ScalarReplAggregates.cpp revision c4f78208b399111cc4f5d97ed1875566819f34b4
14e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
24e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom//
34e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom//                     The LLVM Compiler Infrastructure
44e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom//
54e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom// This file is distributed under the University of Illinois Open Source
64e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom// License. See LICENSE.TXT for details.
74e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom//
84e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom//===----------------------------------------------------------------------===//
94e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom//
104e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom// This transformation implements the well known scalar replacement of
114e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom// aggregates transformation.  This xform breaks up alloca instructions of
124e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom// aggregate type (structure or array) into individual alloca instructions for
134e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom// each member (if possible).  Then, if possible, it transforms the individual
144e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom// alloca instructions into nice clean scalar SSA form.
154e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom//
164e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
174e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom// often interact, especially for C++ programs.  As such, iterating between
184e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom// SRoA, then Mem2Reg until we run out of things to promote works well.
194e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom//
204e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom//===----------------------------------------------------------------------===//
214e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
224e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#define DEBUG_TYPE "scalarrepl"
234e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Transforms/Scalar.h"
244e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Constants.h"
254e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/DerivedTypes.h"
264e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Function.h"
274e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/GlobalVariable.h"
284e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Instructions.h"
294e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/IntrinsicInst.h"
304e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/LLVMContext.h"
314e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Module.h"
324e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Pass.h"
334e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Analysis/DIBuilder.h"
344e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Analysis/Dominators.h"
354e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Analysis/Loads.h"
364e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Analysis/ValueTracking.h"
374e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Target/TargetData.h"
384e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Transforms/Utils/PromoteMemToReg.h"
394e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Transforms/Utils/Local.h"
404e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Transforms/Utils/SSAUpdater.h"
414e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Support/CallSite.h"
424e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Support/Debug.h"
434e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Support/ErrorHandling.h"
444e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Support/GetElementPtrTypeIterator.h"
454e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Support/IRBuilder.h"
464e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Support/MathExtras.h"
474e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/Support/raw_ostream.h"
484e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/ADT/SetVector.h"
494e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/ADT/SmallVector.h"
504e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom#include "llvm/ADT/Statistic.h"
514e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstromusing namespace llvm;
524e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
534e0e02a98b7d235f19972c6a214fda924d6b958bBrian CarlstromSTATISTIC(NumReplaced,  "Number of allocas broken up");
544e0e02a98b7d235f19972c6a214fda924d6b958bBrian CarlstromSTATISTIC(NumPromoted,  "Number of allocas promoted");
554e0e02a98b7d235f19972c6a214fda924d6b958bBrian CarlstromSTATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
564e0e02a98b7d235f19972c6a214fda924d6b958bBrian CarlstromSTATISTIC(NumConverted, "Number of aggregates converted to scalar");
574e0e02a98b7d235f19972c6a214fda924d6b958bBrian CarlstromSTATISTIC(NumGlobals,   "Number of allocas copied from constant global");
584e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
594e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstromnamespace {
604e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom  struct SROA : public FunctionPass {
614e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    SROA(int T, bool hasDT, char &ID)
624e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      : FunctionPass(ID), HasDomTree(hasDT) {
634e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      if (T == -1)
644e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom        SRThreshold = 128;
654e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      else
664e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom        SRThreshold = T;
674e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    }
684e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
694e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    bool runOnFunction(Function &F);
704e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
714e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    bool performScalarRepl(Function &F);
724e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    bool performPromotion(Function &F);
734e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
744e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom  private:
754e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    bool HasDomTree;
764e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    TargetData *TD;
774e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
784e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    /// DeadInsts - Keep track of instructions we have made dead, so that
794e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    /// we can remove them after we are done working.
804e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    SmallVector<Value*, 32> DeadInsts;
814e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
824e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
834e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    /// information about the uses.  All these fields are initialized to false
844e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    /// and set to true when something is learned.
854e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    struct AllocaInfo {
864e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      /// The alloca to promote.
874e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      AllocaInst *AI;
884e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
894e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
904e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      /// looping and avoid redundant work.
914e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      SmallPtrSet<PHINode*, 8> CheckedPHIs;
924e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
934e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
944e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      bool isUnsafe : 1;
954e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
964e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
974e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      bool isMemCpySrc : 1;
984e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
994e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
1004e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      bool isMemCpyDst : 1;
1014e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1024e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      /// hasSubelementAccess - This is true if a subelement of the alloca is
1034e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      /// ever accessed, or false if the alloca is only accessed with mem
1044e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      /// intrinsics or load/store that only access the entire alloca at once.
1054e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      bool hasSubelementAccess : 1;
1064e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1074e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      /// hasALoadOrStore - This is true if there are any loads or stores to it.
1084e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      /// The alloca may just be accessed with memcpy, for example, which would
1094e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      /// not set this.
1104e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      bool hasALoadOrStore : 1;
1114e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1124e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      explicit AllocaInfo(AllocaInst *ai)
1134e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
1144e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom          hasSubelementAccess(false), hasALoadOrStore(false) {}
1154e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    };
1164e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1174e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    unsigned SRThreshold;
1184e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1194e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
1204e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      I.isUnsafe = true;
1214e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
1224e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    }
1234e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1244e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
1254e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1264e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
1274e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
1284e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                                         AllocaInfo &Info);
1294e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
1304e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1314e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                         const Type *MemOpType, bool isStore, AllocaInfo &Info,
1324e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                         Instruction *TheAccess, bool AllowWholeAccess);
1334e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
1344e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
1354e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                                  const Type *&IdxTy);
1364e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1374e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    void DoScalarReplacement(AllocaInst *AI,
1384e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                             std::vector<AllocaInst*> &WorkList);
1394e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    void DeleteDeadInstructions();
1404e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1414e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1424e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                              SmallVector<AllocaInst*, 32> &NewElts);
14343c12e3d4f9bbbbd4a8ba7b149686437514bc6b6Brian Carlstrom    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1444e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                        SmallVector<AllocaInst*, 32> &NewElts);
1454e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1464e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                    SmallVector<AllocaInst*, 32> &NewElts);
1474e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1484e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                                      AllocaInst *AI,
1494e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                                      SmallVector<AllocaInst*, 32> &NewElts);
1504e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
1514e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                                       SmallVector<AllocaInst*, 32> &NewElts);
1524e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1534e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                                      SmallVector<AllocaInst*, 32> &NewElts);
1544e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1554e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
1564e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom  };
1574e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1584e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom  // SROA_DT - SROA that uses DominatorTree.
1594e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom  struct SROA_DT : public SROA {
1604e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    static char ID;
1614e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom  public:
1624e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    SROA_DT(int T = -1) : SROA(T, true, ID) {
1634e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
1644e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    }
1654e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1664e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    // getAnalysisUsage - This pass does not require any passes, but we know it
1674e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    // will not alter the CFG, so say so.
1684e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1694e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      AU.addRequired<DominatorTree>();
1704e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      AU.setPreservesCFG();
1714e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    }
1724e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom  };
1734e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1744e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom  // SROA_SSAUp - SROA that uses SSAUpdater.
1754e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom  struct SROA_SSAUp : public SROA {
1764e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    static char ID;
1774e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom  public:
1784e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
1794e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
1804e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    }
1814e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1824e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    // getAnalysisUsage - This pass does not require any passes, but we know it
1834e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    // will not alter the CFG, so say so.
1844e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1854e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom      AU.setPreservesCFG();
1864e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom    }
1874e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom  };
1884e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1894e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom}
1904e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1914e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstromchar SROA_DT::ID = 0;
1924e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstromchar SROA_SSAUp::ID = 0;
1934e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
1944e0e02a98b7d235f19972c6a214fda924d6b958bBrian CarlstromINITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
1954e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                "Scalar Replacement of Aggregates (DT)", false, false)
1964e0e02a98b7d235f19972c6a214fda924d6b958bBrian CarlstromINITIALIZE_PASS_DEPENDENCY(DominatorTree)
1974e0e02a98b7d235f19972c6a214fda924d6b958bBrian CarlstromINITIALIZE_PASS_END(SROA_DT, "scalarrepl",
1984e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom                "Scalar Replacement of Aggregates (DT)", false, false)
1994e0e02a98b7d235f19972c6a214fda924d6b958bBrian Carlstrom
2004e0e02a98b7d235f19972c6a214fda924d6b958bBrian CarlstromINITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
201                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
202INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
203                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
204
205// Public interface to the ScalarReplAggregates pass
206FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
207                                                   bool UseDomTree) {
208  if (UseDomTree)
209    return new SROA_DT(Threshold);
210  return new SROA_SSAUp(Threshold);
211}
212
213
214//===----------------------------------------------------------------------===//
215// Convert To Scalar Optimization.
216//===----------------------------------------------------------------------===//
217
218namespace {
219/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
220/// optimization, which scans the uses of an alloca and determines if it can
221/// rewrite it in terms of a single new alloca that can be mem2reg'd.
222class ConvertToScalarInfo {
223  /// AllocaSize - The size of the alloca being considered in bytes.
224  unsigned AllocaSize;
225  const TargetData &TD;
226
227  /// IsNotTrivial - This is set to true if there is some access to the object
228  /// which means that mem2reg can't promote it.
229  bool IsNotTrivial;
230
231  /// VectorTy - This tracks the type that we should promote the vector to if
232  /// it is possible to turn it into a vector.  This starts out null, and if it
233  /// isn't possible to turn into a vector type, it gets set to VoidTy.
234  const Type *VectorTy;
235
236  /// HadAVector - True if there is at least one vector access to the alloca.
237  /// We don't want to turn random arrays into vectors and use vector element
238  /// insert/extract, but if there are element accesses to something that is
239  /// also declared as a vector, we do want to promote to a vector.
240  bool HadAVector;
241
242  /// HadNonMemTransferAccess - True if there is at least one access to the
243  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
244  /// large integers unless there is some potential for optimization.
245  bool HadNonMemTransferAccess;
246
247public:
248  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
249    : AllocaSize(Size), TD(td), IsNotTrivial(false), VectorTy(0),
250      HadAVector(false), HadNonMemTransferAccess(false) { }
251
252  AllocaInst *TryConvert(AllocaInst *AI);
253
254private:
255  bool CanConvertToScalar(Value *V, uint64_t Offset);
256  void MergeInType(const Type *In, uint64_t Offset, bool IsLoadOrStore);
257  bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
258  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
259
260  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
261                                    uint64_t Offset, IRBuilder<> &Builder);
262  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
263                                   uint64_t Offset, IRBuilder<> &Builder);
264};
265} // end anonymous namespace.
266
267
268/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
269/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
270/// alloca if possible or null if not.
271AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
272  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
273  // out.
274  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
275    return 0;
276
277  // If we were able to find a vector type that can handle this with
278  // insert/extract elements, and if there was at least one use that had
279  // a vector type, promote this to a vector.  We don't want to promote
280  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
281  // we just get a lot of insert/extracts.  If at least one vector is
282  // involved, then we probably really do have a union of vector/array.
283  const Type *NewTy;
284  if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
285    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
286          << *VectorTy << '\n');
287    NewTy = VectorTy;  // Use the vector type.
288  } else {
289    unsigned BitWidth = AllocaSize * 8;
290    if (!HadAVector && !HadNonMemTransferAccess &&
291        !TD.fitsInLegalInteger(BitWidth))
292      return 0;
293
294    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
295    // Create and insert the integer alloca.
296    NewTy = IntegerType::get(AI->getContext(), BitWidth);
297  }
298  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
299  ConvertUsesToScalar(AI, NewAI, 0);
300  return NewAI;
301}
302
303/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
304/// so far at the offset specified by Offset (which is specified in bytes).
305///
306/// There are three cases we handle here:
307///   1) A union of vector types of the same size and potentially its elements.
308///      Here we turn element accesses into insert/extract element operations.
309///      This promotes a <4 x float> with a store of float to the third element
310///      into a <4 x float> that uses insert element.
311///   2) A union of vector types with power-of-2 size differences, e.g. a float,
312///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
313///      and extract element operations, and <2 x float> accesses into a cast to
314///      <2 x double>, an extract, and a cast back to <2 x float>.
315///   3) A fully general blob of memory, which we turn into some (potentially
316///      large) integer type with extract and insert operations where the loads
317///      and stores would mutate the memory.  We mark this by setting VectorTy
318///      to VoidTy.
319void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset,
320                                      bool IsLoadOrStore) {
321  // If we already decided to turn this into a blob of integer memory, there is
322  // nothing to be done.
323  if (VectorTy && VectorTy->isVoidTy())
324    return;
325
326  // If this could be contributing to a vector, analyze it.
327
328  // If the In type is a vector that is the same size as the alloca, see if it
329  // matches the existing VecTy.
330  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
331    if (MergeInVectorType(VInTy, Offset))
332      return;
333  } else if (In->isFloatTy() || In->isDoubleTy() ||
334             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
335              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
336    // Full width accesses can be ignored, because they can always be turned
337    // into bitcasts.
338    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
339    if (IsLoadOrStore && EltSize == AllocaSize)
340      return;
341
342    // If we're accessing something that could be an element of a vector, see
343    // if the implied vector agrees with what we already have and if Offset is
344    // compatible with it.
345    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
346        (!VectorTy || Offset * 8 < VectorTy->getPrimitiveSizeInBits())) {
347      if (!VectorTy) {
348        VectorTy = VectorType::get(In, AllocaSize/EltSize);
349        return;
350      }
351
352      unsigned CurrentEltSize = cast<VectorType>(VectorTy)->getElementType()
353                                ->getPrimitiveSizeInBits()/8;
354      if (EltSize == CurrentEltSize)
355        return;
356
357      if (In->isIntegerTy() && isPowerOf2_32(AllocaSize / EltSize))
358        return;
359    }
360  }
361
362  // Otherwise, we have a case that we can't handle with an optimized vector
363  // form.  We can still turn this into a large integer.
364  VectorTy = Type::getVoidTy(In->getContext());
365}
366
367/// MergeInVectorType - Handles the vector case of MergeInType, returning true
368/// if the type was successfully merged and false otherwise.
369bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
370                                            uint64_t Offset) {
371  // Remember if we saw a vector type.
372  HadAVector = true;
373
374  // TODO: Support nonzero offsets?
375  if (Offset != 0)
376    return false;
377
378  // Only allow vectors that are a power-of-2 away from the size of the alloca.
379  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
380    return false;
381
382  // If this the first vector we see, remember the type so that we know the
383  // element size.
384  if (!VectorTy) {
385    VectorTy = VInTy;
386    return true;
387  }
388
389  unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
390  unsigned InBitWidth = VInTy->getBitWidth();
391
392  // Vectors of the same size can be converted using a simple bitcast.
393  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
394    return true;
395
396  const Type *ElementTy = cast<VectorType>(VectorTy)->getElementType();
397  const Type *InElementTy = cast<VectorType>(VInTy)->getElementType();
398
399  // Do not allow mixed integer and floating-point accesses from vectors of
400  // different sizes.
401  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
402    return false;
403
404  if (ElementTy->isFloatingPointTy()) {
405    // Only allow floating-point vectors of different sizes if they have the
406    // same element type.
407    // TODO: This could be loosened a bit, but would anything benefit?
408    if (ElementTy != InElementTy)
409      return false;
410
411    // There are no arbitrary-precision floating-point types, which limits the
412    // number of legal vector types with larger element types that we can form
413    // to bitcast and extract a subvector.
414    // TODO: We could support some more cases with mixed fp128 and double here.
415    if (!(BitWidth == 64 || BitWidth == 128) ||
416        !(InBitWidth == 64 || InBitWidth == 128))
417      return false;
418  } else {
419    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
420                                       "or floating-point.");
421    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
422    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
423
424    // Do not allow integer types smaller than a byte or types whose widths are
425    // not a multiple of a byte.
426    if (BitWidth < 8 || InBitWidth < 8 ||
427        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
428      return false;
429  }
430
431  // Pick the largest of the two vector types.
432  if (InBitWidth > BitWidth)
433    VectorTy = VInTy;
434
435  return true;
436}
437
438/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
439/// its accesses to a single vector type, return true and set VecTy to
440/// the new type.  If we could convert the alloca into a single promotable
441/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
442/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
443/// is the current offset from the base of the alloca being analyzed.
444///
445/// If we see at least one access to the value that is as a vector type, set the
446/// SawVec flag.
447bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
448  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
449    Instruction *User = cast<Instruction>(*UI);
450
451    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
452      // Don't break volatile loads.
453      if (LI->isVolatile())
454        return false;
455      // Don't touch MMX operations.
456      if (LI->getType()->isX86_MMXTy())
457        return false;
458      HadNonMemTransferAccess = true;
459      MergeInType(LI->getType(), Offset, true);
460      continue;
461    }
462
463    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
464      // Storing the pointer, not into the value?
465      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
466      // Don't touch MMX operations.
467      if (SI->getOperand(0)->getType()->isX86_MMXTy())
468        return false;
469      HadNonMemTransferAccess = true;
470      MergeInType(SI->getOperand(0)->getType(), Offset, true);
471      continue;
472    }
473
474    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
475      IsNotTrivial = true;  // Can't be mem2reg'd.
476      if (!CanConvertToScalar(BCI, Offset))
477        return false;
478      continue;
479    }
480
481    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
482      // If this is a GEP with a variable indices, we can't handle it.
483      if (!GEP->hasAllConstantIndices())
484        return false;
485
486      // Compute the offset that this GEP adds to the pointer.
487      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
488      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
489                                               &Indices[0], Indices.size());
490      // See if all uses can be converted.
491      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
492        return false;
493      IsNotTrivial = true;  // Can't be mem2reg'd.
494      HadNonMemTransferAccess = true;
495      continue;
496    }
497
498    // If this is a constant sized memset of a constant value (e.g. 0) we can
499    // handle it.
500    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
501      // Store of constant value and constant size.
502      if (!isa<ConstantInt>(MSI->getValue()) ||
503          !isa<ConstantInt>(MSI->getLength()))
504        return false;
505      IsNotTrivial = true;  // Can't be mem2reg'd.
506      HadNonMemTransferAccess = true;
507      continue;
508    }
509
510    // If this is a memcpy or memmove into or out of the whole allocation, we
511    // can handle it like a load or store of the scalar type.
512    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
513      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
514      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
515        return false;
516
517      IsNotTrivial = true;  // Can't be mem2reg'd.
518      continue;
519    }
520
521    // Otherwise, we cannot handle this!
522    return false;
523  }
524
525  return true;
526}
527
528/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
529/// directly.  This happens when we are converting an "integer union" to a
530/// single integer scalar, or when we are converting a "vector union" to a
531/// vector with insert/extractelement instructions.
532///
533/// Offset is an offset from the original alloca, in bits that need to be
534/// shifted to the right.  By the end of this, there should be no uses of Ptr.
535void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
536                                              uint64_t Offset) {
537  while (!Ptr->use_empty()) {
538    Instruction *User = cast<Instruction>(Ptr->use_back());
539
540    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
541      ConvertUsesToScalar(CI, NewAI, Offset);
542      CI->eraseFromParent();
543      continue;
544    }
545
546    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
547      // Compute the offset that this GEP adds to the pointer.
548      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
549      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
550                                               &Indices[0], Indices.size());
551      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
552      GEP->eraseFromParent();
553      continue;
554    }
555
556    IRBuilder<> Builder(User);
557
558    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
559      // The load is a bit extract from NewAI shifted right by Offset bits.
560      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
561      Value *NewLoadVal
562        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
563      LI->replaceAllUsesWith(NewLoadVal);
564      LI->eraseFromParent();
565      continue;
566    }
567
568    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
569      assert(SI->getOperand(0) != Ptr && "Consistency error!");
570      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
571      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
572                                             Builder);
573      Builder.CreateStore(New, NewAI);
574      SI->eraseFromParent();
575
576      // If the load we just inserted is now dead, then the inserted store
577      // overwrote the entire thing.
578      if (Old->use_empty())
579        Old->eraseFromParent();
580      continue;
581    }
582
583    // If this is a constant sized memset of a constant value (e.g. 0) we can
584    // transform it into a store of the expanded constant value.
585    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
586      assert(MSI->getRawDest() == Ptr && "Consistency error!");
587      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
588      if (NumBytes != 0) {
589        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
590
591        // Compute the value replicated the right number of times.
592        APInt APVal(NumBytes*8, Val);
593
594        // Splat the value if non-zero.
595        if (Val)
596          for (unsigned i = 1; i != NumBytes; ++i)
597            APVal |= APVal << 8;
598
599        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
600        Value *New = ConvertScalar_InsertValue(
601                                    ConstantInt::get(User->getContext(), APVal),
602                                               Old, Offset, Builder);
603        Builder.CreateStore(New, NewAI);
604
605        // If the load we just inserted is now dead, then the memset overwrote
606        // the entire thing.
607        if (Old->use_empty())
608          Old->eraseFromParent();
609      }
610      MSI->eraseFromParent();
611      continue;
612    }
613
614    // If this is a memcpy or memmove into or out of the whole allocation, we
615    // can handle it like a load or store of the scalar type.
616    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
617      assert(Offset == 0 && "must be store to start of alloca");
618
619      // If the source and destination are both to the same alloca, then this is
620      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
621      // as appropriate.
622      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
623
624      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
625        // Dest must be OrigAI, change this to be a load from the original
626        // pointer (bitcasted), then a store to our new alloca.
627        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
628        Value *SrcPtr = MTI->getSource();
629        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
630        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
631        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
632          AIPTy = PointerType::get(AIPTy->getElementType(),
633                                   SPTy->getAddressSpace());
634        }
635        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
636
637        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
638        SrcVal->setAlignment(MTI->getAlignment());
639        Builder.CreateStore(SrcVal, NewAI);
640      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
641        // Src must be OrigAI, change this to be a load from NewAI then a store
642        // through the original dest pointer (bitcasted).
643        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
644        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
645
646        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
647        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
648        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
649          AIPTy = PointerType::get(AIPTy->getElementType(),
650                                   DPTy->getAddressSpace());
651        }
652        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
653
654        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
655        NewStore->setAlignment(MTI->getAlignment());
656      } else {
657        // Noop transfer. Src == Dst
658      }
659
660      MTI->eraseFromParent();
661      continue;
662    }
663
664    llvm_unreachable("Unsupported operation!");
665  }
666}
667
668/// getScaledElementType - Gets a scaled element type for a partial vector
669/// access of an alloca. The input types must be integer or floating-point
670/// scalar or vector types, and the resulting type is an integer, float or
671/// double.
672static const Type *getScaledElementType(const Type *Ty1, const Type *Ty2,
673                                        unsigned NewBitWidth) {
674  bool IsFP1 = Ty1->isFloatingPointTy() ||
675               (Ty1->isVectorTy() &&
676                cast<VectorType>(Ty1)->getElementType()->isFloatingPointTy());
677  bool IsFP2 = Ty2->isFloatingPointTy() ||
678               (Ty2->isVectorTy() &&
679                cast<VectorType>(Ty2)->getElementType()->isFloatingPointTy());
680
681  LLVMContext &Context = Ty1->getContext();
682
683  // Prefer floating-point types over integer types, as integer types may have
684  // been created by earlier scalar replacement.
685  if (IsFP1 || IsFP2) {
686    if (NewBitWidth == 32)
687      return Type::getFloatTy(Context);
688    if (NewBitWidth == 64)
689      return Type::getDoubleTy(Context);
690  }
691
692  return Type::getIntNTy(Context, NewBitWidth);
693}
694
695/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
696/// to another vector of the same element type which has the same allocation
697/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
698static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
699                                      IRBuilder<> &Builder) {
700  const Type *FromType = FromVal->getType();
701  const VectorType *FromVTy = cast<VectorType>(FromType);
702  const VectorType *ToVTy = cast<VectorType>(ToType);
703  assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
704         "Vectors must have the same element type");
705   Value *UnV = UndefValue::get(FromType);
706   unsigned numEltsFrom = FromVTy->getNumElements();
707   unsigned numEltsTo = ToVTy->getNumElements();
708
709   SmallVector<Constant*, 3> Args;
710   const Type* Int32Ty = Builder.getInt32Ty();
711   unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
712   unsigned i;
713   for (i=0; i != minNumElts; ++i)
714     Args.push_back(ConstantInt::get(Int32Ty, i));
715
716   if (i < numEltsTo) {
717     Constant* UnC = UndefValue::get(Int32Ty);
718     for (; i != numEltsTo; ++i)
719       Args.push_back(UnC);
720   }
721   Constant *Mask = ConstantVector::get(Args);
722   return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
723}
724
725/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
726/// or vector value FromVal, extracting the bits from the offset specified by
727/// Offset.  This returns the value, which is of type ToType.
728///
729/// This happens when we are converting an "integer union" to a single
730/// integer scalar, or when we are converting a "vector union" to a vector with
731/// insert/extractelement instructions.
732///
733/// Offset is an offset from the original alloca, in bits that need to be
734/// shifted to the right.
735Value *ConvertToScalarInfo::
736ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
737                           uint64_t Offset, IRBuilder<> &Builder) {
738  // If the load is of the whole new alloca, no conversion is needed.
739  const Type *FromType = FromVal->getType();
740  if (FromType == ToType && Offset == 0)
741    return FromVal;
742
743  // If the result alloca is a vector type, this is either an element
744  // access or a bitcast to another vector type of the same size.
745  if (const VectorType *VTy = dyn_cast<VectorType>(FromType)) {
746    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
747    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
748    if (FromTypeSize == ToTypeSize) {
749      // If the two types have the same primitive size, use a bit cast.
750      // Otherwise, it is two vectors with the same element type that has
751      // the same allocation size but different number of elements so use
752      // a shuffle vector.
753      if (FromType->getPrimitiveSizeInBits() ==
754          ToType->getPrimitiveSizeInBits())
755        return Builder.CreateBitCast(FromVal, ToType, "tmp");
756      else
757        return CreateShuffleVectorCast(FromVal, ToType, Builder);
758    }
759
760    if (isPowerOf2_64(FromTypeSize / ToTypeSize)) {
761      assert(!(ToType->isVectorTy() && Offset != 0) && "Can't extract a value "
762             "of a smaller vector type at a nonzero offset.");
763
764      const Type *CastElementTy = getScaledElementType(FromType, ToType,
765                                                       ToTypeSize * 8);
766      unsigned NumCastVectorElements = FromTypeSize / ToTypeSize;
767
768      LLVMContext &Context = FromVal->getContext();
769      const Type *CastTy = VectorType::get(CastElementTy,
770                                           NumCastVectorElements);
771      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
772
773      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
774      unsigned Elt = Offset/EltSize;
775      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
776      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
777                                        Type::getInt32Ty(Context), Elt), "tmp");
778      return Builder.CreateBitCast(Extract, ToType, "tmp");
779    }
780
781    // Otherwise it must be an element access.
782    unsigned Elt = 0;
783    if (Offset) {
784      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
785      Elt = Offset/EltSize;
786      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
787    }
788    // Return the element extracted out of it.
789    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
790                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
791    if (V->getType() != ToType)
792      V = Builder.CreateBitCast(V, ToType, "tmp");
793    return V;
794  }
795
796  // If ToType is a first class aggregate, extract out each of the pieces and
797  // use insertvalue's to form the FCA.
798  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
799    const StructLayout &Layout = *TD.getStructLayout(ST);
800    Value *Res = UndefValue::get(ST);
801    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
802      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
803                                        Offset+Layout.getElementOffsetInBits(i),
804                                              Builder);
805      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
806    }
807    return Res;
808  }
809
810  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
811    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
812    Value *Res = UndefValue::get(AT);
813    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
814      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
815                                              Offset+i*EltSize, Builder);
816      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
817    }
818    return Res;
819  }
820
821  // Otherwise, this must be a union that was converted to an integer value.
822  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
823
824  // If this is a big-endian system and the load is narrower than the
825  // full alloca type, we need to do a shift to get the right bits.
826  int ShAmt = 0;
827  if (TD.isBigEndian()) {
828    // On big-endian machines, the lowest bit is stored at the bit offset
829    // from the pointer given by getTypeStoreSizeInBits.  This matters for
830    // integers with a bitwidth that is not a multiple of 8.
831    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
832            TD.getTypeStoreSizeInBits(ToType) - Offset;
833  } else {
834    ShAmt = Offset;
835  }
836
837  // Note: we support negative bitwidths (with shl) which are not defined.
838  // We do this to support (f.e.) loads off the end of a structure where
839  // only some bits are used.
840  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
841    FromVal = Builder.CreateLShr(FromVal,
842                                 ConstantInt::get(FromVal->getType(),
843                                                           ShAmt), "tmp");
844  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
845    FromVal = Builder.CreateShl(FromVal,
846                                ConstantInt::get(FromVal->getType(),
847                                                          -ShAmt), "tmp");
848
849  // Finally, unconditionally truncate the integer to the right width.
850  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
851  if (LIBitWidth < NTy->getBitWidth())
852    FromVal =
853      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
854                                                    LIBitWidth), "tmp");
855  else if (LIBitWidth > NTy->getBitWidth())
856    FromVal =
857       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
858                                                    LIBitWidth), "tmp");
859
860  // If the result is an integer, this is a trunc or bitcast.
861  if (ToType->isIntegerTy()) {
862    // Should be done.
863  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
864    // Just do a bitcast, we know the sizes match up.
865    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
866  } else {
867    // Otherwise must be a pointer.
868    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
869  }
870  assert(FromVal->getType() == ToType && "Didn't convert right?");
871  return FromVal;
872}
873
874/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
875/// or vector value "Old" at the offset specified by Offset.
876///
877/// This happens when we are converting an "integer union" to a
878/// single integer scalar, or when we are converting a "vector union" to a
879/// vector with insert/extractelement instructions.
880///
881/// Offset is an offset from the original alloca, in bits that need to be
882/// shifted to the right.
883Value *ConvertToScalarInfo::
884ConvertScalar_InsertValue(Value *SV, Value *Old,
885                          uint64_t Offset, IRBuilder<> &Builder) {
886  // Convert the stored type to the actual type, shift it left to insert
887  // then 'or' into place.
888  const Type *AllocaType = Old->getType();
889  LLVMContext &Context = Old->getContext();
890
891  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
892    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
893    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
894
895    // Changing the whole vector with memset or with an access of a different
896    // vector type?
897    if (ValSize == VecSize) {
898      // If the two types have the same primitive size, use a bit cast.
899      // Otherwise, it is two vectors with the same element type that has
900      // the same allocation size but different number of elements so use
901      // a shuffle vector.
902      if (VTy->getPrimitiveSizeInBits() ==
903          SV->getType()->getPrimitiveSizeInBits())
904        return Builder.CreateBitCast(SV, AllocaType, "tmp");
905      else
906        return CreateShuffleVectorCast(SV, VTy, Builder);
907    }
908
909    if (isPowerOf2_64(VecSize / ValSize)) {
910      assert(!(SV->getType()->isVectorTy() && Offset != 0) && "Can't insert a "
911             "value of a smaller vector type at a nonzero offset.");
912
913      const Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
914                                                       ValSize);
915      unsigned NumCastVectorElements = VecSize / ValSize;
916
917      LLVMContext &Context = SV->getContext();
918      const Type *OldCastTy = VectorType::get(CastElementTy,
919                                              NumCastVectorElements);
920      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
921
922      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
923
924      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
925      unsigned Elt = Offset/EltSize;
926      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
927      Value *Insert =
928        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
929                                        Type::getInt32Ty(Context), Elt), "tmp");
930      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
931    }
932
933    // Must be an element insertion.
934    assert(SV->getType() == VTy->getElementType());
935    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
936    unsigned Elt = Offset/EltSize;
937    return Builder.CreateInsertElement(Old, SV,
938                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
939                                     "tmp");
940  }
941
942  // If SV is a first-class aggregate value, insert each value recursively.
943  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
944    const StructLayout &Layout = *TD.getStructLayout(ST);
945    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
946      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
947      Old = ConvertScalar_InsertValue(Elt, Old,
948                                      Offset+Layout.getElementOffsetInBits(i),
949                                      Builder);
950    }
951    return Old;
952  }
953
954  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
955    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
956    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
957      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
958      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
959    }
960    return Old;
961  }
962
963  // If SV is a float, convert it to the appropriate integer type.
964  // If it is a pointer, do the same.
965  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
966  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
967  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
968  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
969  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
970    SV = Builder.CreateBitCast(SV,
971                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
972  else if (SV->getType()->isPointerTy())
973    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
974
975  // Zero extend or truncate the value if needed.
976  if (SV->getType() != AllocaType) {
977    if (SV->getType()->getPrimitiveSizeInBits() <
978             AllocaType->getPrimitiveSizeInBits())
979      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
980    else {
981      // Truncation may be needed if storing more than the alloca can hold
982      // (undefined behavior).
983      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
984      SrcWidth = DestWidth;
985      SrcStoreWidth = DestStoreWidth;
986    }
987  }
988
989  // If this is a big-endian system and the store is narrower than the
990  // full alloca type, we need to do a shift to get the right bits.
991  int ShAmt = 0;
992  if (TD.isBigEndian()) {
993    // On big-endian machines, the lowest bit is stored at the bit offset
994    // from the pointer given by getTypeStoreSizeInBits.  This matters for
995    // integers with a bitwidth that is not a multiple of 8.
996    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
997  } else {
998    ShAmt = Offset;
999  }
1000
1001  // Note: we support negative bitwidths (with shr) which are not defined.
1002  // We do this to support (f.e.) stores off the end of a structure where
1003  // only some bits in the structure are set.
1004  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1005  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1006    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1007                           ShAmt), "tmp");
1008    Mask <<= ShAmt;
1009  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1010    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1011                            -ShAmt), "tmp");
1012    Mask = Mask.lshr(-ShAmt);
1013  }
1014
1015  // Mask out the bits we are about to insert from the old value, and or
1016  // in the new bits.
1017  if (SrcWidth != DestWidth) {
1018    assert(DestWidth > SrcWidth);
1019    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1020    SV = Builder.CreateOr(Old, SV, "ins");
1021  }
1022  return SV;
1023}
1024
1025
1026//===----------------------------------------------------------------------===//
1027// SRoA Driver
1028//===----------------------------------------------------------------------===//
1029
1030
1031bool SROA::runOnFunction(Function &F) {
1032  TD = getAnalysisIfAvailable<TargetData>();
1033
1034  bool Changed = performPromotion(F);
1035
1036  // FIXME: ScalarRepl currently depends on TargetData more than it
1037  // theoretically needs to. It should be refactored in order to support
1038  // target-independent IR. Until this is done, just skip the actual
1039  // scalar-replacement portion of this pass.
1040  if (!TD) return Changed;
1041
1042  while (1) {
1043    bool LocalChange = performScalarRepl(F);
1044    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1045    Changed = true;
1046    LocalChange = performPromotion(F);
1047    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1048  }
1049
1050  return Changed;
1051}
1052
1053namespace {
1054class AllocaPromoter : public LoadAndStorePromoter {
1055  AllocaInst *AI;
1056public:
1057  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1058                 DbgDeclareInst *DD, DIBuilder *&DB)
1059    : LoadAndStorePromoter(Insts, S, DD, DB), AI(0) {}
1060
1061  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1062    // Remember which alloca we're promoting (for isInstInList).
1063    this->AI = AI;
1064    LoadAndStorePromoter::run(Insts);
1065    AI->eraseFromParent();
1066  }
1067
1068  virtual bool isInstInList(Instruction *I,
1069                            const SmallVectorImpl<Instruction*> &Insts) const {
1070    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1071      return LI->getOperand(0) == AI;
1072    return cast<StoreInst>(I)->getPointerOperand() == AI;
1073  }
1074};
1075} // end anon namespace
1076
1077/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1078/// subsequently loaded can be rewritten to load both input pointers and then
1079/// select between the result, allowing the load of the alloca to be promoted.
1080/// From this:
1081///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1082///   %V = load i32* %P2
1083/// to:
1084///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1085///   %V2 = load i32* %Other
1086///   %V = select i1 %cond, i32 %V1, i32 %V2
1087///
1088/// We can do this to a select if its only uses are loads and if the operand to
1089/// the select can be loaded unconditionally.
1090static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1091  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1092  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1093
1094  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1095       UI != UE; ++UI) {
1096    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1097    if (LI == 0 || LI->isVolatile()) return false;
1098
1099    // Both operands to the select need to be dereferencable, either absolutely
1100    // (e.g. allocas) or at this point because we can see other accesses to it.
1101    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1102                                                    LI->getAlignment(), TD))
1103      return false;
1104    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1105                                                    LI->getAlignment(), TD))
1106      return false;
1107  }
1108
1109  return true;
1110}
1111
1112/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1113/// subsequently loaded can be rewritten to load both input pointers in the pred
1114/// blocks and then PHI the results, allowing the load of the alloca to be
1115/// promoted.
1116/// From this:
1117///   %P2 = phi [i32* %Alloca, i32* %Other]
1118///   %V = load i32* %P2
1119/// to:
1120///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1121///   ...
1122///   %V2 = load i32* %Other
1123///   ...
1124///   %V = phi [i32 %V1, i32 %V2]
1125///
1126/// We can do this to a select if its only uses are loads and if the operand to
1127/// the select can be loaded unconditionally.
1128static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1129  // For now, we can only do this promotion if the load is in the same block as
1130  // the PHI, and if there are no stores between the phi and load.
1131  // TODO: Allow recursive phi users.
1132  // TODO: Allow stores.
1133  BasicBlock *BB = PN->getParent();
1134  unsigned MaxAlign = 0;
1135  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1136       UI != UE; ++UI) {
1137    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1138    if (LI == 0 || LI->isVolatile()) return false;
1139
1140    // For now we only allow loads in the same block as the PHI.  This is a
1141    // common case that happens when instcombine merges two loads through a PHI.
1142    if (LI->getParent() != BB) return false;
1143
1144    // Ensure that there are no instructions between the PHI and the load that
1145    // could store.
1146    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1147      if (BBI->mayWriteToMemory())
1148        return false;
1149
1150    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1151  }
1152
1153  // Okay, we know that we have one or more loads in the same block as the PHI.
1154  // We can transform this if it is safe to push the loads into the predecessor
1155  // blocks.  The only thing to watch out for is that we can't put a possibly
1156  // trapping load in the predecessor if it is a critical edge.
1157  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1158    BasicBlock *Pred = PN->getIncomingBlock(i);
1159
1160    // If the predecessor has a single successor, then the edge isn't critical.
1161    if (Pred->getTerminator()->getNumSuccessors() == 1)
1162      continue;
1163
1164    Value *InVal = PN->getIncomingValue(i);
1165
1166    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1167    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1168      if (II->getParent() == Pred)
1169        return false;
1170
1171    // If this pointer is always safe to load, or if we can prove that there is
1172    // already a load in the block, then we can move the load to the pred block.
1173    if (InVal->isDereferenceablePointer() ||
1174        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1175      continue;
1176
1177    return false;
1178  }
1179
1180  return true;
1181}
1182
1183
1184/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1185/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1186/// not quite there, this will transform the code to allow promotion.  As such,
1187/// it is a non-pure predicate.
1188static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1189  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1190            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1191
1192  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1193       UI != UE; ++UI) {
1194    User *U = *UI;
1195    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1196      if (LI->isVolatile())
1197        return false;
1198      continue;
1199    }
1200
1201    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1202      if (SI->getOperand(0) == AI || SI->isVolatile())
1203        return false;   // Don't allow a store OF the AI, only INTO the AI.
1204      continue;
1205    }
1206
1207    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1208      // If the condition being selected on is a constant, fold the select, yes
1209      // this does (rarely) happen early on.
1210      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1211        Value *Result = SI->getOperand(1+CI->isZero());
1212        SI->replaceAllUsesWith(Result);
1213        SI->eraseFromParent();
1214
1215        // This is very rare and we just scrambled the use list of AI, start
1216        // over completely.
1217        return tryToMakeAllocaBePromotable(AI, TD);
1218      }
1219
1220      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1221      // loads, then we can transform this by rewriting the select.
1222      if (!isSafeSelectToSpeculate(SI, TD))
1223        return false;
1224
1225      InstsToRewrite.insert(SI);
1226      continue;
1227    }
1228
1229    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1230      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1231        InstsToRewrite.insert(PN);
1232        continue;
1233      }
1234
1235      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1236      // in the pred blocks, then we can transform this by rewriting the PHI.
1237      if (!isSafePHIToSpeculate(PN, TD))
1238        return false;
1239
1240      InstsToRewrite.insert(PN);
1241      continue;
1242    }
1243
1244    return false;
1245  }
1246
1247  // If there are no instructions to rewrite, then all uses are load/stores and
1248  // we're done!
1249  if (InstsToRewrite.empty())
1250    return true;
1251
1252  // If we have instructions that need to be rewritten for this to be promotable
1253  // take care of it now.
1254  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1255    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1256      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1257      // loads with a new select.
1258      while (!SI->use_empty()) {
1259        LoadInst *LI = cast<LoadInst>(SI->use_back());
1260
1261        IRBuilder<> Builder(LI);
1262        LoadInst *TrueLoad =
1263          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1264        LoadInst *FalseLoad =
1265          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1266
1267        // Transfer alignment and TBAA info if present.
1268        TrueLoad->setAlignment(LI->getAlignment());
1269        FalseLoad->setAlignment(LI->getAlignment());
1270        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1271          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1272          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1273        }
1274
1275        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1276        V->takeName(LI);
1277        LI->replaceAllUsesWith(V);
1278        LI->eraseFromParent();
1279      }
1280
1281      // Now that all the loads are gone, the select is gone too.
1282      SI->eraseFromParent();
1283      continue;
1284    }
1285
1286    // Otherwise, we have a PHI node which allows us to push the loads into the
1287    // predecessors.
1288    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1289    if (PN->use_empty()) {
1290      PN->eraseFromParent();
1291      continue;
1292    }
1293
1294    const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1295    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1296                                     PN->getName()+".ld", PN);
1297
1298    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1299    // matter which one we get and if any differ, it doesn't matter.
1300    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1301    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1302    unsigned Align = SomeLoad->getAlignment();
1303
1304    // Rewrite all loads of the PN to use the new PHI.
1305    while (!PN->use_empty()) {
1306      LoadInst *LI = cast<LoadInst>(PN->use_back());
1307      LI->replaceAllUsesWith(NewPN);
1308      LI->eraseFromParent();
1309    }
1310
1311    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1312    // insert them into in case we have multiple edges from the same block.
1313    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1314
1315    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1316      BasicBlock *Pred = PN->getIncomingBlock(i);
1317      LoadInst *&Load = InsertedLoads[Pred];
1318      if (Load == 0) {
1319        Load = new LoadInst(PN->getIncomingValue(i),
1320                            PN->getName() + "." + Pred->getName(),
1321                            Pred->getTerminator());
1322        Load->setAlignment(Align);
1323        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1324      }
1325
1326      NewPN->addIncoming(Load, Pred);
1327    }
1328
1329    PN->eraseFromParent();
1330  }
1331
1332  ++NumAdjusted;
1333  return true;
1334}
1335
1336bool SROA::performPromotion(Function &F) {
1337  std::vector<AllocaInst*> Allocas;
1338  DominatorTree *DT = 0;
1339  if (HasDomTree)
1340    DT = &getAnalysis<DominatorTree>();
1341
1342  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1343
1344  bool Changed = false;
1345  SmallVector<Instruction*, 64> Insts;
1346  DIBuilder *DIB = 0;
1347  while (1) {
1348    Allocas.clear();
1349
1350    // Find allocas that are safe to promote, by looking at all instructions in
1351    // the entry node
1352    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1353      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1354        if (tryToMakeAllocaBePromotable(AI, TD))
1355          Allocas.push_back(AI);
1356
1357    if (Allocas.empty()) break;
1358
1359    if (HasDomTree)
1360      PromoteMemToReg(Allocas, *DT);
1361    else {
1362      SSAUpdater SSA;
1363      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1364        AllocaInst *AI = Allocas[i];
1365
1366        // Build list of instructions to promote.
1367        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1368             UI != E; ++UI)
1369          Insts.push_back(cast<Instruction>(*UI));
1370
1371        DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
1372        if (DDI && !DIB)
1373          DIB = new DIBuilder(*AI->getParent()->getParent()->getParent());
1374        AllocaPromoter(Insts, SSA, DDI, DIB).run(AI, Insts);
1375        Insts.clear();
1376      }
1377    }
1378    NumPromoted += Allocas.size();
1379    Changed = true;
1380  }
1381
1382  // FIXME: Is there a better way to handle the lazy initialization of DIB
1383  // so that there doesn't need to be an explicit delete?
1384  delete DIB;
1385
1386  return Changed;
1387}
1388
1389
1390/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1391/// SROA.  It must be a struct or array type with a small number of elements.
1392static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1393  const Type *T = AI->getAllocatedType();
1394  // Do not promote any struct into more than 32 separate vars.
1395  if (const StructType *ST = dyn_cast<StructType>(T))
1396    return ST->getNumElements() <= 32;
1397  // Arrays are much less likely to be safe for SROA; only consider
1398  // them if they are very small.
1399  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1400    return AT->getNumElements() <= 8;
1401  return false;
1402}
1403
1404
1405// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1406// which runs on all of the malloc/alloca instructions in the function, removing
1407// them if they are only used by getelementptr instructions.
1408//
1409bool SROA::performScalarRepl(Function &F) {
1410  std::vector<AllocaInst*> WorkList;
1411
1412  // Scan the entry basic block, adding allocas to the worklist.
1413  BasicBlock &BB = F.getEntryBlock();
1414  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1415    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1416      WorkList.push_back(A);
1417
1418  // Process the worklist
1419  bool Changed = false;
1420  while (!WorkList.empty()) {
1421    AllocaInst *AI = WorkList.back();
1422    WorkList.pop_back();
1423
1424    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1425    // with unused elements.
1426    if (AI->use_empty()) {
1427      AI->eraseFromParent();
1428      Changed = true;
1429      continue;
1430    }
1431
1432    // If this alloca is impossible for us to promote, reject it early.
1433    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1434      continue;
1435
1436    // Check to see if this allocation is only modified by a memcpy/memmove from
1437    // a constant global.  If this is the case, we can change all users to use
1438    // the constant global instead.  This is commonly produced by the CFE by
1439    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1440    // is only subsequently read.
1441    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1442      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1443      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
1444      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1445      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1446      TheCopy->eraseFromParent();  // Don't mutate the global.
1447      AI->eraseFromParent();
1448      ++NumGlobals;
1449      Changed = true;
1450      continue;
1451    }
1452
1453    // Check to see if we can perform the core SROA transformation.  We cannot
1454    // transform the allocation instruction if it is an array allocation
1455    // (allocations OF arrays are ok though), and an allocation of a scalar
1456    // value cannot be decomposed at all.
1457    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1458
1459    // Do not promote [0 x %struct].
1460    if (AllocaSize == 0) continue;
1461
1462    // Do not promote any struct whose size is too big.
1463    if (AllocaSize > SRThreshold) continue;
1464
1465    // If the alloca looks like a good candidate for scalar replacement, and if
1466    // all its users can be transformed, then split up the aggregate into its
1467    // separate elements.
1468    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1469      DoScalarReplacement(AI, WorkList);
1470      Changed = true;
1471      continue;
1472    }
1473
1474    // If we can turn this aggregate value (potentially with casts) into a
1475    // simple scalar value that can be mem2reg'd into a register value.
1476    // IsNotTrivial tracks whether this is something that mem2reg could have
1477    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1478    // that we can't just check based on the type: the alloca may be of an i32
1479    // but that has pointer arithmetic to set byte 3 of it or something.
1480    if (AllocaInst *NewAI =
1481          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1482      NewAI->takeName(AI);
1483      AI->eraseFromParent();
1484      ++NumConverted;
1485      Changed = true;
1486      continue;
1487    }
1488
1489    // Otherwise, couldn't process this alloca.
1490  }
1491
1492  return Changed;
1493}
1494
1495/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1496/// predicate, do SROA now.
1497void SROA::DoScalarReplacement(AllocaInst *AI,
1498                               std::vector<AllocaInst*> &WorkList) {
1499  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1500  SmallVector<AllocaInst*, 32> ElementAllocas;
1501  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1502    ElementAllocas.reserve(ST->getNumContainedTypes());
1503    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1504      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1505                                      AI->getAlignment(),
1506                                      AI->getName() + "." + Twine(i), AI);
1507      ElementAllocas.push_back(NA);
1508      WorkList.push_back(NA);  // Add to worklist for recursive processing
1509    }
1510  } else {
1511    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1512    ElementAllocas.reserve(AT->getNumElements());
1513    const Type *ElTy = AT->getElementType();
1514    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1515      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1516                                      AI->getName() + "." + Twine(i), AI);
1517      ElementAllocas.push_back(NA);
1518      WorkList.push_back(NA);  // Add to worklist for recursive processing
1519    }
1520  }
1521
1522  // Now that we have created the new alloca instructions, rewrite all the
1523  // uses of the old alloca.
1524  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1525
1526  // Now erase any instructions that were made dead while rewriting the alloca.
1527  DeleteDeadInstructions();
1528  AI->eraseFromParent();
1529
1530  ++NumReplaced;
1531}
1532
1533/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1534/// recursively including all their operands that become trivially dead.
1535void SROA::DeleteDeadInstructions() {
1536  while (!DeadInsts.empty()) {
1537    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1538
1539    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1540      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1541        // Zero out the operand and see if it becomes trivially dead.
1542        // (But, don't add allocas to the dead instruction list -- they are
1543        // already on the worklist and will be deleted separately.)
1544        *OI = 0;
1545        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1546          DeadInsts.push_back(U);
1547      }
1548
1549    I->eraseFromParent();
1550  }
1551}
1552
1553/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1554/// performing scalar replacement of alloca AI.  The results are flagged in
1555/// the Info parameter.  Offset indicates the position within AI that is
1556/// referenced by this instruction.
1557void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1558                               AllocaInfo &Info) {
1559  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1560    Instruction *User = cast<Instruction>(*UI);
1561
1562    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1563      isSafeForScalarRepl(BC, Offset, Info);
1564    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1565      uint64_t GEPOffset = Offset;
1566      isSafeGEP(GEPI, GEPOffset, Info);
1567      if (!Info.isUnsafe)
1568        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1569    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1570      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1571      if (Length == 0)
1572        return MarkUnsafe(Info, User);
1573      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1574                      UI.getOperandNo() == 0, Info, MI,
1575                      true /*AllowWholeAccess*/);
1576    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1577      if (LI->isVolatile())
1578        return MarkUnsafe(Info, User);
1579      const Type *LIType = LI->getType();
1580      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1581                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1582      Info.hasALoadOrStore = true;
1583
1584    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1585      // Store is ok if storing INTO the pointer, not storing the pointer
1586      if (SI->isVolatile() || SI->getOperand(0) == I)
1587        return MarkUnsafe(Info, User);
1588
1589      const Type *SIType = SI->getOperand(0)->getType();
1590      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1591                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1592      Info.hasALoadOrStore = true;
1593    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1594      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1595    } else {
1596      return MarkUnsafe(Info, User);
1597    }
1598    if (Info.isUnsafe) return;
1599  }
1600}
1601
1602
1603/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1604/// derived from the alloca, we can often still split the alloca into elements.
1605/// This is useful if we have a large alloca where one element is phi'd
1606/// together somewhere: we can SRoA and promote all the other elements even if
1607/// we end up not being able to promote this one.
1608///
1609/// All we require is that the uses of the PHI do not index into other parts of
1610/// the alloca.  The most important use case for this is single load and stores
1611/// that are PHI'd together, which can happen due to code sinking.
1612void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1613                                           AllocaInfo &Info) {
1614  // If we've already checked this PHI, don't do it again.
1615  if (PHINode *PN = dyn_cast<PHINode>(I))
1616    if (!Info.CheckedPHIs.insert(PN))
1617      return;
1618
1619  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1620    Instruction *User = cast<Instruction>(*UI);
1621
1622    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1623      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1624    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1625      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1626      // but would have to prove that we're staying inside of an element being
1627      // promoted.
1628      if (!GEPI->hasAllZeroIndices())
1629        return MarkUnsafe(Info, User);
1630      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1631    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1632      if (LI->isVolatile())
1633        return MarkUnsafe(Info, User);
1634      const Type *LIType = LI->getType();
1635      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1636                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1637      Info.hasALoadOrStore = true;
1638
1639    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1640      // Store is ok if storing INTO the pointer, not storing the pointer
1641      if (SI->isVolatile() || SI->getOperand(0) == I)
1642        return MarkUnsafe(Info, User);
1643
1644      const Type *SIType = SI->getOperand(0)->getType();
1645      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1646                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1647      Info.hasALoadOrStore = true;
1648    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1649      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1650    } else {
1651      return MarkUnsafe(Info, User);
1652    }
1653    if (Info.isUnsafe) return;
1654  }
1655}
1656
1657/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1658/// replacement.  It is safe when all the indices are constant, in-bounds
1659/// references, and when the resulting offset corresponds to an element within
1660/// the alloca type.  The results are flagged in the Info parameter.  Upon
1661/// return, Offset is adjusted as specified by the GEP indices.
1662void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1663                     uint64_t &Offset, AllocaInfo &Info) {
1664  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1665  if (GEPIt == E)
1666    return;
1667
1668  // Walk through the GEP type indices, checking the types that this indexes
1669  // into.
1670  for (; GEPIt != E; ++GEPIt) {
1671    // Ignore struct elements, no extra checking needed for these.
1672    if ((*GEPIt)->isStructTy())
1673      continue;
1674
1675    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1676    if (!IdxVal)
1677      return MarkUnsafe(Info, GEPI);
1678  }
1679
1680  // Compute the offset due to this GEP and check if the alloca has a
1681  // component element at that offset.
1682  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1683  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1684                                 &Indices[0], Indices.size());
1685  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1686    MarkUnsafe(Info, GEPI);
1687}
1688
1689/// isHomogeneousAggregate - Check if type T is a struct or array containing
1690/// elements of the same type (which is always true for arrays).  If so,
1691/// return true with NumElts and EltTy set to the number of elements and the
1692/// element type, respectively.
1693static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1694                                   const Type *&EltTy) {
1695  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1696    NumElts = AT->getNumElements();
1697    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1698    return true;
1699  }
1700  if (const StructType *ST = dyn_cast<StructType>(T)) {
1701    NumElts = ST->getNumContainedTypes();
1702    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1703    for (unsigned n = 1; n < NumElts; ++n) {
1704      if (ST->getContainedType(n) != EltTy)
1705        return false;
1706    }
1707    return true;
1708  }
1709  return false;
1710}
1711
1712/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1713/// "homogeneous" aggregates with the same element type and number of elements.
1714static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1715  if (T1 == T2)
1716    return true;
1717
1718  unsigned NumElts1, NumElts2;
1719  const Type *EltTy1, *EltTy2;
1720  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1721      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1722      NumElts1 == NumElts2 &&
1723      EltTy1 == EltTy2)
1724    return true;
1725
1726  return false;
1727}
1728
1729/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1730/// alloca or has an offset and size that corresponds to a component element
1731/// within it.  The offset checked here may have been formed from a GEP with a
1732/// pointer bitcasted to a different type.
1733///
1734/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1735/// unit.  If false, it only allows accesses known to be in a single element.
1736void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1737                           const Type *MemOpType, bool isStore,
1738                           AllocaInfo &Info, Instruction *TheAccess,
1739                           bool AllowWholeAccess) {
1740  // Check if this is a load/store of the entire alloca.
1741  if (Offset == 0 && AllowWholeAccess &&
1742      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1743    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1744    // loads/stores (which are essentially the same as the MemIntrinsics with
1745    // regard to copying padding between elements).  But, if an alloca is
1746    // flagged as both a source and destination of such operations, we'll need
1747    // to check later for padding between elements.
1748    if (!MemOpType || MemOpType->isIntegerTy()) {
1749      if (isStore)
1750        Info.isMemCpyDst = true;
1751      else
1752        Info.isMemCpySrc = true;
1753      return;
1754    }
1755    // This is also safe for references using a type that is compatible with
1756    // the type of the alloca, so that loads/stores can be rewritten using
1757    // insertvalue/extractvalue.
1758    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1759      Info.hasSubelementAccess = true;
1760      return;
1761    }
1762  }
1763  // Check if the offset/size correspond to a component within the alloca type.
1764  const Type *T = Info.AI->getAllocatedType();
1765  if (TypeHasComponent(T, Offset, MemSize)) {
1766    Info.hasSubelementAccess = true;
1767    return;
1768  }
1769
1770  return MarkUnsafe(Info, TheAccess);
1771}
1772
1773/// TypeHasComponent - Return true if T has a component type with the
1774/// specified offset and size.  If Size is zero, do not check the size.
1775bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1776  const Type *EltTy;
1777  uint64_t EltSize;
1778  if (const StructType *ST = dyn_cast<StructType>(T)) {
1779    const StructLayout *Layout = TD->getStructLayout(ST);
1780    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1781    EltTy = ST->getContainedType(EltIdx);
1782    EltSize = TD->getTypeAllocSize(EltTy);
1783    Offset -= Layout->getElementOffset(EltIdx);
1784  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1785    EltTy = AT->getElementType();
1786    EltSize = TD->getTypeAllocSize(EltTy);
1787    if (Offset >= AT->getNumElements() * EltSize)
1788      return false;
1789    Offset %= EltSize;
1790  } else {
1791    return false;
1792  }
1793  if (Offset == 0 && (Size == 0 || EltSize == Size))
1794    return true;
1795  // Check if the component spans multiple elements.
1796  if (Offset + Size > EltSize)
1797    return false;
1798  return TypeHasComponent(EltTy, Offset, Size);
1799}
1800
1801/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1802/// the instruction I, which references it, to use the separate elements.
1803/// Offset indicates the position within AI that is referenced by this
1804/// instruction.
1805void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1806                                SmallVector<AllocaInst*, 32> &NewElts) {
1807  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1808    Use &TheUse = UI.getUse();
1809    Instruction *User = cast<Instruction>(*UI++);
1810
1811    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1812      RewriteBitCast(BC, AI, Offset, NewElts);
1813      continue;
1814    }
1815
1816    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1817      RewriteGEP(GEPI, AI, Offset, NewElts);
1818      continue;
1819    }
1820
1821    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1822      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1823      uint64_t MemSize = Length->getZExtValue();
1824      if (Offset == 0 &&
1825          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1826        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1827      // Otherwise the intrinsic can only touch a single element and the
1828      // address operand will be updated, so nothing else needs to be done.
1829      continue;
1830    }
1831
1832    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1833      const Type *LIType = LI->getType();
1834
1835      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1836        // Replace:
1837        //   %res = load { i32, i32 }* %alloc
1838        // with:
1839        //   %load.0 = load i32* %alloc.0
1840        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1841        //   %load.1 = load i32* %alloc.1
1842        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1843        // (Also works for arrays instead of structs)
1844        Value *Insert = UndefValue::get(LIType);
1845        IRBuilder<> Builder(LI);
1846        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1847          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1848          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1849        }
1850        LI->replaceAllUsesWith(Insert);
1851        DeadInsts.push_back(LI);
1852      } else if (LIType->isIntegerTy() &&
1853                 TD->getTypeAllocSize(LIType) ==
1854                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1855        // If this is a load of the entire alloca to an integer, rewrite it.
1856        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1857      }
1858      continue;
1859    }
1860
1861    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1862      Value *Val = SI->getOperand(0);
1863      const Type *SIType = Val->getType();
1864      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1865        // Replace:
1866        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1867        // with:
1868        //   %val.0 = extractvalue { i32, i32 } %val, 0
1869        //   store i32 %val.0, i32* %alloc.0
1870        //   %val.1 = extractvalue { i32, i32 } %val, 1
1871        //   store i32 %val.1, i32* %alloc.1
1872        // (Also works for arrays instead of structs)
1873        IRBuilder<> Builder(SI);
1874        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1875          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1876          Builder.CreateStore(Extract, NewElts[i]);
1877        }
1878        DeadInsts.push_back(SI);
1879      } else if (SIType->isIntegerTy() &&
1880                 TD->getTypeAllocSize(SIType) ==
1881                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1882        // If this is a store of the entire alloca from an integer, rewrite it.
1883        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1884      }
1885      continue;
1886    }
1887
1888    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1889      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1890      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1891      // the new pointer.
1892      if (!isa<AllocaInst>(I)) continue;
1893
1894      assert(Offset == 0 && NewElts[0] &&
1895             "Direct alloca use should have a zero offset");
1896
1897      // If we have a use of the alloca, we know the derived uses will be
1898      // utilizing just the first element of the scalarized result.  Insert a
1899      // bitcast of the first alloca before the user as required.
1900      AllocaInst *NewAI = NewElts[0];
1901      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1902      NewAI->moveBefore(BCI);
1903      TheUse = BCI;
1904      continue;
1905    }
1906  }
1907}
1908
1909/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1910/// and recursively continue updating all of its uses.
1911void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1912                          SmallVector<AllocaInst*, 32> &NewElts) {
1913  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1914  if (BC->getOperand(0) != AI)
1915    return;
1916
1917  // The bitcast references the original alloca.  Replace its uses with
1918  // references to the first new element alloca.
1919  Instruction *Val = NewElts[0];
1920  if (Val->getType() != BC->getDestTy()) {
1921    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1922    Val->takeName(BC);
1923  }
1924  BC->replaceAllUsesWith(Val);
1925  DeadInsts.push_back(BC);
1926}
1927
1928/// FindElementAndOffset - Return the index of the element containing Offset
1929/// within the specified type, which must be either a struct or an array.
1930/// Sets T to the type of the element and Offset to the offset within that
1931/// element.  IdxTy is set to the type of the index result to be used in a
1932/// GEP instruction.
1933uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1934                                    const Type *&IdxTy) {
1935  uint64_t Idx = 0;
1936  if (const StructType *ST = dyn_cast<StructType>(T)) {
1937    const StructLayout *Layout = TD->getStructLayout(ST);
1938    Idx = Layout->getElementContainingOffset(Offset);
1939    T = ST->getContainedType(Idx);
1940    Offset -= Layout->getElementOffset(Idx);
1941    IdxTy = Type::getInt32Ty(T->getContext());
1942    return Idx;
1943  }
1944  const ArrayType *AT = cast<ArrayType>(T);
1945  T = AT->getElementType();
1946  uint64_t EltSize = TD->getTypeAllocSize(T);
1947  Idx = Offset / EltSize;
1948  Offset -= Idx * EltSize;
1949  IdxTy = Type::getInt64Ty(T->getContext());
1950  return Idx;
1951}
1952
1953/// RewriteGEP - Check if this GEP instruction moves the pointer across
1954/// elements of the alloca that are being split apart, and if so, rewrite
1955/// the GEP to be relative to the new element.
1956void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1957                      SmallVector<AllocaInst*, 32> &NewElts) {
1958  uint64_t OldOffset = Offset;
1959  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1960  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1961                                 &Indices[0], Indices.size());
1962
1963  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1964
1965  const Type *T = AI->getAllocatedType();
1966  const Type *IdxTy;
1967  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1968  if (GEPI->getOperand(0) == AI)
1969    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1970
1971  T = AI->getAllocatedType();
1972  uint64_t EltOffset = Offset;
1973  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1974
1975  // If this GEP does not move the pointer across elements of the alloca
1976  // being split, then it does not needs to be rewritten.
1977  if (Idx == OldIdx)
1978    return;
1979
1980  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1981  SmallVector<Value*, 8> NewArgs;
1982  NewArgs.push_back(Constant::getNullValue(i32Ty));
1983  while (EltOffset != 0) {
1984    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1985    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1986  }
1987  Instruction *Val = NewElts[Idx];
1988  if (NewArgs.size() > 1) {
1989    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1990                                            NewArgs.end(), "", GEPI);
1991    Val->takeName(GEPI);
1992  }
1993  if (Val->getType() != GEPI->getType())
1994    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1995  GEPI->replaceAllUsesWith(Val);
1996  DeadInsts.push_back(GEPI);
1997}
1998
1999/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2000/// Rewrite it to copy or set the elements of the scalarized memory.
2001void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2002                                        AllocaInst *AI,
2003                                        SmallVector<AllocaInst*, 32> &NewElts) {
2004  // If this is a memcpy/memmove, construct the other pointer as the
2005  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2006  // that doesn't have anything to do with the alloca that we are promoting. For
2007  // memset, this Value* stays null.
2008  Value *OtherPtr = 0;
2009  unsigned MemAlignment = MI->getAlignment();
2010  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2011    if (Inst == MTI->getRawDest())
2012      OtherPtr = MTI->getRawSource();
2013    else {
2014      assert(Inst == MTI->getRawSource());
2015      OtherPtr = MTI->getRawDest();
2016    }
2017  }
2018
2019  // If there is an other pointer, we want to convert it to the same pointer
2020  // type as AI has, so we can GEP through it safely.
2021  if (OtherPtr) {
2022    unsigned AddrSpace =
2023      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2024
2025    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2026    // optimization, but it's also required to detect the corner case where
2027    // both pointer operands are referencing the same memory, and where
2028    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2029    // function is only called for mem intrinsics that access the whole
2030    // aggregate, so non-zero GEPs are not an issue here.)
2031    OtherPtr = OtherPtr->stripPointerCasts();
2032
2033    // Copying the alloca to itself is a no-op: just delete it.
2034    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2035      // This code will run twice for a no-op memcpy -- once for each operand.
2036      // Put only one reference to MI on the DeadInsts list.
2037      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2038             E = DeadInsts.end(); I != E; ++I)
2039        if (*I == MI) return;
2040      DeadInsts.push_back(MI);
2041      return;
2042    }
2043
2044    // If the pointer is not the right type, insert a bitcast to the right
2045    // type.
2046    const Type *NewTy =
2047      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2048
2049    if (OtherPtr->getType() != NewTy)
2050      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2051  }
2052
2053  // Process each element of the aggregate.
2054  bool SROADest = MI->getRawDest() == Inst;
2055
2056  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2057
2058  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2059    // If this is a memcpy/memmove, emit a GEP of the other element address.
2060    Value *OtherElt = 0;
2061    unsigned OtherEltAlign = MemAlignment;
2062
2063    if (OtherPtr) {
2064      Value *Idx[2] = { Zero,
2065                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2066      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
2067                                              OtherPtr->getName()+"."+Twine(i),
2068                                                   MI);
2069      uint64_t EltOffset;
2070      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2071      const Type *OtherTy = OtherPtrTy->getElementType();
2072      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
2073        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2074      } else {
2075        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2076        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2077      }
2078
2079      // The alignment of the other pointer is the guaranteed alignment of the
2080      // element, which is affected by both the known alignment of the whole
2081      // mem intrinsic and the alignment of the element.  If the alignment of
2082      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2083      // known alignment is just 4 bytes.
2084      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2085    }
2086
2087    Value *EltPtr = NewElts[i];
2088    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2089
2090    // If we got down to a scalar, insert a load or store as appropriate.
2091    if (EltTy->isSingleValueType()) {
2092      if (isa<MemTransferInst>(MI)) {
2093        if (SROADest) {
2094          // From Other to Alloca.
2095          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2096          new StoreInst(Elt, EltPtr, MI);
2097        } else {
2098          // From Alloca to Other.
2099          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2100          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2101        }
2102        continue;
2103      }
2104      assert(isa<MemSetInst>(MI));
2105
2106      // If the stored element is zero (common case), just store a null
2107      // constant.
2108      Constant *StoreVal;
2109      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2110        if (CI->isZero()) {
2111          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2112        } else {
2113          // If EltTy is a vector type, get the element type.
2114          const Type *ValTy = EltTy->getScalarType();
2115
2116          // Construct an integer with the right value.
2117          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2118          APInt OneVal(EltSize, CI->getZExtValue());
2119          APInt TotalVal(OneVal);
2120          // Set each byte.
2121          for (unsigned i = 0; 8*i < EltSize; ++i) {
2122            TotalVal = TotalVal.shl(8);
2123            TotalVal |= OneVal;
2124          }
2125
2126          // Convert the integer value to the appropriate type.
2127          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2128          if (ValTy->isPointerTy())
2129            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2130          else if (ValTy->isFloatingPointTy())
2131            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2132          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2133
2134          // If the requested value was a vector constant, create it.
2135          if (EltTy != ValTy) {
2136            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2137            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2138            StoreVal = ConstantVector::get(Elts);
2139          }
2140        }
2141        new StoreInst(StoreVal, EltPtr, MI);
2142        continue;
2143      }
2144      // Otherwise, if we're storing a byte variable, use a memset call for
2145      // this element.
2146    }
2147
2148    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2149
2150    IRBuilder<> Builder(MI);
2151
2152    // Finally, insert the meminst for this element.
2153    if (isa<MemSetInst>(MI)) {
2154      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2155                           MI->isVolatile());
2156    } else {
2157      assert(isa<MemTransferInst>(MI));
2158      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2159      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2160
2161      if (isa<MemCpyInst>(MI))
2162        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2163      else
2164        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2165    }
2166  }
2167  DeadInsts.push_back(MI);
2168}
2169
2170/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2171/// overwrites the entire allocation.  Extract out the pieces of the stored
2172/// integer and store them individually.
2173void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2174                                         SmallVector<AllocaInst*, 32> &NewElts){
2175  // Extract each element out of the integer according to its structure offset
2176  // and store the element value to the individual alloca.
2177  Value *SrcVal = SI->getOperand(0);
2178  const Type *AllocaEltTy = AI->getAllocatedType();
2179  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2180
2181  IRBuilder<> Builder(SI);
2182
2183  // Handle tail padding by extending the operand
2184  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2185    SrcVal = Builder.CreateZExt(SrcVal,
2186                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2187
2188  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2189               << '\n');
2190
2191  // There are two forms here: AI could be an array or struct.  Both cases
2192  // have different ways to compute the element offset.
2193  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2194    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2195
2196    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2197      // Get the number of bits to shift SrcVal to get the value.
2198      const Type *FieldTy = EltSTy->getElementType(i);
2199      uint64_t Shift = Layout->getElementOffsetInBits(i);
2200
2201      if (TD->isBigEndian())
2202        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2203
2204      Value *EltVal = SrcVal;
2205      if (Shift) {
2206        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2207        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2208      }
2209
2210      // Truncate down to an integer of the right size.
2211      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2212
2213      // Ignore zero sized fields like {}, they obviously contain no data.
2214      if (FieldSizeBits == 0) continue;
2215
2216      if (FieldSizeBits != AllocaSizeBits)
2217        EltVal = Builder.CreateTrunc(EltVal,
2218                             IntegerType::get(SI->getContext(), FieldSizeBits));
2219      Value *DestField = NewElts[i];
2220      if (EltVal->getType() == FieldTy) {
2221        // Storing to an integer field of this size, just do it.
2222      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2223        // Bitcast to the right element type (for fp/vector values).
2224        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2225      } else {
2226        // Otherwise, bitcast the dest pointer (for aggregates).
2227        DestField = Builder.CreateBitCast(DestField,
2228                                     PointerType::getUnqual(EltVal->getType()));
2229      }
2230      new StoreInst(EltVal, DestField, SI);
2231    }
2232
2233  } else {
2234    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2235    const Type *ArrayEltTy = ATy->getElementType();
2236    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2237    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2238
2239    uint64_t Shift;
2240
2241    if (TD->isBigEndian())
2242      Shift = AllocaSizeBits-ElementOffset;
2243    else
2244      Shift = 0;
2245
2246    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2247      // Ignore zero sized fields like {}, they obviously contain no data.
2248      if (ElementSizeBits == 0) continue;
2249
2250      Value *EltVal = SrcVal;
2251      if (Shift) {
2252        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2253        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2254      }
2255
2256      // Truncate down to an integer of the right size.
2257      if (ElementSizeBits != AllocaSizeBits)
2258        EltVal = Builder.CreateTrunc(EltVal,
2259                                     IntegerType::get(SI->getContext(),
2260                                                      ElementSizeBits));
2261      Value *DestField = NewElts[i];
2262      if (EltVal->getType() == ArrayEltTy) {
2263        // Storing to an integer field of this size, just do it.
2264      } else if (ArrayEltTy->isFloatingPointTy() ||
2265                 ArrayEltTy->isVectorTy()) {
2266        // Bitcast to the right element type (for fp/vector values).
2267        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2268      } else {
2269        // Otherwise, bitcast the dest pointer (for aggregates).
2270        DestField = Builder.CreateBitCast(DestField,
2271                                     PointerType::getUnqual(EltVal->getType()));
2272      }
2273      new StoreInst(EltVal, DestField, SI);
2274
2275      if (TD->isBigEndian())
2276        Shift -= ElementOffset;
2277      else
2278        Shift += ElementOffset;
2279    }
2280  }
2281
2282  DeadInsts.push_back(SI);
2283}
2284
2285/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2286/// an integer.  Load the individual pieces to form the aggregate value.
2287void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2288                                        SmallVector<AllocaInst*, 32> &NewElts) {
2289  // Extract each element out of the NewElts according to its structure offset
2290  // and form the result value.
2291  const Type *AllocaEltTy = AI->getAllocatedType();
2292  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2293
2294  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2295               << '\n');
2296
2297  // There are two forms here: AI could be an array or struct.  Both cases
2298  // have different ways to compute the element offset.
2299  const StructLayout *Layout = 0;
2300  uint64_t ArrayEltBitOffset = 0;
2301  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2302    Layout = TD->getStructLayout(EltSTy);
2303  } else {
2304    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2305    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2306  }
2307
2308  Value *ResultVal =
2309    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2310
2311  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2312    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2313    // the pointer to an integer of the same size before doing the load.
2314    Value *SrcField = NewElts[i];
2315    const Type *FieldTy =
2316      cast<PointerType>(SrcField->getType())->getElementType();
2317    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2318
2319    // Ignore zero sized fields like {}, they obviously contain no data.
2320    if (FieldSizeBits == 0) continue;
2321
2322    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2323                                                     FieldSizeBits);
2324    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2325        !FieldTy->isVectorTy())
2326      SrcField = new BitCastInst(SrcField,
2327                                 PointerType::getUnqual(FieldIntTy),
2328                                 "", LI);
2329    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2330
2331    // If SrcField is a fp or vector of the right size but that isn't an
2332    // integer type, bitcast to an integer so we can shift it.
2333    if (SrcField->getType() != FieldIntTy)
2334      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2335
2336    // Zero extend the field to be the same size as the final alloca so that
2337    // we can shift and insert it.
2338    if (SrcField->getType() != ResultVal->getType())
2339      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2340
2341    // Determine the number of bits to shift SrcField.
2342    uint64_t Shift;
2343    if (Layout) // Struct case.
2344      Shift = Layout->getElementOffsetInBits(i);
2345    else  // Array case.
2346      Shift = i*ArrayEltBitOffset;
2347
2348    if (TD->isBigEndian())
2349      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2350
2351    if (Shift) {
2352      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2353      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2354    }
2355
2356    // Don't create an 'or x, 0' on the first iteration.
2357    if (!isa<Constant>(ResultVal) ||
2358        !cast<Constant>(ResultVal)->isNullValue())
2359      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2360    else
2361      ResultVal = SrcField;
2362  }
2363
2364  // Handle tail padding by truncating the result
2365  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2366    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2367
2368  LI->replaceAllUsesWith(ResultVal);
2369  DeadInsts.push_back(LI);
2370}
2371
2372/// HasPadding - Return true if the specified type has any structure or
2373/// alignment padding in between the elements that would be split apart
2374/// by SROA; return false otherwise.
2375static bool HasPadding(const Type *Ty, const TargetData &TD) {
2376  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2377    Ty = ATy->getElementType();
2378    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2379  }
2380
2381  // SROA currently handles only Arrays and Structs.
2382  const StructType *STy = cast<StructType>(Ty);
2383  const StructLayout *SL = TD.getStructLayout(STy);
2384  unsigned PrevFieldBitOffset = 0;
2385  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2386    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2387
2388    // Check to see if there is any padding between this element and the
2389    // previous one.
2390    if (i) {
2391      unsigned PrevFieldEnd =
2392        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2393      if (PrevFieldEnd < FieldBitOffset)
2394        return true;
2395    }
2396    PrevFieldBitOffset = FieldBitOffset;
2397  }
2398  // Check for tail padding.
2399  if (unsigned EltCount = STy->getNumElements()) {
2400    unsigned PrevFieldEnd = PrevFieldBitOffset +
2401      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2402    if (PrevFieldEnd < SL->getSizeInBits())
2403      return true;
2404  }
2405  return false;
2406}
2407
2408/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2409/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2410/// or 1 if safe after canonicalization has been performed.
2411bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2412  // Loop over the use list of the alloca.  We can only transform it if all of
2413  // the users are safe to transform.
2414  AllocaInfo Info(AI);
2415
2416  isSafeForScalarRepl(AI, 0, Info);
2417  if (Info.isUnsafe) {
2418    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2419    return false;
2420  }
2421
2422  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2423  // source and destination, we have to be careful.  In particular, the memcpy
2424  // could be moving around elements that live in structure padding of the LLVM
2425  // types, but may actually be used.  In these cases, we refuse to promote the
2426  // struct.
2427  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2428      HasPadding(AI->getAllocatedType(), *TD))
2429    return false;
2430
2431  // If the alloca never has an access to just *part* of it, but is accessed
2432  // via loads and stores, then we should use ConvertToScalarInfo to promote
2433  // the alloca instead of promoting each piece at a time and inserting fission
2434  // and fusion code.
2435  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2436    // If the struct/array just has one element, use basic SRoA.
2437    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2438      if (ST->getNumElements() > 1) return false;
2439    } else {
2440      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2441        return false;
2442    }
2443  }
2444
2445  return true;
2446}
2447
2448
2449
2450/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2451/// some part of a constant global variable.  This intentionally only accepts
2452/// constant expressions because we don't can't rewrite arbitrary instructions.
2453static bool PointsToConstantGlobal(Value *V) {
2454  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2455    return GV->isConstant();
2456  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2457    if (CE->getOpcode() == Instruction::BitCast ||
2458        CE->getOpcode() == Instruction::GetElementPtr)
2459      return PointsToConstantGlobal(CE->getOperand(0));
2460  return false;
2461}
2462
2463/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2464/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2465/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2466/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2467/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2468/// the alloca, and if the source pointer is a pointer to a constant global, we
2469/// can optimize this.
2470static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2471                                           bool isOffset) {
2472  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2473    User *U = cast<Instruction>(*UI);
2474
2475    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2476      // Ignore non-volatile loads, they are always ok.
2477      if (LI->isVolatile()) return false;
2478      continue;
2479    }
2480
2481    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2482      // If uses of the bitcast are ok, we are ok.
2483      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2484        return false;
2485      continue;
2486    }
2487    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2488      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2489      // doesn't, it does.
2490      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2491                                         isOffset || !GEP->hasAllZeroIndices()))
2492        return false;
2493      continue;
2494    }
2495
2496    if (CallSite CS = U) {
2497      // If this is the function being called then we treat it like a load and
2498      // ignore it.
2499      if (CS.isCallee(UI))
2500        continue;
2501
2502      // If this is a readonly/readnone call site, then we know it is just a
2503      // load (but one that potentially returns the value itself), so we can
2504      // ignore it if we know that the value isn't captured.
2505      unsigned ArgNo = CS.getArgumentNo(UI);
2506      if (CS.onlyReadsMemory() &&
2507          (CS.getInstruction()->use_empty() ||
2508           CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2509        continue;
2510
2511      // If this is being passed as a byval argument, the caller is making a
2512      // copy, so it is only a read of the alloca.
2513      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2514        continue;
2515    }
2516
2517    // If this is isn't our memcpy/memmove, reject it as something we can't
2518    // handle.
2519    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2520    if (MI == 0)
2521      return false;
2522
2523    // If the transfer is using the alloca as a source of the transfer, then
2524    // ignore it since it is a load (unless the transfer is volatile).
2525    if (UI.getOperandNo() == 1) {
2526      if (MI->isVolatile()) return false;
2527      continue;
2528    }
2529
2530    // If we already have seen a copy, reject the second one.
2531    if (TheCopy) return false;
2532
2533    // If the pointer has been offset from the start of the alloca, we can't
2534    // safely handle this.
2535    if (isOffset) return false;
2536
2537    // If the memintrinsic isn't using the alloca as the dest, reject it.
2538    if (UI.getOperandNo() != 0) return false;
2539
2540    // If the source of the memcpy/move is not a constant global, reject it.
2541    if (!PointsToConstantGlobal(MI->getSource()))
2542      return false;
2543
2544    // Otherwise, the transform is safe.  Remember the copy instruction.
2545    TheCopy = MI;
2546  }
2547  return true;
2548}
2549
2550/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2551/// modified by a copy from a constant global.  If we can prove this, we can
2552/// replace any uses of the alloca with uses of the global directly.
2553MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2554  MemTransferInst *TheCopy = 0;
2555  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2556    return TheCopy;
2557  return 0;
2558}
2559