
2227
2228      if (FieldSizeBits != AllocaSizeBits)
2229        EltVal = Builder.CreateTrunc(EltVal,
2230                             IntegerType::get(SI->getContext(), FieldSizeBits));
2231      Value *DestField = NewElts[i];
2232      if (EltVal->getType() == FieldTy) {
2233        // Storing to an integer field of this size, just do it.
2234      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2235        // Bitcast to the right element type (for fp/vector values).
2236        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2237      } else {
2238        // Otherwise, bitcast the dest pointer (for aggregates).
2239        DestField = Builder.CreateBitCast(DestField,
2240                                     PointerType::getUnqual(EltVal->getType()));
2241      }
2242      new StoreInst(EltVal, DestField, SI);
2243    }
2244
2245  } else {
2246    ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2247    Type *ArrayEltTy = ATy->getElementType();
2248    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2249    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2250
2251    uint64_t Shift;
2252
2253    if (TD->isBigEndian())
2254      Shift = AllocaSizeBits-ElementOffset;
2255    else
2256      Shift = 0;
2257
2258    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2259      // Ignore zero sized fields like {}, they obviously contain no data.
2260      if (ElementSizeBits == 0) continue;
2261
2262      Value *EltVal = SrcVal;
2263      if (Shift) {
2264        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2265        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2266      }
2267
2268      // Truncate down to an integer of the right size.
2269      if (ElementSizeBits != AllocaSizeBits)
2270        EltVal = Builder.CreateTrunc(EltVal,
2271                                     IntegerType::get(SI->getContext(),
2272                                                      ElementSizeBits));
2273      Value *DestField = NewElts[i];
2274      if (EltVal->getType() == ArrayEltTy) {
2275        // Storing to an integer field of this size, just do it.
2276      } else if (ArrayEltTy->isFloatingPointTy() ||
2277                 ArrayEltTy->isVectorTy()) {
2278        // Bitcast to the right element type (for fp/vector values).
2279        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2280      } else {
2281        // Otherwise, bitcast the dest pointer (for aggregates).
2282        DestField = Builder.CreateBitCast(DestField,
2283                                     PointerType::getUnqual(EltVal->getType()));
2284      }
2285      new StoreInst(EltVal, DestField, SI);
2286
2287      if (TD->isBigEndian())
2288        Shift -= ElementOffset;
2289      else
2290        Shift += ElementOffset;
2291    }
2292  }
2293
2294  DeadInsts.push_back(SI);
2295}
2296
2297/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2298/// an integer.  Load the individual pieces to form the aggregate value.
2299void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2300                                        SmallVector<AllocaInst*, 32> &NewElts) {
2301  // Extract each element out of the NewElts according to its structure offset
2302  // and form the result value.
2303  Type *AllocaEltTy = AI->getAllocatedType();
2304  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2305
2306  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2307               << '\n');
2308
2309  // There are two forms here: AI could be an array or struct.  Both cases
2310  // have different ways to compute the element offset.
2311  const StructLayout *Layout = 0;
2312  uint64_t ArrayEltBitOffset = 0;
2313  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2314    Layout = TD->getStructLayout(EltSTy);
2315  } else {
2316    Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2317    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2318  }
2319
2320  Value *ResultVal =
2321    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2322
2323  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2324    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2325    // the pointer to an integer of the same size before doing the load.
2326    Value *SrcField = NewElts[i];
2327    Type *FieldTy =
2328      cast<PointerType>(SrcField->getType())->getElementType();
2329    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2330
2331    // Ignore zero sized fields like {}, they obviously contain no data.
2332    if (FieldSizeBits == 0) continue;
2333
2334    IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2335                                                     FieldSizeBits);
2336    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2337        !FieldTy->isVectorTy())
2338      SrcField = new BitCastInst(SrcField,
2339                                 PointerType::getUnqual(FieldIntTy),
2340                                 "", LI);
2341    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2342
2343    // If SrcField is a fp or vector of the right size but that isn't an
2344    // integer type, bitcast to an integer so we can shift it.
2345    if (SrcField->getType() != FieldIntTy)
2346      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2347
2348    // Zero extend the field to be the same size as the final alloca so that
2349    // we can shift and insert it.
2350    if (SrcField->getType() != ResultVal->getType())
2351      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2352
2353    // Determine the number of bits to shift SrcField.
2354    uint64_t Shift;
2355    if (Layout) // Struct case.
2356      Shift = Layout->getElementOffsetInBits(i);
2357    else  // Array case.
2358      Shift = i*ArrayEltBitOffset;
2359
2360    if (TD->isBigEndian())
2361      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2362
2363    if (Shift) {
2364      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2365      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2366    }
2367
2368    // Don't create an 'or x, 0' on the first iteration.
2369    if (!isa<Constant>(ResultVal) ||
2370        !cast<Constant>(ResultVal)->isNullValue())
2371      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2372    else
2373      ResultVal = SrcField;
2374  }
2375
2376  // Handle tail padding by truncating the result
2377  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2378    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2379
2380  LI->replaceAllUsesWith(ResultVal);
2381  DeadInsts.push_back(LI);
2382}
2383
2384/// HasPadding - Return true if the specified type has any structure or
2385/// alignment padding in between the elements that would be split apart
2386/// by SROA; return false otherwise.
2387static bool HasPadding(Type *Ty, const TargetData &TD) {
2388  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2389    Ty = ATy->getElementType();
2390    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2391  }
2392
2393  // SROA currently handles only Arrays and Structs.
2394  StructType *STy = cast<StructType>(Ty);
2395  const StructLayout *SL = TD.getStructLayout(STy);
2396  unsigned PrevFieldBitOffset = 0;
2397  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2398    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2399
2400    // Check to see if there is any padding between this element and the
2401    // previous one.
2402    if (i) {
2403      unsigned PrevFieldEnd =
2404        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2405      if (PrevFieldEnd < FieldBitOffset)
2406        return true;
2407    }
2408    PrevFieldBitOffset = FieldBitOffset;
2409  }
2410  // Check for tail padding.
2411  if (unsigned EltCount = STy->getNumElements()) {
2412    unsigned PrevFieldEnd = PrevFieldBitOffset +
2413      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2414    if (PrevFieldEnd < SL->getSizeInBits())
2415      return true;
2416  }
2417  return false;
2418}
2419
2420/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2421/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2422/// or 1 if safe after canonicalization has been performed.
2423bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2424  // Loop over the use list of the alloca.  We can only transform it if all of
2425  // the users are safe to transform.
2426  AllocaInfo Info(AI);
2427
2428  isSafeForScalarRepl(AI, 0, Info);
2429  if (Info.isUnsafe) {
2430    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2431    return false;
2432  }
2433
2434  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2435  // source and destination, we have to be careful.  In particular, the memcpy
2436  // could be moving around elements that live in structure padding of the LLVM
2437  // types, but may actually be used.  In these cases, we refuse to promote the
2438  // struct.
2439  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2440      HasPadding(AI->getAllocatedType(), *TD))
2441    return false;
2442
2443  // If the alloca never has an access to just *part* of it, but is accessed
2444  // via loads and stores, then we should use ConvertToScalarInfo to promote
2445  // the alloca instead of promoting each piece at a time and inserting fission
2446  // and fusion code.
2447  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2448    // If the struct/array just has one element, use basic SRoA.
2449    if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2450      if (ST->getNumElements() > 1) return false;
2451    } else {
2452      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2453        return false;
2454    }
2455  }
2456
2457  return true;
2458}
2459
2460
2461
2462/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2463/// some part of a constant global variable.  This intentionally only accepts
2464/// constant expressions because we don't can't rewrite arbitrary instructions.
2465static bool PointsToConstantGlobal(Value *V) {
2466  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2467    return GV->isConstant();
2468  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2469    if (CE->getOpcode() == Instruction::BitCast ||
2470        CE->getOpcode() == Instruction::GetElementPtr)
2471      return PointsToConstantGlobal(CE->getOperand(0));
2472  return false;
2473}
2474
2475/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2476/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2477/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2478/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2479/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2480/// the alloca, and if the source pointer is a pointer to a constant global, we
2481/// can optimize this.
2482static bool
2483isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2484                               bool isOffset,
2485                               SmallVector<Instruction *, 4> &LifetimeMarkers) {
2486  // We track lifetime intrinsics as we encounter them.  If we decide to go
2487  // ahead and replace the value with the global, this lets the caller quickly
2488  // eliminate the markers.
2489
2490  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2491    User *U = cast<Instruction>(*UI);
2492
2493    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2494      // Ignore non-volatile loads, they are always ok.
2495      if (!LI->isSimple()) return false;
2496      continue;
2497    }
2498
2499    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2500      // If uses of the bitcast are ok, we are ok.
2501      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset,
2502                                          LifetimeMarkers))
2503        return false;
2504      continue;
2505    }
2506    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2507      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2508      // doesn't, it does.
2509      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2510                                          isOffset || !GEP->hasAllZeroIndices(),
2511                                          LifetimeMarkers))
2512        return false;
2513      continue;
2514    }
2515
2516    if (CallSite CS = U) {
2517      // If this is the function being called then we treat it like a load and
2518      // ignore it.
2519      if (CS.isCallee(UI))
2520        continue;
2521
2522      // If this is a readonly/readnone call site, then we know it is just a
2523      // load (but one that potentially returns the value itself), so we can
2524      // ignore it if we know that the value isn't captured.
2525      unsigned ArgNo = CS.getArgumentNo(UI);
2526      if (CS.onlyReadsMemory() &&
2527          (CS.getInstruction()->use_empty() ||
2528           CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2529        continue;
2530
2531      // If this is being passed as a byval argument, the caller is making a
2532      // copy, so it is only a read of the alloca.
2533      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2534        continue;
2535    }
2536
2537    // Lifetime intrinsics can be handled by the caller.
2538    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
2539      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2540          II->getIntrinsicID() == Intrinsic::lifetime_end) {
2541        assert(II->use_empty() && "Lifetime markers have no result to use!");
2542        LifetimeMarkers.push_back(II);
2543        continue;
2544      }
2545    }
2546
2547    // If this is isn't our memcpy/memmove, reject it as something we can't
2548    // handle.
2549    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2550    if (MI == 0)
2551      return false;
2552
2553    // If the transfer is using the alloca as a source of the transfer, then
2554    // ignore it since it is a load (unless the transfer is volatile).
2555    if (UI.getOperandNo() == 1) {
2556      if (MI->isVolatile()) return false;
2557      continue;
2558    }
2559
2560    // If we already have seen a copy, reject the second one.
2561    if (TheCopy) return false;
2562
2563    // If the pointer has been offset from the start of the alloca, we can't
2564    // safely handle this.
2565    if (isOffset) return false;
2566
2567    // If the memintrinsic isn't using the alloca as the dest, reject it.
2568    if (UI.getOperandNo() != 0) return false;
2569
2570    // If the source of the memcpy/move is not a constant global, reject it.
2571    if (!PointsToConstantGlobal(MI->getSource()))
2572      return false;
2573
2574    // Otherwise, the transform is safe.  Remember the copy instruction.
2575    TheCopy = MI;
2576  }
2577  return true;
2578}
2579
2580/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2581/// modified by a copy from a constant global.  If we can prove this, we can
2582/// replace any uses of the alloca with uses of the global directly.
2583MemTransferInst *
2584SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
2585                                     SmallVector<Instruction*, 4> &ToDelete) {
2586  MemTransferInst *TheCopy = 0;
2587  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete))
2588    return TheCopy;
2589  return 0;
2590}
2591