BasicBlockUtils.cpp revision 3ecaf1b33940470d5bf554135778ba5a8bce9a79
1//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform manipulations on basic blocks, and
11// instructions contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/BasicBlockUtils.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
18#include "llvm/Constant.h"
19#include "llvm/Type.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/Analysis/Dominators.h"
23#include <algorithm>
24using namespace llvm;
25
26/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
27/// if possible.  The return value indicates success or failure.
28bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
29  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
30  // Can't merge the entry block.
31  if (pred_begin(BB) == pred_end(BB)) return false;
32
33  BasicBlock *PredBB = *PI++;
34  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
35    if (*PI != PredBB) {
36      PredBB = 0;       // There are multiple different predecessors...
37      break;
38    }
39
40  // Can't merge if there are multiple predecessors.
41  if (!PredBB) return false;
42  // Don't break self-loops.
43  if (PredBB == BB) return false;
44  // Don't break invokes.
45  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
46
47  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
48  BasicBlock* OnlySucc = BB;
49  for (; SI != SE; ++SI)
50    if (*SI != OnlySucc) {
51      OnlySucc = 0;     // There are multiple distinct successors!
52      break;
53    }
54
55  // Can't merge if there are multiple successors.
56  if (!OnlySucc) return false;
57
58  // Begin by getting rid of unneeded PHIs.
59  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
60    PN->replaceAllUsesWith(PN->getIncomingValue(0));
61    BB->getInstList().pop_front();  // Delete the phi node...
62  }
63
64  // Delete the unconditional branch from the predecessor...
65  PredBB->getInstList().pop_back();
66
67  // Move all definitions in the successor to the predecessor...
68  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
69
70  // Make all PHI nodes that referred to BB now refer to Pred as their
71  // source...
72  BB->replaceAllUsesWith(PredBB);
73
74  // Inherit predecessors name if it exists.
75  if (!PredBB->hasName())
76    PredBB->takeName(BB);
77
78  // Finally, erase the old block and update dominator info.
79  if (P) {
80    if (DominatorTree* DT = P->getAnalysisToUpdate<DominatorTree>()) {
81      DomTreeNode* DTN = DT->getNode(BB);
82      DomTreeNode* PredDTN = DT->getNode(PredBB);
83
84      if (DTN) {
85        SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
86        for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
87             DE = Children.end(); DI != DE; ++DI)
88          DT->changeImmediateDominator(*DI, PredDTN);
89
90        DT->eraseNode(BB);
91      }
92    }
93  }
94
95  BB->eraseFromParent();
96
97
98  return true;
99}
100
101/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
102/// with a value, then remove and delete the original instruction.
103///
104void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
105                                BasicBlock::iterator &BI, Value *V) {
106  Instruction &I = *BI;
107  // Replaces all of the uses of the instruction with uses of the value
108  I.replaceAllUsesWith(V);
109
110  // Make sure to propagate a name if there is one already.
111  if (I.hasName() && !V->hasName())
112    V->takeName(&I);
113
114  // Delete the unnecessary instruction now...
115  BI = BIL.erase(BI);
116}
117
118
119/// ReplaceInstWithInst - Replace the instruction specified by BI with the
120/// instruction specified by I.  The original instruction is deleted and BI is
121/// updated to point to the new instruction.
122///
123void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
124                               BasicBlock::iterator &BI, Instruction *I) {
125  assert(I->getParent() == 0 &&
126         "ReplaceInstWithInst: Instruction already inserted into basic block!");
127
128  // Insert the new instruction into the basic block...
129  BasicBlock::iterator New = BIL.insert(BI, I);
130
131  // Replace all uses of the old instruction, and delete it.
132  ReplaceInstWithValue(BIL, BI, I);
133
134  // Move BI back to point to the newly inserted instruction
135  BI = New;
136}
137
138/// ReplaceInstWithInst - Replace the instruction specified by From with the
139/// instruction specified by To.
140///
141void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
142  BasicBlock::iterator BI(From);
143  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
144}
145
146/// RemoveSuccessor - Change the specified terminator instruction such that its
147/// successor SuccNum no longer exists.  Because this reduces the outgoing
148/// degree of the current basic block, the actual terminator instruction itself
149/// may have to be changed.  In the case where the last successor of the block
150/// is deleted, a return instruction is inserted in its place which can cause a
151/// surprising change in program behavior if it is not expected.
152///
153void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
154  assert(SuccNum < TI->getNumSuccessors() &&
155         "Trying to remove a nonexistant successor!");
156
157  // If our old successor block contains any PHI nodes, remove the entry in the
158  // PHI nodes that comes from this branch...
159  //
160  BasicBlock *BB = TI->getParent();
161  TI->getSuccessor(SuccNum)->removePredecessor(BB);
162
163  TerminatorInst *NewTI = 0;
164  switch (TI->getOpcode()) {
165  case Instruction::Br:
166    // If this is a conditional branch... convert to unconditional branch.
167    if (TI->getNumSuccessors() == 2) {
168      cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
169    } else {                    // Otherwise convert to a return instruction...
170      Value *RetVal = 0;
171
172      // Create a value to return... if the function doesn't return null...
173      if (BB->getParent()->getReturnType() != Type::VoidTy)
174        RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
175
176      // Create the return...
177      NewTI = ReturnInst::Create(RetVal);
178    }
179    break;
180
181  case Instruction::Invoke:    // Should convert to call
182  case Instruction::Switch:    // Should remove entry
183  default:
184  case Instruction::Ret:       // Cannot happen, has no successors!
185    assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
186    abort();
187  }
188
189  if (NewTI)   // If it's a different instruction, replace.
190    ReplaceInstWithInst(TI, NewTI);
191}
192
193/// SplitEdge -  Split the edge connecting specified block. Pass P must
194/// not be NULL.
195BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
196  TerminatorInst *LatchTerm = BB->getTerminator();
197  unsigned SuccNum = 0;
198  for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
199    assert(i != e && "Didn't find edge?");
200    if (LatchTerm->getSuccessor(i) == Succ) {
201      SuccNum = i;
202      break;
203    }
204  }
205
206  // If this is a critical edge, let SplitCriticalEdge do it.
207  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
208    return LatchTerm->getSuccessor(SuccNum);
209
210  // If the edge isn't critical, then BB has a single successor or Succ has a
211  // single pred.  Split the block.
212  BasicBlock::iterator SplitPoint;
213  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
214    // If the successor only has a single pred, split the top of the successor
215    // block.
216    assert(SP == BB && "CFG broken");
217    return SplitBlock(Succ, Succ->begin(), P);
218  } else {
219    // Otherwise, if BB has a single successor, split it at the bottom of the
220    // block.
221    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
222           "Should have a single succ!");
223    return SplitBlock(BB, BB->getTerminator(), P);
224  }
225}
226
227/// SplitBlock - Split the specified block at the specified instruction - every
228/// thing before SplitPt stays in Old and everything starting with SplitPt moves
229/// to a new block.  The two blocks are joined by an unconditional branch and
230/// the loop info is updated.
231///
232BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
233
234  LoopInfo &LI = P->getAnalysis<LoopInfo>();
235  BasicBlock::iterator SplitIt = SplitPt;
236  while (isa<PHINode>(SplitIt))
237    ++SplitIt;
238  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
239
240  // The new block lives in whichever loop the old one did.
241  if (Loop *L = LI.getLoopFor(Old))
242    L->addBasicBlockToLoop(New, LI.getBase());
243
244  if (DominatorTree *DT = P->getAnalysisToUpdate<DominatorTree>())
245    {
246      // Old dominates New. New node domiantes all other nodes dominated by Old.
247      DomTreeNode *OldNode = DT->getNode(Old);
248      std::vector<DomTreeNode *> Children;
249      for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
250           I != E; ++I)
251        Children.push_back(*I);
252
253      DomTreeNode *NewNode =   DT->addNewBlock(New,Old);
254
255      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
256             E = Children.end(); I != E; ++I)
257        DT->changeImmediateDominator(*I, NewNode);
258    }
259
260  if (DominanceFrontier *DF = P->getAnalysisToUpdate<DominanceFrontier>())
261    DF->splitBlock(Old);
262
263  return New;
264}
265
266
267/// SplitBlockPredecessors - This method transforms BB by introducing a new
268/// basic block into the function, and moving some of the predecessors of BB to
269/// be predecessors of the new block.  The new predecessors are indicated by the
270/// Preds array, which has NumPreds elements in it.  The new block is given a
271/// suffix of 'Suffix'.
272///
273/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
274/// DominanceFrontier, but no other analyses.
275BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
276                                         BasicBlock *const *Preds,
277                                         unsigned NumPreds, const char *Suffix,
278                                         Pass *P) {
279  // Create new basic block, insert right before the original block.
280  BasicBlock *NewBB =
281    BasicBlock::Create(BB->getName()+Suffix, BB->getParent(), BB);
282
283  // The new block unconditionally branches to the old block.
284  BranchInst *BI = BranchInst::Create(BB, NewBB);
285
286  // Move the edges from Preds to point to NewBB instead of BB.
287  for (unsigned i = 0; i != NumPreds; ++i)
288    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
289
290  // Update dominator tree and dominator frontier if available.
291  DominatorTree *DT = P ? P->getAnalysisToUpdate<DominatorTree>() : 0;
292  if (DT)
293    DT->splitBlock(NewBB);
294  if (DominanceFrontier *DF = P ? P->getAnalysisToUpdate<DominanceFrontier>():0)
295    DF->splitBlock(NewBB);
296  AliasAnalysis *AA = P ? P->getAnalysisToUpdate<AliasAnalysis>() : 0;
297
298
299  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
300  // node becomes an incoming value for BB's phi node.  However, if the Preds
301  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
302  // account for the newly created predecessor.
303  if (NumPreds == 0) {
304    // Insert dummy values as the incoming value.
305    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
306      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
307    return NewBB;
308  }
309
310  // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
311  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
312    PHINode *PN = cast<PHINode>(I++);
313
314    // Check to see if all of the values coming in are the same.  If so, we
315    // don't need to create a new PHI node.
316    Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
317    for (unsigned i = 1; i != NumPreds; ++i)
318      if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
319        InVal = 0;
320        break;
321      }
322
323    if (InVal) {
324      // If all incoming values for the new PHI would be the same, just don't
325      // make a new PHI.  Instead, just remove the incoming values from the old
326      // PHI.
327      for (unsigned i = 0; i != NumPreds; ++i)
328        PN->removeIncomingValue(Preds[i], false);
329    } else {
330      // If the values coming into the block are not the same, we need a PHI.
331      // Create the new PHI node, insert it into NewBB at the end of the block
332      PHINode *NewPHI =
333        PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
334      if (AA) AA->copyValue(PN, NewPHI);
335
336      // Move all of the PHI values for 'Preds' to the new PHI.
337      for (unsigned i = 0; i != NumPreds; ++i) {
338        Value *V = PN->removeIncomingValue(Preds[i], false);
339        NewPHI->addIncoming(V, Preds[i]);
340      }
341      InVal = NewPHI;
342    }
343
344    // Add an incoming value to the PHI node in the loop for the preheader
345    // edge.
346    PN->addIncoming(InVal, NewBB);
347
348    // Check to see if we can eliminate this phi node.
349    if (Value *V = PN->hasConstantValue(DT != 0)) {
350      Instruction *I = dyn_cast<Instruction>(V);
351      if (!I || DT == 0 || DT->dominates(I, PN)) {
352        PN->replaceAllUsesWith(V);
353        if (AA) AA->deleteValue(PN);
354        PN->eraseFromParent();
355      }
356    }
357  }
358
359  return NewBB;
360}
361