BasicBlockUtils.cpp revision 52c95856b4a40ccae6c4b0e13b2a04101e1f79c9
1//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform manipulations on basic blocks, and
11// instructions contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/BasicBlockUtils.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
18#include "llvm/Constant.h"
19#include "llvm/Type.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/Analysis/Dominators.h"
23#include <algorithm>
24using namespace llvm;
25
26/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
27/// if possible.  The return value indicates success or failure.
28bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
29  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
30  // Can't merge the entry block.
31  if (pred_begin(BB) == pred_end(BB)) return false;
32
33  BasicBlock *PredBB = *PI++;
34  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
35    if (*PI != PredBB) {
36      PredBB = 0;       // There are multiple different predecessors...
37      break;
38    }
39
40  // Can't merge if there are multiple predecessors.
41  if (!PredBB) return false;
42  // Don't break self-loops.
43  if (PredBB == BB) return false;
44  // Don't break invokes.
45  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
46
47  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
48  BasicBlock* OnlySucc = BB;
49  for (; SI != SE; ++SI)
50    if (*SI != OnlySucc) {
51      OnlySucc = 0;     // There are multiple distinct successors!
52      break;
53    }
54
55  // Can't merge if there are multiple successors.
56  if (!OnlySucc) return false;
57
58  // Can't merge if there is PHI loop.
59  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
60    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
61      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
62        if (PN->getIncomingValue(i) == PN)
63          return false;
64    } else
65      break;
66  }
67
68  // Begin by getting rid of unneeded PHIs.
69  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
70    PN->replaceAllUsesWith(PN->getIncomingValue(0));
71    BB->getInstList().pop_front();  // Delete the phi node...
72  }
73
74  // Delete the unconditional branch from the predecessor...
75  PredBB->getInstList().pop_back();
76
77  // Move all definitions in the successor to the predecessor...
78  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
79
80  // Make all PHI nodes that referred to BB now refer to Pred as their
81  // source...
82  BB->replaceAllUsesWith(PredBB);
83
84  // Inherit predecessors name if it exists.
85  if (!PredBB->hasName())
86    PredBB->takeName(BB);
87
88  // Finally, erase the old block and update dominator info.
89  if (P) {
90    if (DominatorTree* DT = P->getAnalysisToUpdate<DominatorTree>()) {
91      DomTreeNode* DTN = DT->getNode(BB);
92      DomTreeNode* PredDTN = DT->getNode(PredBB);
93
94      if (DTN) {
95        SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
96        for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
97             DE = Children.end(); DI != DE; ++DI)
98          DT->changeImmediateDominator(*DI, PredDTN);
99
100        DT->eraseNode(BB);
101      }
102    }
103  }
104
105  BB->eraseFromParent();
106
107
108  return true;
109}
110
111/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
112/// with a value, then remove and delete the original instruction.
113///
114void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
115                                BasicBlock::iterator &BI, Value *V) {
116  Instruction &I = *BI;
117  // Replaces all of the uses of the instruction with uses of the value
118  I.replaceAllUsesWith(V);
119
120  // Make sure to propagate a name if there is one already.
121  if (I.hasName() && !V->hasName())
122    V->takeName(&I);
123
124  // Delete the unnecessary instruction now...
125  BI = BIL.erase(BI);
126}
127
128
129/// ReplaceInstWithInst - Replace the instruction specified by BI with the
130/// instruction specified by I.  The original instruction is deleted and BI is
131/// updated to point to the new instruction.
132///
133void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
134                               BasicBlock::iterator &BI, Instruction *I) {
135  assert(I->getParent() == 0 &&
136         "ReplaceInstWithInst: Instruction already inserted into basic block!");
137
138  // Insert the new instruction into the basic block...
139  BasicBlock::iterator New = BIL.insert(BI, I);
140
141  // Replace all uses of the old instruction, and delete it.
142  ReplaceInstWithValue(BIL, BI, I);
143
144  // Move BI back to point to the newly inserted instruction
145  BI = New;
146}
147
148/// ReplaceInstWithInst - Replace the instruction specified by From with the
149/// instruction specified by To.
150///
151void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
152  BasicBlock::iterator BI(From);
153  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
154}
155
156/// RemoveSuccessor - Change the specified terminator instruction such that its
157/// successor SuccNum no longer exists.  Because this reduces the outgoing
158/// degree of the current basic block, the actual terminator instruction itself
159/// may have to be changed.  In the case where the last successor of the block
160/// is deleted, a return instruction is inserted in its place which can cause a
161/// surprising change in program behavior if it is not expected.
162///
163void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
164  assert(SuccNum < TI->getNumSuccessors() &&
165         "Trying to remove a nonexistant successor!");
166
167  // If our old successor block contains any PHI nodes, remove the entry in the
168  // PHI nodes that comes from this branch...
169  //
170  BasicBlock *BB = TI->getParent();
171  TI->getSuccessor(SuccNum)->removePredecessor(BB);
172
173  TerminatorInst *NewTI = 0;
174  switch (TI->getOpcode()) {
175  case Instruction::Br:
176    // If this is a conditional branch... convert to unconditional branch.
177    if (TI->getNumSuccessors() == 2) {
178      cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
179    } else {                    // Otherwise convert to a return instruction...
180      Value *RetVal = 0;
181
182      // Create a value to return... if the function doesn't return null...
183      if (BB->getParent()->getReturnType() != Type::VoidTy)
184        RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
185
186      // Create the return...
187      NewTI = ReturnInst::Create(RetVal);
188    }
189    break;
190
191  case Instruction::Invoke:    // Should convert to call
192  case Instruction::Switch:    // Should remove entry
193  default:
194  case Instruction::Ret:       // Cannot happen, has no successors!
195    assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
196    abort();
197  }
198
199  if (NewTI)   // If it's a different instruction, replace.
200    ReplaceInstWithInst(TI, NewTI);
201}
202
203/// SplitEdge -  Split the edge connecting specified block. Pass P must
204/// not be NULL.
205BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
206  TerminatorInst *LatchTerm = BB->getTerminator();
207  unsigned SuccNum = 0;
208#ifndef NDEBUG
209  unsigned e = LatchTerm->getNumSuccessors();
210#endif
211  for (unsigned i = 0; ; ++i) {
212    assert(i != e && "Didn't find edge?");
213    if (LatchTerm->getSuccessor(i) == Succ) {
214      SuccNum = i;
215      break;
216    }
217  }
218
219  // If this is a critical edge, let SplitCriticalEdge do it.
220  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
221    return LatchTerm->getSuccessor(SuccNum);
222
223  // If the edge isn't critical, then BB has a single successor or Succ has a
224  // single pred.  Split the block.
225  BasicBlock::iterator SplitPoint;
226  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
227    // If the successor only has a single pred, split the top of the successor
228    // block.
229    assert(SP == BB && "CFG broken");
230    SP = NULL;
231    return SplitBlock(Succ, Succ->begin(), P);
232  } else {
233    // Otherwise, if BB has a single successor, split it at the bottom of the
234    // block.
235    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
236           "Should have a single succ!");
237    return SplitBlock(BB, BB->getTerminator(), P);
238  }
239}
240
241/// SplitBlock - Split the specified block at the specified instruction - every
242/// thing before SplitPt stays in Old and everything starting with SplitPt moves
243/// to a new block.  The two blocks are joined by an unconditional branch and
244/// the loop info is updated.
245///
246BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
247  BasicBlock::iterator SplitIt = SplitPt;
248  while (isa<PHINode>(SplitIt))
249    ++SplitIt;
250  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
251
252  // The new block lives in whichever loop the old one did.
253  if (LoopInfo* LI = P->getAnalysisToUpdate<LoopInfo>())
254    if (Loop *L = LI->getLoopFor(Old))
255      L->addBasicBlockToLoop(New, LI->getBase());
256
257  if (DominatorTree *DT = P->getAnalysisToUpdate<DominatorTree>())
258    {
259      // Old dominates New. New node domiantes all other nodes dominated by Old.
260      DomTreeNode *OldNode = DT->getNode(Old);
261      std::vector<DomTreeNode *> Children;
262      for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
263           I != E; ++I)
264        Children.push_back(*I);
265
266      DomTreeNode *NewNode =   DT->addNewBlock(New,Old);
267
268      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
269             E = Children.end(); I != E; ++I)
270        DT->changeImmediateDominator(*I, NewNode);
271    }
272
273  if (DominanceFrontier *DF = P->getAnalysisToUpdate<DominanceFrontier>())
274    DF->splitBlock(Old);
275
276  return New;
277}
278
279
280/// SplitBlockPredecessors - This method transforms BB by introducing a new
281/// basic block into the function, and moving some of the predecessors of BB to
282/// be predecessors of the new block.  The new predecessors are indicated by the
283/// Preds array, which has NumPreds elements in it.  The new block is given a
284/// suffix of 'Suffix'.
285///
286/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
287/// DominanceFrontier, but no other analyses.
288BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
289                                         BasicBlock *const *Preds,
290                                         unsigned NumPreds, const char *Suffix,
291                                         Pass *P) {
292  // Create new basic block, insert right before the original block.
293  BasicBlock *NewBB =
294    BasicBlock::Create(BB->getName()+Suffix, BB->getParent(), BB);
295
296  // The new block unconditionally branches to the old block.
297  BranchInst *BI = BranchInst::Create(BB, NewBB);
298
299  // Move the edges from Preds to point to NewBB instead of BB.
300  for (unsigned i = 0; i != NumPreds; ++i)
301    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
302
303  // Update dominator tree and dominator frontier if available.
304  DominatorTree *DT = P ? P->getAnalysisToUpdate<DominatorTree>() : 0;
305  if (DT)
306    DT->splitBlock(NewBB);
307  if (DominanceFrontier *DF = P ? P->getAnalysisToUpdate<DominanceFrontier>():0)
308    DF->splitBlock(NewBB);
309  AliasAnalysis *AA = P ? P->getAnalysisToUpdate<AliasAnalysis>() : 0;
310
311
312  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
313  // node becomes an incoming value for BB's phi node.  However, if the Preds
314  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
315  // account for the newly created predecessor.
316  if (NumPreds == 0) {
317    // Insert dummy values as the incoming value.
318    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
319      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
320    return NewBB;
321  }
322
323  // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
324  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
325    PHINode *PN = cast<PHINode>(I++);
326
327    // Check to see if all of the values coming in are the same.  If so, we
328    // don't need to create a new PHI node.
329    Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
330    for (unsigned i = 1; i != NumPreds; ++i)
331      if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
332        InVal = 0;
333        break;
334      }
335
336    if (InVal) {
337      // If all incoming values for the new PHI would be the same, just don't
338      // make a new PHI.  Instead, just remove the incoming values from the old
339      // PHI.
340      for (unsigned i = 0; i != NumPreds; ++i)
341        PN->removeIncomingValue(Preds[i], false);
342    } else {
343      // If the values coming into the block are not the same, we need a PHI.
344      // Create the new PHI node, insert it into NewBB at the end of the block
345      PHINode *NewPHI =
346        PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
347      if (AA) AA->copyValue(PN, NewPHI);
348
349      // Move all of the PHI values for 'Preds' to the new PHI.
350      for (unsigned i = 0; i != NumPreds; ++i) {
351        Value *V = PN->removeIncomingValue(Preds[i], false);
352        NewPHI->addIncoming(V, Preds[i]);
353      }
354      InVal = NewPHI;
355    }
356
357    // Add an incoming value to the PHI node in the loop for the preheader
358    // edge.
359    PN->addIncoming(InVal, NewBB);
360
361    // Check to see if we can eliminate this phi node.
362    if (Value *V = PN->hasConstantValue(DT != 0)) {
363      Instruction *I = dyn_cast<Instruction>(V);
364      if (!I || DT == 0 || DT->dominates(I, PN)) {
365        PN->replaceAllUsesWith(V);
366        if (AA) AA->deleteValue(PN);
367        PN->eraseFromParent();
368      }
369    }
370  }
371
372  return NewBB;
373}
374
375/// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
376/// instruction before ScanFrom) checking to see if we have the value at the
377/// memory address *Ptr locally available within a small number of instructions.
378/// If the value is available, return it.
379///
380/// If not, return the iterator for the last validated instruction that the
381/// value would be live through.  If we scanned the entire block and didn't find
382/// something that invalidates *Ptr or provides it, ScanFrom would be left at
383/// begin() and this returns null.  ScanFrom could also be left
384///
385/// MaxInstsToScan specifies the maximum instructions to scan in the block.  If
386/// it is set to 0, it will scan the whole block. You can also optionally
387/// specify an alias analysis implementation, which makes this more precise.
388Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
389                                      BasicBlock::iterator &ScanFrom,
390                                      unsigned MaxInstsToScan,
391                                      AliasAnalysis *AA) {
392  if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
393
394  while (ScanFrom != ScanBB->begin()) {
395    // Don't scan huge blocks.
396    if (MaxInstsToScan-- == 0) return 0;
397
398    Instruction *Inst = --ScanFrom;
399
400    // If this is a load of Ptr, the loaded value is available.
401    if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
402      if (LI->getOperand(0) == Ptr)
403        return LI;
404
405    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
406      // If this is a store through Ptr, the value is available!
407      if (SI->getOperand(1) == Ptr)
408        return SI->getOperand(0);
409
410      // If Ptr is an alloca and this is a store to a different alloca, ignore
411      // the store.  This is a trivial form of alias analysis that is important
412      // for reg2mem'd code.
413      if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
414          (isa<AllocaInst>(SI->getOperand(1)) ||
415           isa<GlobalVariable>(SI->getOperand(1))))
416        continue;
417
418      // Otherwise the store that may or may not alias the pointer, bail out.
419      ++ScanFrom;
420      return 0;
421    }
422
423
424    // If this is some other instruction that may clobber Ptr, bail out.
425    if (Inst->mayWriteToMemory()) {
426      // May modify the pointer, bail out.
427      ++ScanFrom;
428      return 0;
429    }
430  }
431
432  // Got to the start of the block, we didn't find it, but are done for this
433  // block.
434  return 0;
435}
436