BasicBlockUtils.cpp revision 0a205a459884ec745df1c529396dd921f029dafd
1//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform manipulations on basic blocks, and
11// instructions contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/BasicBlockUtils.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Constant.h"
21#include "llvm/Type.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Transforms/Utils/Local.h"
27#include "llvm/Support/ValueHandle.h"
28#include <algorithm>
29using namespace llvm;
30
31/// DeleteDeadBlock - Delete the specified block, which must have no
32/// predecessors.
33void llvm::DeleteDeadBlock(BasicBlock *BB) {
34  assert((pred_begin(BB) == pred_end(BB) ||
35         // Can delete self loop.
36         BB->getSinglePredecessor() == BB) && "Block is not dead!");
37  TerminatorInst *BBTerm = BB->getTerminator();
38
39  // Loop through all of our successors and make sure they know that one
40  // of their predecessors is going away.
41  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
42    BBTerm->getSuccessor(i)->removePredecessor(BB);
43
44  // Zap all the instructions in the block.
45  while (!BB->empty()) {
46    Instruction &I = BB->back();
47    // If this instruction is used, replace uses with an arbitrary value.
48    // Because control flow can't get here, we don't care what we replace the
49    // value with.  Note that since this block is unreachable, and all values
50    // contained within it must dominate their uses, that all uses will
51    // eventually be removed (they are themselves dead).
52    if (!I.use_empty())
53      I.replaceAllUsesWith(BB->getContext()->getUndef(I.getType()));
54    BB->getInstList().pop_back();
55  }
56
57  // Zap the block!
58  BB->eraseFromParent();
59}
60
61/// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
62/// any single-entry PHI nodes in it, fold them away.  This handles the case
63/// when all entries to the PHI nodes in a block are guaranteed equal, such as
64/// when the block has exactly one predecessor.
65void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
66  if (!isa<PHINode>(BB->begin()))
67    return;
68
69  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
70    if (PN->getIncomingValue(0) != PN)
71      PN->replaceAllUsesWith(PN->getIncomingValue(0));
72    else
73      PN->replaceAllUsesWith(BB->getContext()->getUndef(PN->getType()));
74    PN->eraseFromParent();
75  }
76}
77
78
79/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
80/// is dead. Also recursively delete any operands that become dead as
81/// a result. This includes tracing the def-use list from the PHI to see if
82/// it is ultimately unused or if it reaches an unused cycle.
83void llvm::DeleteDeadPHIs(BasicBlock *BB) {
84  // Recursively deleting a PHI may cause multiple PHIs to be deleted
85  // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
86  SmallVector<WeakVH, 8> PHIs;
87  for (BasicBlock::iterator I = BB->begin();
88       PHINode *PN = dyn_cast<PHINode>(I); ++I)
89    PHIs.push_back(PN);
90
91  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
92    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
93      RecursivelyDeleteDeadPHINode(PN);
94}
95
96/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
97/// if possible.  The return value indicates success or failure.
98bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
99  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
100  // Can't merge the entry block.
101  if (pred_begin(BB) == pred_end(BB)) return false;
102
103  BasicBlock *PredBB = *PI++;
104  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
105    if (*PI != PredBB) {
106      PredBB = 0;       // There are multiple different predecessors...
107      break;
108    }
109
110  // Can't merge if there are multiple predecessors.
111  if (!PredBB) return false;
112  // Don't break self-loops.
113  if (PredBB == BB) return false;
114  // Don't break invokes.
115  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
116
117  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
118  BasicBlock* OnlySucc = BB;
119  for (; SI != SE; ++SI)
120    if (*SI != OnlySucc) {
121      OnlySucc = 0;     // There are multiple distinct successors!
122      break;
123    }
124
125  // Can't merge if there are multiple successors.
126  if (!OnlySucc) return false;
127
128  // Can't merge if there is PHI loop.
129  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
130    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
131      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
132        if (PN->getIncomingValue(i) == PN)
133          return false;
134    } else
135      break;
136  }
137
138  // Begin by getting rid of unneeded PHIs.
139  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
140    PN->replaceAllUsesWith(PN->getIncomingValue(0));
141    BB->getInstList().pop_front();  // Delete the phi node...
142  }
143
144  // Delete the unconditional branch from the predecessor...
145  PredBB->getInstList().pop_back();
146
147  // Move all definitions in the successor to the predecessor...
148  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
149
150  // Make all PHI nodes that referred to BB now refer to Pred as their
151  // source...
152  BB->replaceAllUsesWith(PredBB);
153
154  // Inherit predecessors name if it exists.
155  if (!PredBB->hasName())
156    PredBB->takeName(BB);
157
158  // Finally, erase the old block and update dominator info.
159  if (P) {
160    if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) {
161      DomTreeNode* DTN = DT->getNode(BB);
162      DomTreeNode* PredDTN = DT->getNode(PredBB);
163
164      if (DTN) {
165        SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
166        for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
167             DE = Children.end(); DI != DE; ++DI)
168          DT->changeImmediateDominator(*DI, PredDTN);
169
170        DT->eraseNode(BB);
171      }
172    }
173  }
174
175  BB->eraseFromParent();
176
177
178  return true;
179}
180
181/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
182/// with a value, then remove and delete the original instruction.
183///
184void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
185                                BasicBlock::iterator &BI, Value *V) {
186  Instruction &I = *BI;
187  // Replaces all of the uses of the instruction with uses of the value
188  I.replaceAllUsesWith(V);
189
190  // Make sure to propagate a name if there is one already.
191  if (I.hasName() && !V->hasName())
192    V->takeName(&I);
193
194  // Delete the unnecessary instruction now...
195  BI = BIL.erase(BI);
196}
197
198
199/// ReplaceInstWithInst - Replace the instruction specified by BI with the
200/// instruction specified by I.  The original instruction is deleted and BI is
201/// updated to point to the new instruction.
202///
203void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
204                               BasicBlock::iterator &BI, Instruction *I) {
205  assert(I->getParent() == 0 &&
206         "ReplaceInstWithInst: Instruction already inserted into basic block!");
207
208  // Insert the new instruction into the basic block...
209  BasicBlock::iterator New = BIL.insert(BI, I);
210
211  // Replace all uses of the old instruction, and delete it.
212  ReplaceInstWithValue(BIL, BI, I);
213
214  // Move BI back to point to the newly inserted instruction
215  BI = New;
216}
217
218/// ReplaceInstWithInst - Replace the instruction specified by From with the
219/// instruction specified by To.
220///
221void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
222  BasicBlock::iterator BI(From);
223  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
224}
225
226/// RemoveSuccessor - Change the specified terminator instruction such that its
227/// successor SuccNum no longer exists.  Because this reduces the outgoing
228/// degree of the current basic block, the actual terminator instruction itself
229/// may have to be changed.  In the case where the last successor of the block
230/// is deleted, a return instruction is inserted in its place which can cause a
231/// surprising change in program behavior if it is not expected.
232///
233void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
234  assert(SuccNum < TI->getNumSuccessors() &&
235         "Trying to remove a nonexistant successor!");
236
237  // If our old successor block contains any PHI nodes, remove the entry in the
238  // PHI nodes that comes from this branch...
239  //
240  BasicBlock *BB = TI->getParent();
241  TI->getSuccessor(SuccNum)->removePredecessor(BB);
242
243  TerminatorInst *NewTI = 0;
244  switch (TI->getOpcode()) {
245  case Instruction::Br:
246    // If this is a conditional branch... convert to unconditional branch.
247    if (TI->getNumSuccessors() == 2) {
248      cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
249    } else {                    // Otherwise convert to a return instruction...
250      Value *RetVal = 0;
251
252      // Create a value to return... if the function doesn't return null...
253      if (BB->getParent()->getReturnType() != Type::VoidTy)
254        RetVal = TI->getParent()->getContext()->getNullValue(
255                   BB->getParent()->getReturnType());
256
257      // Create the return...
258      NewTI = ReturnInst::Create(RetVal);
259    }
260    break;
261
262  case Instruction::Invoke:    // Should convert to call
263  case Instruction::Switch:    // Should remove entry
264  default:
265  case Instruction::Ret:       // Cannot happen, has no successors!
266    assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
267    abort();
268  }
269
270  if (NewTI)   // If it's a different instruction, replace.
271    ReplaceInstWithInst(TI, NewTI);
272}
273
274/// SplitEdge -  Split the edge connecting specified block. Pass P must
275/// not be NULL.
276BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
277  TerminatorInst *LatchTerm = BB->getTerminator();
278  unsigned SuccNum = 0;
279#ifndef NDEBUG
280  unsigned e = LatchTerm->getNumSuccessors();
281#endif
282  for (unsigned i = 0; ; ++i) {
283    assert(i != e && "Didn't find edge?");
284    if (LatchTerm->getSuccessor(i) == Succ) {
285      SuccNum = i;
286      break;
287    }
288  }
289
290  // If this is a critical edge, let SplitCriticalEdge do it.
291  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
292    return LatchTerm->getSuccessor(SuccNum);
293
294  // If the edge isn't critical, then BB has a single successor or Succ has a
295  // single pred.  Split the block.
296  BasicBlock::iterator SplitPoint;
297  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
298    // If the successor only has a single pred, split the top of the successor
299    // block.
300    assert(SP == BB && "CFG broken");
301    SP = NULL;
302    return SplitBlock(Succ, Succ->begin(), P);
303  } else {
304    // Otherwise, if BB has a single successor, split it at the bottom of the
305    // block.
306    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
307           "Should have a single succ!");
308    return SplitBlock(BB, BB->getTerminator(), P);
309  }
310}
311
312/// SplitBlock - Split the specified block at the specified instruction - every
313/// thing before SplitPt stays in Old and everything starting with SplitPt moves
314/// to a new block.  The two blocks are joined by an unconditional branch and
315/// the loop info is updated.
316///
317BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
318  BasicBlock::iterator SplitIt = SplitPt;
319  while (isa<PHINode>(SplitIt))
320    ++SplitIt;
321  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
322
323  // The new block lives in whichever loop the old one did.
324  if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
325    if (Loop *L = LI->getLoopFor(Old))
326      L->addBasicBlockToLoop(New, LI->getBase());
327
328  if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>())
329    {
330      // Old dominates New. New node domiantes all other nodes dominated by Old.
331      DomTreeNode *OldNode = DT->getNode(Old);
332      std::vector<DomTreeNode *> Children;
333      for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
334           I != E; ++I)
335        Children.push_back(*I);
336
337      DomTreeNode *NewNode =   DT->addNewBlock(New,Old);
338
339      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
340             E = Children.end(); I != E; ++I)
341        DT->changeImmediateDominator(*I, NewNode);
342    }
343
344  if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
345    DF->splitBlock(Old);
346
347  return New;
348}
349
350
351/// SplitBlockPredecessors - This method transforms BB by introducing a new
352/// basic block into the function, and moving some of the predecessors of BB to
353/// be predecessors of the new block.  The new predecessors are indicated by the
354/// Preds array, which has NumPreds elements in it.  The new block is given a
355/// suffix of 'Suffix'.
356///
357/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
358/// DominanceFrontier, but no other analyses.
359BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
360                                         BasicBlock *const *Preds,
361                                         unsigned NumPreds, const char *Suffix,
362                                         Pass *P) {
363  // Create new basic block, insert right before the original block.
364  BasicBlock *NewBB =
365    BasicBlock::Create(BB->getName()+Suffix, BB->getParent(), BB);
366
367  // The new block unconditionally branches to the old block.
368  BranchInst *BI = BranchInst::Create(BB, NewBB);
369
370  // Move the edges from Preds to point to NewBB instead of BB.
371  for (unsigned i = 0; i != NumPreds; ++i)
372    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
373
374  // Update dominator tree and dominator frontier if available.
375  DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
376  if (DT)
377    DT->splitBlock(NewBB);
378  if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0)
379    DF->splitBlock(NewBB);
380  AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
381
382
383  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
384  // node becomes an incoming value for BB's phi node.  However, if the Preds
385  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
386  // account for the newly created predecessor.
387  if (NumPreds == 0) {
388    // Insert dummy values as the incoming value.
389    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
390      cast<PHINode>(I)->addIncoming(BB->getContext()->getUndef(I->getType()),
391                                    NewBB);
392    return NewBB;
393  }
394
395  // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
396  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
397    PHINode *PN = cast<PHINode>(I++);
398
399    // Check to see if all of the values coming in are the same.  If so, we
400    // don't need to create a new PHI node.
401    Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
402    for (unsigned i = 1; i != NumPreds; ++i)
403      if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
404        InVal = 0;
405        break;
406      }
407
408    if (InVal) {
409      // If all incoming values for the new PHI would be the same, just don't
410      // make a new PHI.  Instead, just remove the incoming values from the old
411      // PHI.
412      for (unsigned i = 0; i != NumPreds; ++i)
413        PN->removeIncomingValue(Preds[i], false);
414    } else {
415      // If the values coming into the block are not the same, we need a PHI.
416      // Create the new PHI node, insert it into NewBB at the end of the block
417      PHINode *NewPHI =
418        PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
419      if (AA) AA->copyValue(PN, NewPHI);
420
421      // Move all of the PHI values for 'Preds' to the new PHI.
422      for (unsigned i = 0; i != NumPreds; ++i) {
423        Value *V = PN->removeIncomingValue(Preds[i], false);
424        NewPHI->addIncoming(V, Preds[i]);
425      }
426      InVal = NewPHI;
427    }
428
429    // Add an incoming value to the PHI node in the loop for the preheader
430    // edge.
431    PN->addIncoming(InVal, NewBB);
432
433    // Check to see if we can eliminate this phi node.
434    if (Value *V = PN->hasConstantValue(DT != 0)) {
435      Instruction *I = dyn_cast<Instruction>(V);
436      if (!I || DT == 0 || DT->dominates(I, PN)) {
437        PN->replaceAllUsesWith(V);
438        if (AA) AA->deleteValue(PN);
439        PN->eraseFromParent();
440      }
441    }
442  }
443
444  return NewBB;
445}
446
447/// FindFunctionBackedges - Analyze the specified function to find all of the
448/// loop backedges in the function and return them.  This is a relatively cheap
449/// (compared to computing dominators and loop info) analysis.
450///
451/// The output is added to Result, as pairs of <from,to> edge info.
452void llvm::FindFunctionBackedges(const Function &F,
453     SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
454  const BasicBlock *BB = &F.getEntryBlock();
455  if (succ_begin(BB) == succ_end(BB))
456    return;
457
458  SmallPtrSet<const BasicBlock*, 8> Visited;
459  SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
460  SmallPtrSet<const BasicBlock*, 8> InStack;
461
462  Visited.insert(BB);
463  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
464  InStack.insert(BB);
465  do {
466    std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
467    const BasicBlock *ParentBB = Top.first;
468    succ_const_iterator &I = Top.second;
469
470    bool FoundNew = false;
471    while (I != succ_end(ParentBB)) {
472      BB = *I++;
473      if (Visited.insert(BB)) {
474        FoundNew = true;
475        break;
476      }
477      // Successor is in VisitStack, it's a back edge.
478      if (InStack.count(BB))
479        Result.push_back(std::make_pair(ParentBB, BB));
480    }
481
482    if (FoundNew) {
483      // Go down one level if there is a unvisited successor.
484      InStack.insert(BB);
485      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
486    } else {
487      // Go up one level.
488      InStack.erase(VisitStack.pop_back_val().first);
489    }
490  } while (!VisitStack.empty());
491
492
493}
494
495
496
497/// AreEquivalentAddressValues - Test if A and B will obviously have the same
498/// value. This includes recognizing that %t0 and %t1 will have the same
499/// value in code like this:
500///   %t0 = getelementptr \@a, 0, 3
501///   store i32 0, i32* %t0
502///   %t1 = getelementptr \@a, 0, 3
503///   %t2 = load i32* %t1
504///
505static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
506  // Test if the values are trivially equivalent.
507  if (A == B) return true;
508
509  // Test if the values come form identical arithmetic instructions.
510  if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
511      isa<PHINode>(A) || isa<GetElementPtrInst>(A))
512    if (const Instruction *BI = dyn_cast<Instruction>(B))
513      if (cast<Instruction>(A)->isIdenticalTo(BI))
514        return true;
515
516  // Otherwise they may not be equivalent.
517  return false;
518}
519
520/// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
521/// instruction before ScanFrom) checking to see if we have the value at the
522/// memory address *Ptr locally available within a small number of instructions.
523/// If the value is available, return it.
524///
525/// If not, return the iterator for the last validated instruction that the
526/// value would be live through.  If we scanned the entire block and didn't find
527/// something that invalidates *Ptr or provides it, ScanFrom would be left at
528/// begin() and this returns null.  ScanFrom could also be left
529///
530/// MaxInstsToScan specifies the maximum instructions to scan in the block.  If
531/// it is set to 0, it will scan the whole block. You can also optionally
532/// specify an alias analysis implementation, which makes this more precise.
533Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
534                                      BasicBlock::iterator &ScanFrom,
535                                      unsigned MaxInstsToScan,
536                                      AliasAnalysis *AA) {
537  if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
538
539  // If we're using alias analysis to disambiguate get the size of *Ptr.
540  unsigned AccessSize = 0;
541  if (AA) {
542    const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
543    AccessSize = AA->getTargetData().getTypeStoreSizeInBits(AccessTy);
544  }
545
546  while (ScanFrom != ScanBB->begin()) {
547    // We must ignore debug info directives when counting (otherwise they
548    // would affect codegen).
549    Instruction *Inst = --ScanFrom;
550    if (isa<DbgInfoIntrinsic>(Inst))
551      continue;
552    // We skip pointer-to-pointer bitcasts, which are NOPs.
553    // It is necessary for correctness to skip those that feed into a
554    // llvm.dbg.declare, as these are not present when debugging is off.
555    if (isa<BitCastInst>(Inst) && isa<PointerType>(Inst->getType()))
556      continue;
557
558    // Restore ScanFrom to expected value in case next test succeeds
559    ScanFrom++;
560
561    // Don't scan huge blocks.
562    if (MaxInstsToScan-- == 0) return 0;
563
564    --ScanFrom;
565    // If this is a load of Ptr, the loaded value is available.
566    if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
567      if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
568        return LI;
569
570    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
571      // If this is a store through Ptr, the value is available!
572      if (AreEquivalentAddressValues(SI->getOperand(1), Ptr))
573        return SI->getOperand(0);
574
575      // If Ptr is an alloca and this is a store to a different alloca, ignore
576      // the store.  This is a trivial form of alias analysis that is important
577      // for reg2mem'd code.
578      if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
579          (isa<AllocaInst>(SI->getOperand(1)) ||
580           isa<GlobalVariable>(SI->getOperand(1))))
581        continue;
582
583      // If we have alias analysis and it says the store won't modify the loaded
584      // value, ignore the store.
585      if (AA &&
586          (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
587        continue;
588
589      // Otherwise the store that may or may not alias the pointer, bail out.
590      ++ScanFrom;
591      return 0;
592    }
593
594    // If this is some other instruction that may clobber Ptr, bail out.
595    if (Inst->mayWriteToMemory()) {
596      // If alias analysis claims that it really won't modify the load,
597      // ignore it.
598      if (AA &&
599          (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
600        continue;
601
602      // May modify the pointer, bail out.
603      ++ScanFrom;
604      return 0;
605    }
606  }
607
608  // Got to the start of the block, we didn't find it, but are done for this
609  // block.
610  return 0;
611}
612
613/// CopyPrecedingStopPoint - If I is immediately preceded by a StopPoint,
614/// make a copy of the stoppoint before InsertPos (presumably before copying
615/// or moving I).
616void llvm::CopyPrecedingStopPoint(Instruction *I,
617                                  BasicBlock::iterator InsertPos) {
618  if (I != I->getParent()->begin()) {
619    BasicBlock::iterator BBI = I;  --BBI;
620    if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BBI)) {
621      CallInst *newDSPI = DSPI->clone();
622      newDSPI->insertBefore(InsertPos);
623    }
624  }
625}
626