ScalarReplAggregates.cpp revision d614a1f0a89927639db37efd8840fe006dacd7a1
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/PromoteMemToReg.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/IRBuilder.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/Statistic.h"
44using namespace llvm;
45
46STATISTIC(NumReplaced,  "Number of allocas broken up");
47STATISTIC(NumPromoted,  "Number of allocas promoted");
48STATISTIC(NumConverted, "Number of aggregates converted to scalar");
49STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
50
51namespace {
52  struct SROA : public FunctionPass {
53    static char ID; // Pass identification, replacement for typeid
54    explicit SROA(signed T = -1) : FunctionPass(&ID) {
55      if (T == -1)
56        SRThreshold = 128;
57      else
58        SRThreshold = T;
59    }
60
61    bool runOnFunction(Function &F);
62
63    bool performScalarRepl(Function &F);
64    bool performPromotion(Function &F);
65
66    // getAnalysisUsage - This pass does not require any passes, but we know it
67    // will not alter the CFG, so say so.
68    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69      AU.addRequired<DominatorTree>();
70      AU.addRequired<DominanceFrontier>();
71      AU.setPreservesCFG();
72    }
73
74  private:
75    TargetData *TD;
76
77    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
78    /// information about the uses.  All these fields are initialized to false
79    /// and set to true when something is learned.
80    struct AllocaInfo {
81      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
82      bool isUnsafe : 1;
83
84      /// needsCleanup - This is set to true if there is some use of the alloca
85      /// that requires cleanup.
86      bool needsCleanup : 1;
87
88      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
89      bool isMemCpySrc : 1;
90
91      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
92      bool isMemCpyDst : 1;
93
94      AllocaInfo()
95        : isUnsafe(false), needsCleanup(false),
96          isMemCpySrc(false), isMemCpyDst(false) {}
97    };
98
99    unsigned SRThreshold;
100
101    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
102
103    int isSafeAllocaToScalarRepl(AllocaInst *AI);
104
105    void isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
106                               AllocaInfo &Info);
107    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
108                         AllocaInfo &Info);
109    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
110                                        unsigned OpNo, AllocaInfo &Info);
111    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocaInst *AI,
112                                        AllocaInfo &Info);
113
114    void DoScalarReplacement(AllocaInst *AI,
115                             std::vector<AllocaInst*> &WorkList);
116    void CleanupGEP(GetElementPtrInst *GEP);
117    void CleanupAllocaUsers(AllocaInst *AI);
118    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocaInst *Base);
119
120    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
121                                    SmallVector<AllocaInst*, 32> &NewElts);
122
123    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
124                                      AllocaInst *AI,
125                                      SmallVector<AllocaInst*, 32> &NewElts);
126    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
127                                       SmallVector<AllocaInst*, 32> &NewElts);
128    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
129                                      SmallVector<AllocaInst*, 32> &NewElts);
130
131    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
132                            bool &SawVec, uint64_t Offset, unsigned AllocaSize);
133    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
134    Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
135                                     uint64_t Offset, IRBuilder<> &Builder);
136    Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
137                                     uint64_t Offset, IRBuilder<> &Builder);
138    static Instruction *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
139  };
140}
141
142char SROA::ID = 0;
143static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
144
145// Public interface to the ScalarReplAggregates pass
146FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
147  return new SROA(Threshold);
148}
149
150
151bool SROA::runOnFunction(Function &F) {
152  TD = getAnalysisIfAvailable<TargetData>();
153
154  bool Changed = performPromotion(F);
155
156  // FIXME: ScalarRepl currently depends on TargetData more than it
157  // theoretically needs to. It should be refactored in order to support
158  // target-independent IR. Until this is done, just skip the actual
159  // scalar-replacement portion of this pass.
160  if (!TD) return Changed;
161
162  while (1) {
163    bool LocalChange = performScalarRepl(F);
164    if (!LocalChange) break;   // No need to repromote if no scalarrepl
165    Changed = true;
166    LocalChange = performPromotion(F);
167    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
168  }
169
170  return Changed;
171}
172
173
174bool SROA::performPromotion(Function &F) {
175  std::vector<AllocaInst*> Allocas;
176  DominatorTree         &DT = getAnalysis<DominatorTree>();
177  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
178
179  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
180
181  bool Changed = false;
182
183  while (1) {
184    Allocas.clear();
185
186    // Find allocas that are safe to promote, by looking at all instructions in
187    // the entry node
188    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
189      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
190        if (isAllocaPromotable(AI))
191          Allocas.push_back(AI);
192
193    if (Allocas.empty()) break;
194
195    PromoteMemToReg(Allocas, DT, DF);
196    NumPromoted += Allocas.size();
197    Changed = true;
198  }
199
200  return Changed;
201}
202
203/// getNumSAElements - Return the number of elements in the specific struct or
204/// array.
205static uint64_t getNumSAElements(const Type *T) {
206  if (const StructType *ST = dyn_cast<StructType>(T))
207    return ST->getNumElements();
208  return cast<ArrayType>(T)->getNumElements();
209}
210
211// performScalarRepl - This algorithm is a simple worklist driven algorithm,
212// which runs on all of the malloc/alloca instructions in the function, removing
213// them if they are only used by getelementptr instructions.
214//
215bool SROA::performScalarRepl(Function &F) {
216  std::vector<AllocaInst*> WorkList;
217
218  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
219  BasicBlock &BB = F.getEntryBlock();
220  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
221    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
222      WorkList.push_back(A);
223
224  // Process the worklist
225  bool Changed = false;
226  while (!WorkList.empty()) {
227    AllocaInst *AI = WorkList.back();
228    WorkList.pop_back();
229
230    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
231    // with unused elements.
232    if (AI->use_empty()) {
233      AI->eraseFromParent();
234      continue;
235    }
236
237    // If this alloca is impossible for us to promote, reject it early.
238    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
239      continue;
240
241    // Check to see if this allocation is only modified by a memcpy/memmove from
242    // a constant global.  If this is the case, we can change all users to use
243    // the constant global instead.  This is commonly produced by the CFE by
244    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
245    // is only subsequently read.
246    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
247      DEBUG(errs() << "Found alloca equal to global: " << *AI << '\n');
248      DEBUG(errs() << "  memcpy = " << *TheCopy << '\n');
249      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
250      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
251      TheCopy->eraseFromParent();  // Don't mutate the global.
252      AI->eraseFromParent();
253      ++NumGlobals;
254      Changed = true;
255      continue;
256    }
257
258    // Check to see if we can perform the core SROA transformation.  We cannot
259    // transform the allocation instruction if it is an array allocation
260    // (allocations OF arrays are ok though), and an allocation of a scalar
261    // value cannot be decomposed at all.
262    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
263
264    // Do not promote [0 x %struct].
265    if (AllocaSize == 0) continue;
266
267    // Do not promote any struct whose size is too big.
268    if (AllocaSize > SRThreshold) continue;
269
270    if ((isa<StructType>(AI->getAllocatedType()) ||
271         isa<ArrayType>(AI->getAllocatedType())) &&
272        // Do not promote any struct into more than "32" separate vars.
273        getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
274      // Check that all of the users of the allocation are capable of being
275      // transformed.
276      switch (isSafeAllocaToScalarRepl(AI)) {
277      default: llvm_unreachable("Unexpected value!");
278      case 0:  // Not safe to scalar replace.
279        break;
280      case 1:  // Safe, but requires cleanup/canonicalizations first
281        CleanupAllocaUsers(AI);
282        // FALL THROUGH.
283      case 3:  // Safe to scalar replace.
284        DoScalarReplacement(AI, WorkList);
285        Changed = true;
286        continue;
287      }
288    }
289
290    // If we can turn this aggregate value (potentially with casts) into a
291    // simple scalar value that can be mem2reg'd into a register value.
292    // IsNotTrivial tracks whether this is something that mem2reg could have
293    // promoted itself.  If so, we don't want to transform it needlessly.  Note
294    // that we can't just check based on the type: the alloca may be of an i32
295    // but that has pointer arithmetic to set byte 3 of it or something.
296    bool IsNotTrivial = false;
297    const Type *VectorTy = 0;
298    bool HadAVector = false;
299    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
300                           0, unsigned(AllocaSize)) && IsNotTrivial) {
301      AllocaInst *NewAI;
302      // If we were able to find a vector type that can handle this with
303      // insert/extract elements, and if there was at least one use that had
304      // a vector type, promote this to a vector.  We don't want to promote
305      // random stuff that doesn't use vectors (e.g. <9 x double>) because then
306      // we just get a lot of insert/extracts.  If at least one vector is
307      // involved, then we probably really do have a union of vector/array.
308      if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
309        DEBUG(errs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
310                     << *VectorTy << '\n');
311
312        // Create and insert the vector alloca.
313        NewAI = new AllocaInst(VectorTy, 0, "",  AI->getParent()->begin());
314        ConvertUsesToScalar(AI, NewAI, 0);
315      } else {
316        DEBUG(errs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
317
318        // Create and insert the integer alloca.
319        const Type *NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
320        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
321        ConvertUsesToScalar(AI, NewAI, 0);
322      }
323      NewAI->takeName(AI);
324      AI->eraseFromParent();
325      ++NumConverted;
326      Changed = true;
327      continue;
328    }
329
330    // Otherwise, couldn't process this alloca.
331  }
332
333  return Changed;
334}
335
336/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
337/// predicate, do SROA now.
338void SROA::DoScalarReplacement(AllocaInst *AI,
339                               std::vector<AllocaInst*> &WorkList) {
340  DEBUG(errs() << "Found inst to SROA: " << *AI << '\n');
341  SmallVector<AllocaInst*, 32> ElementAllocas;
342  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
343    ElementAllocas.reserve(ST->getNumContainedTypes());
344    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
345      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
346                                      AI->getAlignment(),
347                                      AI->getName() + "." + Twine(i), AI);
348      ElementAllocas.push_back(NA);
349      WorkList.push_back(NA);  // Add to worklist for recursive processing
350    }
351  } else {
352    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
353    ElementAllocas.reserve(AT->getNumElements());
354    const Type *ElTy = AT->getElementType();
355    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
356      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
357                                      AI->getName() + "." + Twine(i), AI);
358      ElementAllocas.push_back(NA);
359      WorkList.push_back(NA);  // Add to worklist for recursive processing
360    }
361  }
362
363  // Now that we have created the alloca instructions that we want to use,
364  // expand the getelementptr instructions to use them.
365  //
366  while (!AI->use_empty()) {
367    Instruction *User = cast<Instruction>(AI->use_back());
368    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
369      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
370      BCInst->eraseFromParent();
371      continue;
372    }
373
374    // Replace:
375    //   %res = load { i32, i32 }* %alloc
376    // with:
377    //   %load.0 = load i32* %alloc.0
378    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
379    //   %load.1 = load i32* %alloc.1
380    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
381    // (Also works for arrays instead of structs)
382    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
383      Value *Insert = UndefValue::get(LI->getType());
384      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
385        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
386        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
387      }
388      LI->replaceAllUsesWith(Insert);
389      LI->eraseFromParent();
390      continue;
391    }
392
393    // Replace:
394    //   store { i32, i32 } %val, { i32, i32 }* %alloc
395    // with:
396    //   %val.0 = extractvalue { i32, i32 } %val, 0
397    //   store i32 %val.0, i32* %alloc.0
398    //   %val.1 = extractvalue { i32, i32 } %val, 1
399    //   store i32 %val.1, i32* %alloc.1
400    // (Also works for arrays instead of structs)
401    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
402      Value *Val = SI->getOperand(0);
403      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
404        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
405        new StoreInst(Extract, ElementAllocas[i], SI);
406      }
407      SI->eraseFromParent();
408      continue;
409    }
410
411    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
412    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
413    unsigned Idx =
414       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
415
416    assert(Idx < ElementAllocas.size() && "Index out of range?");
417    AllocaInst *AllocaToUse = ElementAllocas[Idx];
418
419    Value *RepValue;
420    if (GEPI->getNumOperands() == 3) {
421      // Do not insert a new getelementptr instruction with zero indices, only
422      // to have it optimized out later.
423      RepValue = AllocaToUse;
424    } else {
425      // We are indexing deeply into the structure, so we still need a
426      // getelement ptr instruction to finish the indexing.  This may be
427      // expanded itself once the worklist is rerun.
428      //
429      SmallVector<Value*, 8> NewArgs;
430      NewArgs.push_back(Constant::getNullValue(
431                                           Type::getInt32Ty(AI->getContext())));
432      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
433      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
434                                           NewArgs.end(), "", GEPI);
435      RepValue->takeName(GEPI);
436    }
437
438    // If this GEP is to the start of the aggregate, check for memcpys.
439    if (Idx == 0 && GEPI->hasAllZeroIndices())
440      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
441
442    // Move all of the users over to the new GEP.
443    GEPI->replaceAllUsesWith(RepValue);
444    // Delete the old GEP
445    GEPI->eraseFromParent();
446  }
447
448  // Finally, delete the Alloca instruction
449  AI->eraseFromParent();
450  NumReplaced++;
451}
452
453
454/// isSafeElementUse - Check to see if this use is an allowed use for a
455/// getelementptr instruction of an array aggregate allocation.  isFirstElt
456/// indicates whether Ptr is known to the start of the aggregate.
457///
458void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
459                            AllocaInfo &Info) {
460  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
461       I != E; ++I) {
462    Instruction *User = cast<Instruction>(*I);
463    switch (User->getOpcode()) {
464    case Instruction::Load:  break;
465    case Instruction::Store:
466      // Store is ok if storing INTO the pointer, not storing the pointer
467      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
468      break;
469    case Instruction::GetElementPtr: {
470      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
471      bool AreAllZeroIndices = isFirstElt;
472      if (GEP->getNumOperands() > 1 &&
473          (!isa<ConstantInt>(GEP->getOperand(1)) ||
474           !cast<ConstantInt>(GEP->getOperand(1))->isZero()))
475        // Using pointer arithmetic to navigate the array.
476        return MarkUnsafe(Info);
477
478      // Verify that any array subscripts are in range.
479      for (gep_type_iterator GEPIt = gep_type_begin(GEP),
480           E = gep_type_end(GEP); GEPIt != E; ++GEPIt) {
481        // Ignore struct elements, no extra checking needed for these.
482        if (isa<StructType>(*GEPIt))
483          continue;
484
485        // This GEP indexes an array.  Verify that this is an in-range
486        // constant integer. Specifically, consider A[0][i]. We cannot know that
487        // the user isn't doing invalid things like allowing i to index an
488        // out-of-range subscript that accesses A[1].  Because of this, we have
489        // to reject SROA of any accesses into structs where any of the
490        // components are variables.
491        ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
492        if (!IdxVal) return MarkUnsafe(Info);
493
494        // Are all indices still zero?
495        AreAllZeroIndices &= IdxVal->isZero();
496
497        if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
498          if (IdxVal->getZExtValue() >= AT->getNumElements())
499            return MarkUnsafe(Info);
500        } else if (const VectorType *VT = dyn_cast<VectorType>(*GEPIt)) {
501          if (IdxVal->getZExtValue() >= VT->getNumElements())
502            return MarkUnsafe(Info);
503        }
504      }
505
506      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
507      if (Info.isUnsafe) return;
508      break;
509    }
510    case Instruction::BitCast:
511      if (isFirstElt) {
512        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
513        if (Info.isUnsafe) return;
514        break;
515      }
516      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
517      return MarkUnsafe(Info);
518    case Instruction::Call:
519      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
520        if (isFirstElt) {
521          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
522          if (Info.isUnsafe) return;
523          break;
524        }
525      }
526      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
527      return MarkUnsafe(Info);
528    default:
529      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
530      return MarkUnsafe(Info);
531    }
532  }
533  return;  // All users look ok :)
534}
535
536/// AllUsersAreLoads - Return true if all users of this value are loads.
537static bool AllUsersAreLoads(Value *Ptr) {
538  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
539       I != E; ++I)
540    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
541      return false;
542  return true;
543}
544
545/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
546/// aggregate allocation.
547///
548void SROA::isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
549                                 AllocaInfo &Info) {
550  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
551    return isSafeUseOfBitCastedAllocation(C, AI, Info);
552
553  if (LoadInst *LI = dyn_cast<LoadInst>(User))
554    if (!LI->isVolatile())
555      return;// Loads (returning a first class aggregrate) are always rewritable
556
557  if (StoreInst *SI = dyn_cast<StoreInst>(User))
558    if (!SI->isVolatile() && SI->getOperand(0) != AI)
559      return;// Store is ok if storing INTO the pointer, not storing the pointer
560
561  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
562  if (GEPI == 0)
563    return MarkUnsafe(Info);
564
565  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
566
567  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
568  if (I == E ||
569      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
570    return MarkUnsafe(Info);
571  }
572
573  ++I;
574  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
575
576  bool IsAllZeroIndices = true;
577
578  // If the first index is a non-constant index into an array, see if we can
579  // handle it as a special case.
580  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
581    if (!isa<ConstantInt>(I.getOperand())) {
582      IsAllZeroIndices = 0;
583      uint64_t NumElements = AT->getNumElements();
584
585      // If this is an array index and the index is not constant, we cannot
586      // promote... that is unless the array has exactly one or two elements in
587      // it, in which case we CAN promote it, but we have to canonicalize this
588      // out if this is the only problem.
589      if ((NumElements == 1 || NumElements == 2) &&
590          AllUsersAreLoads(GEPI)) {
591        Info.needsCleanup = true;
592        return;  // Canonicalization required!
593      }
594      return MarkUnsafe(Info);
595    }
596  }
597
598  // Walk through the GEP type indices, checking the types that this indexes
599  // into.
600  for (; I != E; ++I) {
601    // Ignore struct elements, no extra checking needed for these.
602    if (isa<StructType>(*I))
603      continue;
604
605    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
606    if (!IdxVal) return MarkUnsafe(Info);
607
608    // Are all indices still zero?
609    IsAllZeroIndices &= IdxVal->isZero();
610
611    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
612      // This GEP indexes an array.  Verify that this is an in-range constant
613      // integer. Specifically, consider A[0][i]. We cannot know that the user
614      // isn't doing invalid things like allowing i to index an out-of-range
615      // subscript that accesses A[1].  Because of this, we have to reject SROA
616      // of any accesses into structs where any of the components are variables.
617      if (IdxVal->getZExtValue() >= AT->getNumElements())
618        return MarkUnsafe(Info);
619    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
620      if (IdxVal->getZExtValue() >= VT->getNumElements())
621        return MarkUnsafe(Info);
622    }
623  }
624
625  // If there are any non-simple uses of this getelementptr, make sure to reject
626  // them.
627  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
628}
629
630/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
631/// intrinsic can be promoted by SROA.  At this point, we know that the operand
632/// of the memintrinsic is a pointer to the beginning of the allocation.
633void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
634                                          unsigned OpNo, AllocaInfo &Info) {
635  // If not constant length, give up.
636  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
637  if (!Length) return MarkUnsafe(Info);
638
639  // If not the whole aggregate, give up.
640  if (Length->getZExtValue() !=
641      TD->getTypeAllocSize(AI->getType()->getElementType()))
642    return MarkUnsafe(Info);
643
644  // We only know about memcpy/memset/memmove.
645  if (!isa<MemIntrinsic>(MI))
646    return MarkUnsafe(Info);
647
648  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
649  // into or out of the aggregate.
650  if (OpNo == 1)
651    Info.isMemCpyDst = true;
652  else {
653    assert(OpNo == 2);
654    Info.isMemCpySrc = true;
655  }
656}
657
658/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
659/// are
660void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocaInst *AI,
661                                          AllocaInfo &Info) {
662  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
663       UI != E; ++UI) {
664    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
665      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
666    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
667      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
668    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
669      if (SI->isVolatile())
670        return MarkUnsafe(Info);
671
672      // If storing the entire alloca in one chunk through a bitcasted pointer
673      // to integer, we can transform it.  This happens (for example) when you
674      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
675      // memcpy case and occurs in various "byval" cases and emulated memcpys.
676      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
677          TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
678          TD->getTypeAllocSize(AI->getType()->getElementType())) {
679        Info.isMemCpyDst = true;
680        continue;
681      }
682      return MarkUnsafe(Info);
683    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
684      if (LI->isVolatile())
685        return MarkUnsafe(Info);
686
687      // If loading the entire alloca in one chunk through a bitcasted pointer
688      // to integer, we can transform it.  This happens (for example) when you
689      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
690      // memcpy case and occurs in various "byval" cases and emulated memcpys.
691      if (isa<IntegerType>(LI->getType()) &&
692          TD->getTypeAllocSize(LI->getType()) ==
693          TD->getTypeAllocSize(AI->getType()->getElementType())) {
694        Info.isMemCpySrc = true;
695        continue;
696      }
697      return MarkUnsafe(Info);
698    } else if (isa<DbgInfoIntrinsic>(UI)) {
699      // If one user is DbgInfoIntrinsic then check if all users are
700      // DbgInfoIntrinsics.
701      if (OnlyUsedByDbgInfoIntrinsics(BC)) {
702        Info.needsCleanup = true;
703        return;
704      }
705      else
706        MarkUnsafe(Info);
707    }
708    else {
709      return MarkUnsafe(Info);
710    }
711    if (Info.isUnsafe) return;
712  }
713}
714
715/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
716/// to its first element.  Transform users of the cast to use the new values
717/// instead.
718void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
719                                      SmallVector<AllocaInst*, 32> &NewElts) {
720  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
721  while (UI != UE) {
722    Instruction *User = cast<Instruction>(*UI++);
723    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
724      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
725      if (BCU->use_empty()) BCU->eraseFromParent();
726      continue;
727    }
728
729    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
730      // This must be memcpy/memmove/memset of the entire aggregate.
731      // Split into one per element.
732      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
733      continue;
734    }
735
736    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
737      // If this is a store of the entire alloca from an integer, rewrite it.
738      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
739      continue;
740    }
741
742    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
743      // If this is a load of the entire alloca to an integer, rewrite it.
744      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
745      continue;
746    }
747
748    // Otherwise it must be some other user of a gep of the first pointer.  Just
749    // leave these alone.
750    continue;
751  }
752}
753
754/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
755/// Rewrite it to copy or set the elements of the scalarized memory.
756void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
757                                        AllocaInst *AI,
758                                        SmallVector<AllocaInst*, 32> &NewElts) {
759
760  // If this is a memcpy/memmove, construct the other pointer as the
761  // appropriate type.  The "Other" pointer is the pointer that goes to memory
762  // that doesn't have anything to do with the alloca that we are promoting. For
763  // memset, this Value* stays null.
764  Value *OtherPtr = 0;
765  LLVMContext &Context = MI->getContext();
766  unsigned MemAlignment = MI->getAlignment();
767  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
768    if (BCInst == MTI->getRawDest())
769      OtherPtr = MTI->getRawSource();
770    else {
771      assert(BCInst == MTI->getRawSource());
772      OtherPtr = MTI->getRawDest();
773    }
774  }
775
776  // If there is an other pointer, we want to convert it to the same pointer
777  // type as AI has, so we can GEP through it safely.
778  if (OtherPtr) {
779    // It is likely that OtherPtr is a bitcast, if so, remove it.
780    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
781      OtherPtr = BC->getOperand(0);
782    // All zero GEPs are effectively bitcasts.
783    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
784      if (GEP->hasAllZeroIndices())
785        OtherPtr = GEP->getOperand(0);
786
787    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
788      if (BCE->getOpcode() == Instruction::BitCast)
789        OtherPtr = BCE->getOperand(0);
790
791    // If the pointer is not the right type, insert a bitcast to the right
792    // type.
793    if (OtherPtr->getType() != AI->getType())
794      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
795                                 MI);
796  }
797
798  // Process each element of the aggregate.
799  Value *TheFn = MI->getOperand(0);
800  const Type *BytePtrTy = MI->getRawDest()->getType();
801  bool SROADest = MI->getRawDest() == BCInst;
802
803  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
804
805  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
806    // If this is a memcpy/memmove, emit a GEP of the other element address.
807    Value *OtherElt = 0;
808    unsigned OtherEltAlign = MemAlignment;
809
810    if (OtherPtr) {
811      Value *Idx[2] = { Zero,
812                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
813      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
814                                           OtherPtr->getNameStr()+"."+Twine(i),
815                                           MI);
816      uint64_t EltOffset;
817      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
818      if (const StructType *ST =
819            dyn_cast<StructType>(OtherPtrTy->getElementType())) {
820        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
821      } else {
822        const Type *EltTy =
823          cast<SequentialType>(OtherPtr->getType())->getElementType();
824        EltOffset = TD->getTypeAllocSize(EltTy)*i;
825      }
826
827      // The alignment of the other pointer is the guaranteed alignment of the
828      // element, which is affected by both the known alignment of the whole
829      // mem intrinsic and the alignment of the element.  If the alignment of
830      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
831      // known alignment is just 4 bytes.
832      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
833    }
834
835    Value *EltPtr = NewElts[i];
836    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
837
838    // If we got down to a scalar, insert a load or store as appropriate.
839    if (EltTy->isSingleValueType()) {
840      if (isa<MemTransferInst>(MI)) {
841        if (SROADest) {
842          // From Other to Alloca.
843          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
844          new StoreInst(Elt, EltPtr, MI);
845        } else {
846          // From Alloca to Other.
847          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
848          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
849        }
850        continue;
851      }
852      assert(isa<MemSetInst>(MI));
853
854      // If the stored element is zero (common case), just store a null
855      // constant.
856      Constant *StoreVal;
857      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
858        if (CI->isZero()) {
859          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
860        } else {
861          // If EltTy is a vector type, get the element type.
862          const Type *ValTy = EltTy->getScalarType();
863
864          // Construct an integer with the right value.
865          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
866          APInt OneVal(EltSize, CI->getZExtValue());
867          APInt TotalVal(OneVal);
868          // Set each byte.
869          for (unsigned i = 0; 8*i < EltSize; ++i) {
870            TotalVal = TotalVal.shl(8);
871            TotalVal |= OneVal;
872          }
873
874          // Convert the integer value to the appropriate type.
875          StoreVal = ConstantInt::get(Context, TotalVal);
876          if (isa<PointerType>(ValTy))
877            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
878          else if (ValTy->isFloatingPoint())
879            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
880          assert(StoreVal->getType() == ValTy && "Type mismatch!");
881
882          // If the requested value was a vector constant, create it.
883          if (EltTy != ValTy) {
884            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
885            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
886            StoreVal = ConstantVector::get(&Elts[0], NumElts);
887          }
888        }
889        new StoreInst(StoreVal, EltPtr, MI);
890        continue;
891      }
892      // Otherwise, if we're storing a byte variable, use a memset call for
893      // this element.
894    }
895
896    // Cast the element pointer to BytePtrTy.
897    if (EltPtr->getType() != BytePtrTy)
898      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
899
900    // Cast the other pointer (if we have one) to BytePtrTy.
901    if (OtherElt && OtherElt->getType() != BytePtrTy)
902      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
903                                 MI);
904
905    unsigned EltSize = TD->getTypeAllocSize(EltTy);
906
907    // Finally, insert the meminst for this element.
908    if (isa<MemTransferInst>(MI)) {
909      Value *Ops[] = {
910        SROADest ? EltPtr : OtherElt,  // Dest ptr
911        SROADest ? OtherElt : EltPtr,  // Src ptr
912        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
913        // Align
914        ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign)
915      };
916      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
917    } else {
918      assert(isa<MemSetInst>(MI));
919      Value *Ops[] = {
920        EltPtr, MI->getOperand(2),  // Dest, Value,
921        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
922        Zero  // Align
923      };
924      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
925    }
926  }
927  MI->eraseFromParent();
928}
929
930/// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
931/// overwrites the entire allocation.  Extract out the pieces of the stored
932/// integer and store them individually.
933void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
934                                         SmallVector<AllocaInst*, 32> &NewElts){
935  // Extract each element out of the integer according to its structure offset
936  // and store the element value to the individual alloca.
937  Value *SrcVal = SI->getOperand(0);
938  const Type *AllocaEltTy = AI->getType()->getElementType();
939  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
940
941  // If this isn't a store of an integer to the whole alloca, it may be a store
942  // to the first element.  Just ignore the store in this case and normal SROA
943  // will handle it.
944  if (!isa<IntegerType>(SrcVal->getType()) ||
945      TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
946    return;
947  // Handle tail padding by extending the operand
948  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
949    SrcVal = new ZExtInst(SrcVal,
950                          IntegerType::get(SI->getContext(), AllocaSizeBits),
951                          "", SI);
952
953  DEBUG(errs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
954               << '\n');
955
956  // There are two forms here: AI could be an array or struct.  Both cases
957  // have different ways to compute the element offset.
958  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
959    const StructLayout *Layout = TD->getStructLayout(EltSTy);
960
961    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
962      // Get the number of bits to shift SrcVal to get the value.
963      const Type *FieldTy = EltSTy->getElementType(i);
964      uint64_t Shift = Layout->getElementOffsetInBits(i);
965
966      if (TD->isBigEndian())
967        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
968
969      Value *EltVal = SrcVal;
970      if (Shift) {
971        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
972        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
973                                            "sroa.store.elt", SI);
974      }
975
976      // Truncate down to an integer of the right size.
977      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
978
979      // Ignore zero sized fields like {}, they obviously contain no data.
980      if (FieldSizeBits == 0) continue;
981
982      if (FieldSizeBits != AllocaSizeBits)
983        EltVal = new TruncInst(EltVal,
984                             IntegerType::get(SI->getContext(), FieldSizeBits),
985                              "", SI);
986      Value *DestField = NewElts[i];
987      if (EltVal->getType() == FieldTy) {
988        // Storing to an integer field of this size, just do it.
989      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
990        // Bitcast to the right element type (for fp/vector values).
991        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
992      } else {
993        // Otherwise, bitcast the dest pointer (for aggregates).
994        DestField = new BitCastInst(DestField,
995                              PointerType::getUnqual(EltVal->getType()),
996                                    "", SI);
997      }
998      new StoreInst(EltVal, DestField, SI);
999    }
1000
1001  } else {
1002    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
1003    const Type *ArrayEltTy = ATy->getElementType();
1004    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1005    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
1006
1007    uint64_t Shift;
1008
1009    if (TD->isBigEndian())
1010      Shift = AllocaSizeBits-ElementOffset;
1011    else
1012      Shift = 0;
1013
1014    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1015      // Ignore zero sized fields like {}, they obviously contain no data.
1016      if (ElementSizeBits == 0) continue;
1017
1018      Value *EltVal = SrcVal;
1019      if (Shift) {
1020        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1021        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1022                                            "sroa.store.elt", SI);
1023      }
1024
1025      // Truncate down to an integer of the right size.
1026      if (ElementSizeBits != AllocaSizeBits)
1027        EltVal = new TruncInst(EltVal,
1028                               IntegerType::get(SI->getContext(),
1029                                                ElementSizeBits),"",SI);
1030      Value *DestField = NewElts[i];
1031      if (EltVal->getType() == ArrayEltTy) {
1032        // Storing to an integer field of this size, just do it.
1033      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
1034        // Bitcast to the right element type (for fp/vector values).
1035        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1036      } else {
1037        // Otherwise, bitcast the dest pointer (for aggregates).
1038        DestField = new BitCastInst(DestField,
1039                              PointerType::getUnqual(EltVal->getType()),
1040                                    "", SI);
1041      }
1042      new StoreInst(EltVal, DestField, SI);
1043
1044      if (TD->isBigEndian())
1045        Shift -= ElementOffset;
1046      else
1047        Shift += ElementOffset;
1048    }
1049  }
1050
1051  SI->eraseFromParent();
1052}
1053
1054/// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
1055/// an integer.  Load the individual pieces to form the aggregate value.
1056void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1057                                        SmallVector<AllocaInst*, 32> &NewElts) {
1058  // Extract each element out of the NewElts according to its structure offset
1059  // and form the result value.
1060  const Type *AllocaEltTy = AI->getType()->getElementType();
1061  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1062
1063  // If this isn't a load of the whole alloca to an integer, it may be a load
1064  // of the first element.  Just ignore the load in this case and normal SROA
1065  // will handle it.
1066  if (!isa<IntegerType>(LI->getType()) ||
1067      TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
1068    return;
1069
1070  DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1071               << '\n');
1072
1073  // There are two forms here: AI could be an array or struct.  Both cases
1074  // have different ways to compute the element offset.
1075  const StructLayout *Layout = 0;
1076  uint64_t ArrayEltBitOffset = 0;
1077  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1078    Layout = TD->getStructLayout(EltSTy);
1079  } else {
1080    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1081    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1082  }
1083
1084  Value *ResultVal =
1085    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1086
1087  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1088    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1089    // the pointer to an integer of the same size before doing the load.
1090    Value *SrcField = NewElts[i];
1091    const Type *FieldTy =
1092      cast<PointerType>(SrcField->getType())->getElementType();
1093    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1094
1095    // Ignore zero sized fields like {}, they obviously contain no data.
1096    if (FieldSizeBits == 0) continue;
1097
1098    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1099                                                     FieldSizeBits);
1100    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1101        !isa<VectorType>(FieldTy))
1102      SrcField = new BitCastInst(SrcField,
1103                                 PointerType::getUnqual(FieldIntTy),
1104                                 "", LI);
1105    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1106
1107    // If SrcField is a fp or vector of the right size but that isn't an
1108    // integer type, bitcast to an integer so we can shift it.
1109    if (SrcField->getType() != FieldIntTy)
1110      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1111
1112    // Zero extend the field to be the same size as the final alloca so that
1113    // we can shift and insert it.
1114    if (SrcField->getType() != ResultVal->getType())
1115      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1116
1117    // Determine the number of bits to shift SrcField.
1118    uint64_t Shift;
1119    if (Layout) // Struct case.
1120      Shift = Layout->getElementOffsetInBits(i);
1121    else  // Array case.
1122      Shift = i*ArrayEltBitOffset;
1123
1124    if (TD->isBigEndian())
1125      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1126
1127    if (Shift) {
1128      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1129      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1130    }
1131
1132    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1133  }
1134
1135  // Handle tail padding by truncating the result
1136  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1137    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1138
1139  LI->replaceAllUsesWith(ResultVal);
1140  LI->eraseFromParent();
1141}
1142
1143
1144/// HasPadding - Return true if the specified type has any structure or
1145/// alignment padding, false otherwise.
1146static bool HasPadding(const Type *Ty, const TargetData &TD) {
1147  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1148    const StructLayout *SL = TD.getStructLayout(STy);
1149    unsigned PrevFieldBitOffset = 0;
1150    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1151      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1152
1153      // Padding in sub-elements?
1154      if (HasPadding(STy->getElementType(i), TD))
1155        return true;
1156
1157      // Check to see if there is any padding between this element and the
1158      // previous one.
1159      if (i) {
1160        unsigned PrevFieldEnd =
1161        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1162        if (PrevFieldEnd < FieldBitOffset)
1163          return true;
1164      }
1165
1166      PrevFieldBitOffset = FieldBitOffset;
1167    }
1168
1169    //  Check for tail padding.
1170    if (unsigned EltCount = STy->getNumElements()) {
1171      unsigned PrevFieldEnd = PrevFieldBitOffset +
1172                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1173      if (PrevFieldEnd < SL->getSizeInBits())
1174        return true;
1175    }
1176
1177  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1178    return HasPadding(ATy->getElementType(), TD);
1179  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1180    return HasPadding(VTy->getElementType(), TD);
1181  }
1182  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1183}
1184
1185/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1186/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1187/// or 1 if safe after canonicalization has been performed.
1188///
1189int SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1190  // Loop over the use list of the alloca.  We can only transform it if all of
1191  // the users are safe to transform.
1192  AllocaInfo Info;
1193
1194  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1195       I != E; ++I) {
1196    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1197    if (Info.isUnsafe) {
1198      DEBUG(errs() << "Cannot transform: " << *AI << "\n  due to user: "
1199                   << **I << '\n');
1200      return 0;
1201    }
1202  }
1203
1204  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1205  // source and destination, we have to be careful.  In particular, the memcpy
1206  // could be moving around elements that live in structure padding of the LLVM
1207  // types, but may actually be used.  In these cases, we refuse to promote the
1208  // struct.
1209  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1210      HasPadding(AI->getType()->getElementType(), *TD))
1211    return 0;
1212
1213  // If we require cleanup, return 1, otherwise return 3.
1214  return Info.needsCleanup ? 1 : 3;
1215}
1216
1217/// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
1218/// is canonicalized here.
1219void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
1220  gep_type_iterator I = gep_type_begin(GEPI);
1221  ++I;
1222
1223  const ArrayType *AT = dyn_cast<ArrayType>(*I);
1224  if (!AT)
1225    return;
1226
1227  uint64_t NumElements = AT->getNumElements();
1228
1229  if (isa<ConstantInt>(I.getOperand()))
1230    return;
1231
1232  if (NumElements == 1) {
1233    GEPI->setOperand(2,
1234                  Constant::getNullValue(Type::getInt32Ty(GEPI->getContext())));
1235    return;
1236  }
1237
1238  assert(NumElements == 2 && "Unhandled case!");
1239  // All users of the GEP must be loads.  At each use of the GEP, insert
1240  // two loads of the appropriate indexed GEP and select between them.
1241  Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
1242                              Constant::getNullValue(I.getOperand()->getType()),
1243                              "isone");
1244  // Insert the new GEP instructions, which are properly indexed.
1245  SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1246  Indices[1] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
1247  Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1248                                             Indices.begin(),
1249                                             Indices.end(),
1250                                             GEPI->getName()+".0", GEPI);
1251  Indices[1] = ConstantInt::get(Type::getInt32Ty(GEPI->getContext()), 1);
1252  Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1253                                            Indices.begin(),
1254                                            Indices.end(),
1255                                            GEPI->getName()+".1", GEPI);
1256  // Replace all loads of the variable index GEP with loads from both
1257  // indexes and a select.
1258  while (!GEPI->use_empty()) {
1259    LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1260    Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1261    Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
1262    Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1263    LI->replaceAllUsesWith(R);
1264    LI->eraseFromParent();
1265  }
1266  GEPI->eraseFromParent();
1267}
1268
1269
1270/// CleanupAllocaUsers - If SROA reported that it can promote the specified
1271/// allocation, but only if cleaned up, perform the cleanups required.
1272void SROA::CleanupAllocaUsers(AllocaInst *AI) {
1273  // At this point, we know that the end result will be SROA'd and promoted, so
1274  // we can insert ugly code if required so long as sroa+mem2reg will clean it
1275  // up.
1276  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1277       UI != E; ) {
1278    User *U = *UI++;
1279    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
1280      CleanupGEP(GEPI);
1281    else {
1282      Instruction *I = cast<Instruction>(U);
1283      SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1284      if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1285        // Safe to remove debug info uses.
1286        while (!DbgInUses.empty()) {
1287          DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1288          DI->eraseFromParent();
1289        }
1290        I->eraseFromParent();
1291      }
1292    }
1293  }
1294}
1295
1296/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1297/// the offset specified by Offset (which is specified in bytes).
1298///
1299/// There are two cases we handle here:
1300///   1) A union of vector types of the same size and potentially its elements.
1301///      Here we turn element accesses into insert/extract element operations.
1302///      This promotes a <4 x float> with a store of float to the third element
1303///      into a <4 x float> that uses insert element.
1304///   2) A fully general blob of memory, which we turn into some (potentially
1305///      large) integer type with extract and insert operations where the loads
1306///      and stores would mutate the memory.
1307static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1308                        unsigned AllocaSize, const TargetData &TD,
1309                        LLVMContext &Context) {
1310  // If this could be contributing to a vector, analyze it.
1311  if (VecTy != Type::getVoidTy(Context)) { // either null or a vector type.
1312
1313    // If the In type is a vector that is the same size as the alloca, see if it
1314    // matches the existing VecTy.
1315    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1316      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1317        // If we're storing/loading a vector of the right size, allow it as a
1318        // vector.  If this the first vector we see, remember the type so that
1319        // we know the element size.
1320        if (VecTy == 0)
1321          VecTy = VInTy;
1322        return;
1323      }
1324    } else if (In->isFloatTy() || In->isDoubleTy() ||
1325               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1326                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1327      // If we're accessing something that could be an element of a vector, see
1328      // if the implied vector agrees with what we already have and if Offset is
1329      // compatible with it.
1330      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1331      if (Offset % EltSize == 0 &&
1332          AllocaSize % EltSize == 0 &&
1333          (VecTy == 0 ||
1334           cast<VectorType>(VecTy)->getElementType()
1335                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1336        if (VecTy == 0)
1337          VecTy = VectorType::get(In, AllocaSize/EltSize);
1338        return;
1339      }
1340    }
1341  }
1342
1343  // Otherwise, we have a case that we can't handle with an optimized vector
1344  // form.  We can still turn this into a large integer.
1345  VecTy = Type::getVoidTy(Context);
1346}
1347
1348/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1349/// its accesses to use a to single vector type, return true, and set VecTy to
1350/// the new type.  If we could convert the alloca into a single promotable
1351/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
1352/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
1353/// is the current offset from the base of the alloca being analyzed.
1354///
1355/// If we see at least one access to the value that is as a vector type, set the
1356/// SawVec flag.
1357///
1358bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1359                              bool &SawVec, uint64_t Offset,
1360                              unsigned AllocaSize) {
1361  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1362    Instruction *User = cast<Instruction>(*UI);
1363
1364    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1365      // Don't break volatile loads.
1366      if (LI->isVolatile())
1367        return false;
1368      MergeInType(LI->getType(), Offset, VecTy,
1369                  AllocaSize, *TD, V->getContext());
1370      SawVec |= isa<VectorType>(LI->getType());
1371      continue;
1372    }
1373
1374    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1375      // Storing the pointer, not into the value?
1376      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1377      MergeInType(SI->getOperand(0)->getType(), Offset,
1378                  VecTy, AllocaSize, *TD, V->getContext());
1379      SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1380      continue;
1381    }
1382
1383    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1384      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1385                              AllocaSize))
1386        return false;
1387      IsNotTrivial = true;
1388      continue;
1389    }
1390
1391    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1392      // If this is a GEP with a variable indices, we can't handle it.
1393      if (!GEP->hasAllConstantIndices())
1394        return false;
1395
1396      // Compute the offset that this GEP adds to the pointer.
1397      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1398      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1399                                                &Indices[0], Indices.size());
1400      // See if all uses can be converted.
1401      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1402                              AllocaSize))
1403        return false;
1404      IsNotTrivial = true;
1405      continue;
1406    }
1407
1408    // If this is a constant sized memset of a constant value (e.g. 0) we can
1409    // handle it.
1410    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1411      // Store of constant value and constant size.
1412      if (isa<ConstantInt>(MSI->getValue()) &&
1413          isa<ConstantInt>(MSI->getLength())) {
1414        IsNotTrivial = true;
1415        continue;
1416      }
1417    }
1418
1419    // If this is a memcpy or memmove into or out of the whole allocation, we
1420    // can handle it like a load or store of the scalar type.
1421    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1422      if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
1423        if (Len->getZExtValue() == AllocaSize && Offset == 0) {
1424          IsNotTrivial = true;
1425          continue;
1426        }
1427    }
1428
1429    // Ignore dbg intrinsic.
1430    if (isa<DbgInfoIntrinsic>(User))
1431      continue;
1432
1433    // Otherwise, we cannot handle this!
1434    return false;
1435  }
1436
1437  return true;
1438}
1439
1440
1441/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1442/// directly.  This happens when we are converting an "integer union" to a
1443/// single integer scalar, or when we are converting a "vector union" to a
1444/// vector with insert/extractelement instructions.
1445///
1446/// Offset is an offset from the original alloca, in bits that need to be
1447/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1448void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1449  while (!Ptr->use_empty()) {
1450    Instruction *User = cast<Instruction>(Ptr->use_back());
1451
1452    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1453      ConvertUsesToScalar(CI, NewAI, Offset);
1454      CI->eraseFromParent();
1455      continue;
1456    }
1457
1458    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1459      // Compute the offset that this GEP adds to the pointer.
1460      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1461      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1462                                                &Indices[0], Indices.size());
1463      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1464      GEP->eraseFromParent();
1465      continue;
1466    }
1467
1468    IRBuilder<> Builder(User->getParent(), User);
1469
1470    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1471      // The load is a bit extract from NewAI shifted right by Offset bits.
1472      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1473      Value *NewLoadVal
1474        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1475      LI->replaceAllUsesWith(NewLoadVal);
1476      LI->eraseFromParent();
1477      continue;
1478    }
1479
1480    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1481      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1482      // FIXME: Remove once builder has Twine API.
1483      Value *Old = Builder.CreateLoad(NewAI,
1484                                      (NewAI->getName()+".in").str().c_str());
1485      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1486                                             Builder);
1487      Builder.CreateStore(New, NewAI);
1488      SI->eraseFromParent();
1489      continue;
1490    }
1491
1492    // If this is a constant sized memset of a constant value (e.g. 0) we can
1493    // transform it into a store of the expanded constant value.
1494    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1495      assert(MSI->getRawDest() == Ptr && "Consistency error!");
1496      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1497      if (NumBytes != 0) {
1498        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1499
1500        // Compute the value replicated the right number of times.
1501        APInt APVal(NumBytes*8, Val);
1502
1503        // Splat the value if non-zero.
1504        if (Val)
1505          for (unsigned i = 1; i != NumBytes; ++i)
1506            APVal |= APVal << 8;
1507
1508        // FIXME: Remove once builder has Twine API.
1509        Value *Old = Builder.CreateLoad(NewAI,
1510                                        (NewAI->getName()+".in").str().c_str());
1511        Value *New = ConvertScalar_InsertValue(
1512                                    ConstantInt::get(User->getContext(), APVal),
1513                                               Old, Offset, Builder);
1514        Builder.CreateStore(New, NewAI);
1515      }
1516      MSI->eraseFromParent();
1517      continue;
1518    }
1519
1520    // If this is a memcpy or memmove into or out of the whole allocation, we
1521    // can handle it like a load or store of the scalar type.
1522    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1523      assert(Offset == 0 && "must be store to start of alloca");
1524
1525      // If the source and destination are both to the same alloca, then this is
1526      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
1527      // as appropriate.
1528      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
1529
1530      if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
1531        // Dest must be OrigAI, change this to be a load from the original
1532        // pointer (bitcasted), then a store to our new alloca.
1533        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
1534        Value *SrcPtr = MTI->getSource();
1535        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
1536
1537        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
1538        SrcVal->setAlignment(MTI->getAlignment());
1539        Builder.CreateStore(SrcVal, NewAI);
1540      } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
1541        // Src must be OrigAI, change this to be a load from NewAI then a store
1542        // through the original dest pointer (bitcasted).
1543        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
1544        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
1545
1546        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
1547        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
1548        NewStore->setAlignment(MTI->getAlignment());
1549      } else {
1550        // Noop transfer. Src == Dst
1551      }
1552
1553
1554      MTI->eraseFromParent();
1555      continue;
1556    }
1557
1558    // If user is a dbg info intrinsic then it is safe to remove it.
1559    if (isa<DbgInfoIntrinsic>(User)) {
1560      User->eraseFromParent();
1561      continue;
1562    }
1563
1564    llvm_unreachable("Unsupported operation!");
1565  }
1566}
1567
1568/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1569/// or vector value FromVal, extracting the bits from the offset specified by
1570/// Offset.  This returns the value, which is of type ToType.
1571///
1572/// This happens when we are converting an "integer union" to a single
1573/// integer scalar, or when we are converting a "vector union" to a vector with
1574/// insert/extractelement instructions.
1575///
1576/// Offset is an offset from the original alloca, in bits that need to be
1577/// shifted to the right.
1578Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1579                                        uint64_t Offset, IRBuilder<> &Builder) {
1580  // If the load is of the whole new alloca, no conversion is needed.
1581  if (FromVal->getType() == ToType && Offset == 0)
1582    return FromVal;
1583
1584  // If the result alloca is a vector type, this is either an element
1585  // access or a bitcast to another vector type of the same size.
1586  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1587    if (isa<VectorType>(ToType))
1588      return Builder.CreateBitCast(FromVal, ToType, "tmp");
1589
1590    // Otherwise it must be an element access.
1591    unsigned Elt = 0;
1592    if (Offset) {
1593      unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1594      Elt = Offset/EltSize;
1595      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1596    }
1597    // Return the element extracted out of it.
1598    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
1599                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
1600    if (V->getType() != ToType)
1601      V = Builder.CreateBitCast(V, ToType, "tmp");
1602    return V;
1603  }
1604
1605  // If ToType is a first class aggregate, extract out each of the pieces and
1606  // use insertvalue's to form the FCA.
1607  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1608    const StructLayout &Layout = *TD->getStructLayout(ST);
1609    Value *Res = UndefValue::get(ST);
1610    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1611      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1612                                        Offset+Layout.getElementOffsetInBits(i),
1613                                              Builder);
1614      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1615    }
1616    return Res;
1617  }
1618
1619  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1620    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1621    Value *Res = UndefValue::get(AT);
1622    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1623      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1624                                              Offset+i*EltSize, Builder);
1625      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1626    }
1627    return Res;
1628  }
1629
1630  // Otherwise, this must be a union that was converted to an integer value.
1631  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1632
1633  // If this is a big-endian system and the load is narrower than the
1634  // full alloca type, we need to do a shift to get the right bits.
1635  int ShAmt = 0;
1636  if (TD->isBigEndian()) {
1637    // On big-endian machines, the lowest bit is stored at the bit offset
1638    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1639    // integers with a bitwidth that is not a multiple of 8.
1640    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1641            TD->getTypeStoreSizeInBits(ToType) - Offset;
1642  } else {
1643    ShAmt = Offset;
1644  }
1645
1646  // Note: we support negative bitwidths (with shl) which are not defined.
1647  // We do this to support (f.e.) loads off the end of a structure where
1648  // only some bits are used.
1649  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1650    FromVal = Builder.CreateLShr(FromVal,
1651                                 ConstantInt::get(FromVal->getType(),
1652                                                           ShAmt), "tmp");
1653  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1654    FromVal = Builder.CreateShl(FromVal,
1655                                ConstantInt::get(FromVal->getType(),
1656                                                          -ShAmt), "tmp");
1657
1658  // Finally, unconditionally truncate the integer to the right width.
1659  unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1660  if (LIBitWidth < NTy->getBitWidth())
1661    FromVal =
1662      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
1663                                                    LIBitWidth), "tmp");
1664  else if (LIBitWidth > NTy->getBitWidth())
1665    FromVal =
1666       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
1667                                                    LIBitWidth), "tmp");
1668
1669  // If the result is an integer, this is a trunc or bitcast.
1670  if (isa<IntegerType>(ToType)) {
1671    // Should be done.
1672  } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1673    // Just do a bitcast, we know the sizes match up.
1674    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1675  } else {
1676    // Otherwise must be a pointer.
1677    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1678  }
1679  assert(FromVal->getType() == ToType && "Didn't convert right?");
1680  return FromVal;
1681}
1682
1683
1684/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1685/// or vector value "Old" at the offset specified by Offset.
1686///
1687/// This happens when we are converting an "integer union" to a
1688/// single integer scalar, or when we are converting a "vector union" to a
1689/// vector with insert/extractelement instructions.
1690///
1691/// Offset is an offset from the original alloca, in bits that need to be
1692/// shifted to the right.
1693Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1694                                       uint64_t Offset, IRBuilder<> &Builder) {
1695
1696  // Convert the stored type to the actual type, shift it left to insert
1697  // then 'or' into place.
1698  const Type *AllocaType = Old->getType();
1699  LLVMContext &Context = Old->getContext();
1700
1701  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1702    uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
1703    uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
1704
1705    // Changing the whole vector with memset or with an access of a different
1706    // vector type?
1707    if (ValSize == VecSize)
1708      return Builder.CreateBitCast(SV, AllocaType, "tmp");
1709
1710    uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1711
1712    // Must be an element insertion.
1713    unsigned Elt = Offset/EltSize;
1714
1715    if (SV->getType() != VTy->getElementType())
1716      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1717
1718    SV = Builder.CreateInsertElement(Old, SV,
1719                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
1720                                     "tmp");
1721    return SV;
1722  }
1723
1724  // If SV is a first-class aggregate value, insert each value recursively.
1725  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1726    const StructLayout &Layout = *TD->getStructLayout(ST);
1727    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1728      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1729      Old = ConvertScalar_InsertValue(Elt, Old,
1730                                      Offset+Layout.getElementOffsetInBits(i),
1731                                      Builder);
1732    }
1733    return Old;
1734  }
1735
1736  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1737    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1738    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1739      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1740      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1741    }
1742    return Old;
1743  }
1744
1745  // If SV is a float, convert it to the appropriate integer type.
1746  // If it is a pointer, do the same.
1747  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1748  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1749  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1750  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1751  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1752    SV = Builder.CreateBitCast(SV,
1753                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
1754  else if (isa<PointerType>(SV->getType()))
1755    SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(SV->getContext()), "tmp");
1756
1757  // Zero extend or truncate the value if needed.
1758  if (SV->getType() != AllocaType) {
1759    if (SV->getType()->getPrimitiveSizeInBits() <
1760             AllocaType->getPrimitiveSizeInBits())
1761      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1762    else {
1763      // Truncation may be needed if storing more than the alloca can hold
1764      // (undefined behavior).
1765      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1766      SrcWidth = DestWidth;
1767      SrcStoreWidth = DestStoreWidth;
1768    }
1769  }
1770
1771  // If this is a big-endian system and the store is narrower than the
1772  // full alloca type, we need to do a shift to get the right bits.
1773  int ShAmt = 0;
1774  if (TD->isBigEndian()) {
1775    // On big-endian machines, the lowest bit is stored at the bit offset
1776    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1777    // integers with a bitwidth that is not a multiple of 8.
1778    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1779  } else {
1780    ShAmt = Offset;
1781  }
1782
1783  // Note: we support negative bitwidths (with shr) which are not defined.
1784  // We do this to support (f.e.) stores off the end of a structure where
1785  // only some bits in the structure are set.
1786  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1787  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1788    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1789                           ShAmt), "tmp");
1790    Mask <<= ShAmt;
1791  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1792    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1793                            -ShAmt), "tmp");
1794    Mask = Mask.lshr(-ShAmt);
1795  }
1796
1797  // Mask out the bits we are about to insert from the old value, and or
1798  // in the new bits.
1799  if (SrcWidth != DestWidth) {
1800    assert(DestWidth > SrcWidth);
1801    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1802    SV = Builder.CreateOr(Old, SV, "ins");
1803  }
1804  return SV;
1805}
1806
1807
1808
1809/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1810/// some part of a constant global variable.  This intentionally only accepts
1811/// constant expressions because we don't can't rewrite arbitrary instructions.
1812static bool PointsToConstantGlobal(Value *V) {
1813  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1814    return GV->isConstant();
1815  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1816    if (CE->getOpcode() == Instruction::BitCast ||
1817        CE->getOpcode() == Instruction::GetElementPtr)
1818      return PointsToConstantGlobal(CE->getOperand(0));
1819  return false;
1820}
1821
1822/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1823/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1824/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1825/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1826/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1827/// the alloca, and if the source pointer is a pointer to a constant  global, we
1828/// can optimize this.
1829static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1830                                           bool isOffset) {
1831  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1832    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1833      // Ignore non-volatile loads, they are always ok.
1834      if (!LI->isVolatile())
1835        continue;
1836
1837    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1838      // If uses of the bitcast are ok, we are ok.
1839      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1840        return false;
1841      continue;
1842    }
1843    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1844      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1845      // doesn't, it does.
1846      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1847                                         isOffset || !GEP->hasAllZeroIndices()))
1848        return false;
1849      continue;
1850    }
1851
1852    // If this is isn't our memcpy/memmove, reject it as something we can't
1853    // handle.
1854    if (!isa<MemTransferInst>(*UI))
1855      return false;
1856
1857    // If we already have seen a copy, reject the second one.
1858    if (TheCopy) return false;
1859
1860    // If the pointer has been offset from the start of the alloca, we can't
1861    // safely handle this.
1862    if (isOffset) return false;
1863
1864    // If the memintrinsic isn't using the alloca as the dest, reject it.
1865    if (UI.getOperandNo() != 1) return false;
1866
1867    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1868
1869    // If the source of the memcpy/move is not a constant global, reject it.
1870    if (!PointsToConstantGlobal(MI->getOperand(2)))
1871      return false;
1872
1873    // Otherwise, the transform is safe.  Remember the copy instruction.
1874    TheCopy = MI;
1875  }
1876  return true;
1877}
1878
1879/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1880/// modified by a copy from a constant global.  If we can prove this, we can
1881/// replace any uses of the alloca with uses of the global directly.
1882Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1883  Instruction *TheCopy = 0;
1884  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1885    return TheCopy;
1886  return 0;
1887}
1888