BasicBlockUtils.cpp revision 4aebaee0e40f2457f1a6588679655a3c600a553b
1//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform manipulations on basic blocks, and
11// instructions contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/BasicBlockUtils.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
18#include "llvm/Constant.h"
19#include "llvm/Type.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Target/TargetData.h"
24#include <algorithm>
25using namespace llvm;
26
27/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
28/// if possible.  The return value indicates success or failure.
29bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
30  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
31  // Can't merge the entry block.
32  if (pred_begin(BB) == pred_end(BB)) return false;
33
34  BasicBlock *PredBB = *PI++;
35  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
36    if (*PI != PredBB) {
37      PredBB = 0;       // There are multiple different predecessors...
38      break;
39    }
40
41  // Can't merge if there are multiple predecessors.
42  if (!PredBB) return false;
43  // Don't break self-loops.
44  if (PredBB == BB) return false;
45  // Don't break invokes.
46  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
47
48  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
49  BasicBlock* OnlySucc = BB;
50  for (; SI != SE; ++SI)
51    if (*SI != OnlySucc) {
52      OnlySucc = 0;     // There are multiple distinct successors!
53      break;
54    }
55
56  // Can't merge if there are multiple successors.
57  if (!OnlySucc) return false;
58
59  // Can't merge if there is PHI loop.
60  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
61    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
62      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
63        if (PN->getIncomingValue(i) == PN)
64          return false;
65    } else
66      break;
67  }
68
69  // Begin by getting rid of unneeded PHIs.
70  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
71    PN->replaceAllUsesWith(PN->getIncomingValue(0));
72    BB->getInstList().pop_front();  // Delete the phi node...
73  }
74
75  // Delete the unconditional branch from the predecessor...
76  PredBB->getInstList().pop_back();
77
78  // Move all definitions in the successor to the predecessor...
79  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
80
81  // Make all PHI nodes that referred to BB now refer to Pred as their
82  // source...
83  BB->replaceAllUsesWith(PredBB);
84
85  // Inherit predecessors name if it exists.
86  if (!PredBB->hasName())
87    PredBB->takeName(BB);
88
89  // Finally, erase the old block and update dominator info.
90  if (P) {
91    if (DominatorTree* DT = P->getAnalysisToUpdate<DominatorTree>()) {
92      DomTreeNode* DTN = DT->getNode(BB);
93      DomTreeNode* PredDTN = DT->getNode(PredBB);
94
95      if (DTN) {
96        SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
97        for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
98             DE = Children.end(); DI != DE; ++DI)
99          DT->changeImmediateDominator(*DI, PredDTN);
100
101        DT->eraseNode(BB);
102      }
103    }
104  }
105
106  BB->eraseFromParent();
107
108
109  return true;
110}
111
112/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
113/// with a value, then remove and delete the original instruction.
114///
115void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
116                                BasicBlock::iterator &BI, Value *V) {
117  Instruction &I = *BI;
118  // Replaces all of the uses of the instruction with uses of the value
119  I.replaceAllUsesWith(V);
120
121  // Make sure to propagate a name if there is one already.
122  if (I.hasName() && !V->hasName())
123    V->takeName(&I);
124
125  // Delete the unnecessary instruction now...
126  BI = BIL.erase(BI);
127}
128
129
130/// ReplaceInstWithInst - Replace the instruction specified by BI with the
131/// instruction specified by I.  The original instruction is deleted and BI is
132/// updated to point to the new instruction.
133///
134void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
135                               BasicBlock::iterator &BI, Instruction *I) {
136  assert(I->getParent() == 0 &&
137         "ReplaceInstWithInst: Instruction already inserted into basic block!");
138
139  // Insert the new instruction into the basic block...
140  BasicBlock::iterator New = BIL.insert(BI, I);
141
142  // Replace all uses of the old instruction, and delete it.
143  ReplaceInstWithValue(BIL, BI, I);
144
145  // Move BI back to point to the newly inserted instruction
146  BI = New;
147}
148
149/// ReplaceInstWithInst - Replace the instruction specified by From with the
150/// instruction specified by To.
151///
152void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
153  BasicBlock::iterator BI(From);
154  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
155}
156
157/// RemoveSuccessor - Change the specified terminator instruction such that its
158/// successor SuccNum no longer exists.  Because this reduces the outgoing
159/// degree of the current basic block, the actual terminator instruction itself
160/// may have to be changed.  In the case where the last successor of the block
161/// is deleted, a return instruction is inserted in its place which can cause a
162/// surprising change in program behavior if it is not expected.
163///
164void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
165  assert(SuccNum < TI->getNumSuccessors() &&
166         "Trying to remove a nonexistant successor!");
167
168  // If our old successor block contains any PHI nodes, remove the entry in the
169  // PHI nodes that comes from this branch...
170  //
171  BasicBlock *BB = TI->getParent();
172  TI->getSuccessor(SuccNum)->removePredecessor(BB);
173
174  TerminatorInst *NewTI = 0;
175  switch (TI->getOpcode()) {
176  case Instruction::Br:
177    // If this is a conditional branch... convert to unconditional branch.
178    if (TI->getNumSuccessors() == 2) {
179      cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
180    } else {                    // Otherwise convert to a return instruction...
181      Value *RetVal = 0;
182
183      // Create a value to return... if the function doesn't return null...
184      if (BB->getParent()->getReturnType() != Type::VoidTy)
185        RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
186
187      // Create the return...
188      NewTI = ReturnInst::Create(RetVal);
189    }
190    break;
191
192  case Instruction::Invoke:    // Should convert to call
193  case Instruction::Switch:    // Should remove entry
194  default:
195  case Instruction::Ret:       // Cannot happen, has no successors!
196    assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
197    abort();
198  }
199
200  if (NewTI)   // If it's a different instruction, replace.
201    ReplaceInstWithInst(TI, NewTI);
202}
203
204/// SplitEdge -  Split the edge connecting specified block. Pass P must
205/// not be NULL.
206BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
207  TerminatorInst *LatchTerm = BB->getTerminator();
208  unsigned SuccNum = 0;
209#ifndef NDEBUG
210  unsigned e = LatchTerm->getNumSuccessors();
211#endif
212  for (unsigned i = 0; ; ++i) {
213    assert(i != e && "Didn't find edge?");
214    if (LatchTerm->getSuccessor(i) == Succ) {
215      SuccNum = i;
216      break;
217    }
218  }
219
220  // If this is a critical edge, let SplitCriticalEdge do it.
221  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
222    return LatchTerm->getSuccessor(SuccNum);
223
224  // If the edge isn't critical, then BB has a single successor or Succ has a
225  // single pred.  Split the block.
226  BasicBlock::iterator SplitPoint;
227  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
228    // If the successor only has a single pred, split the top of the successor
229    // block.
230    assert(SP == BB && "CFG broken");
231    SP = NULL;
232    return SplitBlock(Succ, Succ->begin(), P);
233  } else {
234    // Otherwise, if BB has a single successor, split it at the bottom of the
235    // block.
236    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
237           "Should have a single succ!");
238    return SplitBlock(BB, BB->getTerminator(), P);
239  }
240}
241
242/// SplitBlock - Split the specified block at the specified instruction - every
243/// thing before SplitPt stays in Old and everything starting with SplitPt moves
244/// to a new block.  The two blocks are joined by an unconditional branch and
245/// the loop info is updated.
246///
247BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
248  BasicBlock::iterator SplitIt = SplitPt;
249  while (isa<PHINode>(SplitIt))
250    ++SplitIt;
251  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
252
253  // The new block lives in whichever loop the old one did.
254  if (LoopInfo* LI = P->getAnalysisToUpdate<LoopInfo>())
255    if (Loop *L = LI->getLoopFor(Old))
256      L->addBasicBlockToLoop(New, LI->getBase());
257
258  if (DominatorTree *DT = P->getAnalysisToUpdate<DominatorTree>())
259    {
260      // Old dominates New. New node domiantes all other nodes dominated by Old.
261      DomTreeNode *OldNode = DT->getNode(Old);
262      std::vector<DomTreeNode *> Children;
263      for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
264           I != E; ++I)
265        Children.push_back(*I);
266
267      DomTreeNode *NewNode =   DT->addNewBlock(New,Old);
268
269      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
270             E = Children.end(); I != E; ++I)
271        DT->changeImmediateDominator(*I, NewNode);
272    }
273
274  if (DominanceFrontier *DF = P->getAnalysisToUpdate<DominanceFrontier>())
275    DF->splitBlock(Old);
276
277  return New;
278}
279
280
281/// SplitBlockPredecessors - This method transforms BB by introducing a new
282/// basic block into the function, and moving some of the predecessors of BB to
283/// be predecessors of the new block.  The new predecessors are indicated by the
284/// Preds array, which has NumPreds elements in it.  The new block is given a
285/// suffix of 'Suffix'.
286///
287/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
288/// DominanceFrontier, but no other analyses.
289BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
290                                         BasicBlock *const *Preds,
291                                         unsigned NumPreds, const char *Suffix,
292                                         Pass *P) {
293  // Create new basic block, insert right before the original block.
294  BasicBlock *NewBB =
295    BasicBlock::Create(BB->getName()+Suffix, BB->getParent(), BB);
296
297  // The new block unconditionally branches to the old block.
298  BranchInst *BI = BranchInst::Create(BB, NewBB);
299
300  // Move the edges from Preds to point to NewBB instead of BB.
301  for (unsigned i = 0; i != NumPreds; ++i)
302    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
303
304  // Update dominator tree and dominator frontier if available.
305  DominatorTree *DT = P ? P->getAnalysisToUpdate<DominatorTree>() : 0;
306  if (DT)
307    DT->splitBlock(NewBB);
308  if (DominanceFrontier *DF = P ? P->getAnalysisToUpdate<DominanceFrontier>():0)
309    DF->splitBlock(NewBB);
310  AliasAnalysis *AA = P ? P->getAnalysisToUpdate<AliasAnalysis>() : 0;
311
312
313  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
314  // node becomes an incoming value for BB's phi node.  However, if the Preds
315  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
316  // account for the newly created predecessor.
317  if (NumPreds == 0) {
318    // Insert dummy values as the incoming value.
319    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
320      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
321    return NewBB;
322  }
323
324  // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
325  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
326    PHINode *PN = cast<PHINode>(I++);
327
328    // Check to see if all of the values coming in are the same.  If so, we
329    // don't need to create a new PHI node.
330    Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
331    for (unsigned i = 1; i != NumPreds; ++i)
332      if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
333        InVal = 0;
334        break;
335      }
336
337    if (InVal) {
338      // If all incoming values for the new PHI would be the same, just don't
339      // make a new PHI.  Instead, just remove the incoming values from the old
340      // PHI.
341      for (unsigned i = 0; i != NumPreds; ++i)
342        PN->removeIncomingValue(Preds[i], false);
343    } else {
344      // If the values coming into the block are not the same, we need a PHI.
345      // Create the new PHI node, insert it into NewBB at the end of the block
346      PHINode *NewPHI =
347        PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
348      if (AA) AA->copyValue(PN, NewPHI);
349
350      // Move all of the PHI values for 'Preds' to the new PHI.
351      for (unsigned i = 0; i != NumPreds; ++i) {
352        Value *V = PN->removeIncomingValue(Preds[i], false);
353        NewPHI->addIncoming(V, Preds[i]);
354      }
355      InVal = NewPHI;
356    }
357
358    // Add an incoming value to the PHI node in the loop for the preheader
359    // edge.
360    PN->addIncoming(InVal, NewBB);
361
362    // Check to see if we can eliminate this phi node.
363    if (Value *V = PN->hasConstantValue(DT != 0)) {
364      Instruction *I = dyn_cast<Instruction>(V);
365      if (!I || DT == 0 || DT->dominates(I, PN)) {
366        PN->replaceAllUsesWith(V);
367        if (AA) AA->deleteValue(PN);
368        PN->eraseFromParent();
369      }
370    }
371  }
372
373  return NewBB;
374}
375
376/// AreEquivalentAddressValues - Test if A and B will obviously have the same
377/// value. This includes recognizing that %t0 and %t1 will have the same
378/// value in code like this:
379///   %t0 = getelementptr @a, 0, 3
380///   store i32 0, i32* %t0
381///   %t1 = getelementptr @a, 0, 3
382///   %t2 = load i32* %t1
383///
384static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
385  // Test if the values are trivially equivalent.
386  if (A == B) return true;
387
388  // Test if the values come form identical arithmetic instructions.
389  if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
390      isa<PHINode>(A) || isa<GetElementPtrInst>(A))
391    if (const Instruction *BI = dyn_cast<Instruction>(B))
392      if (cast<Instruction>(A)->isIdenticalTo(BI))
393        return true;
394
395  // Otherwise they may not be equivalent.
396  return false;
397}
398
399/// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
400/// instruction before ScanFrom) checking to see if we have the value at the
401/// memory address *Ptr locally available within a small number of instructions.
402/// If the value is available, return it.
403///
404/// If not, return the iterator for the last validated instruction that the
405/// value would be live through.  If we scanned the entire block and didn't find
406/// something that invalidates *Ptr or provides it, ScanFrom would be left at
407/// begin() and this returns null.  ScanFrom could also be left
408///
409/// MaxInstsToScan specifies the maximum instructions to scan in the block.  If
410/// it is set to 0, it will scan the whole block. You can also optionally
411/// specify an alias analysis implementation, which makes this more precise.
412Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
413                                      BasicBlock::iterator &ScanFrom,
414                                      unsigned MaxInstsToScan,
415                                      AliasAnalysis *AA) {
416  if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
417
418  // If we're using alias analysis to disambiguate get the size of *Ptr.
419  unsigned AccessSize = 0;
420  if (AA) {
421    const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
422    AccessSize = AA->getTargetData().getTypeStoreSizeInBits(AccessTy);
423  }
424
425  while (ScanFrom != ScanBB->begin()) {
426    // Don't scan huge blocks.
427    if (MaxInstsToScan-- == 0) return 0;
428
429    Instruction *Inst = --ScanFrom;
430
431    // If this is a load of Ptr, the loaded value is available.
432    if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
433      if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
434        return LI;
435
436    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
437      // If this is a store through Ptr, the value is available!
438      if (AreEquivalentAddressValues(SI->getOperand(1), Ptr))
439        return SI->getOperand(0);
440
441      // If Ptr is an alloca and this is a store to a different alloca, ignore
442      // the store.  This is a trivial form of alias analysis that is important
443      // for reg2mem'd code.
444      if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
445          (isa<AllocaInst>(SI->getOperand(1)) ||
446           isa<GlobalVariable>(SI->getOperand(1))))
447        continue;
448
449      // If we have alias analysis and it says the store won't modify the loaded
450      // value, ignore the store.
451      if (AA &&
452          (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
453        continue;
454
455      // Otherwise the store that may or may not alias the pointer, bail out.
456      ++ScanFrom;
457      return 0;
458    }
459
460    // If this is some other instruction that may clobber Ptr, bail out.
461    if (Inst->mayWriteToMemory()) {
462      // If alias analysis claims that it really won't modify the load,
463      // ignore it.
464      if (AA &&
465          (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
466        continue;
467
468      // May modify the pointer, bail out.
469      ++ScanFrom;
470      return 0;
471    }
472  }
473
474  // Got to the start of the block, we didn't find it, but are done for this
475  // block.
476  return 0;
477}
478