BasicBlockUtils.cpp revision 6776064d190701c5bae4d5403939eed2e480d1cd
1//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform manipulations on basic blocks, and
11// instructions contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/BasicBlockUtils.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Constant.h"
21#include "llvm/Type.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Transforms/Utils/Local.h"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/ValueHandle.h"
30#include <algorithm>
31using namespace llvm;
32
33/// DeleteDeadBlock - Delete the specified block, which must have no
34/// predecessors.
35void llvm::DeleteDeadBlock(BasicBlock *BB) {
36  assert((pred_begin(BB) == pred_end(BB) ||
37         // Can delete self loop.
38         BB->getSinglePredecessor() == BB) && "Block is not dead!");
39  TerminatorInst *BBTerm = BB->getTerminator();
40
41  // Loop through all of our successors and make sure they know that one
42  // of their predecessors is going away.
43  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
44    BBTerm->getSuccessor(i)->removePredecessor(BB);
45
46  // Zap all the instructions in the block.
47  while (!BB->empty()) {
48    Instruction &I = BB->back();
49    // If this instruction is used, replace uses with an arbitrary value.
50    // Because control flow can't get here, we don't care what we replace the
51    // value with.  Note that since this block is unreachable, and all values
52    // contained within it must dominate their uses, that all uses will
53    // eventually be removed (they are themselves dead).
54    if (!I.use_empty())
55      I.replaceAllUsesWith(UndefValue::get(I.getType()));
56    BB->getInstList().pop_back();
57  }
58
59  // Zap the block!
60  BB->eraseFromParent();
61}
62
63/// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
64/// any single-entry PHI nodes in it, fold them away.  This handles the case
65/// when all entries to the PHI nodes in a block are guaranteed equal, such as
66/// when the block has exactly one predecessor.
67void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
68  if (!isa<PHINode>(BB->begin()))
69    return;
70
71  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
72    if (PN->getIncomingValue(0) != PN)
73      PN->replaceAllUsesWith(PN->getIncomingValue(0));
74    else
75      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
76    PN->eraseFromParent();
77  }
78}
79
80
81/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
82/// is dead. Also recursively delete any operands that become dead as
83/// a result. This includes tracing the def-use list from the PHI to see if
84/// it is ultimately unused or if it reaches an unused cycle.
85void llvm::DeleteDeadPHIs(BasicBlock *BB) {
86  // Recursively deleting a PHI may cause multiple PHIs to be deleted
87  // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
88  SmallVector<WeakVH, 8> PHIs;
89  for (BasicBlock::iterator I = BB->begin();
90       PHINode *PN = dyn_cast<PHINode>(I); ++I)
91    PHIs.push_back(PN);
92
93  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
94    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
95      RecursivelyDeleteDeadPHINode(PN);
96}
97
98/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
99/// if possible.  The return value indicates success or failure.
100bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
101  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
102  // Can't merge the entry block.
103  if (pred_begin(BB) == pred_end(BB)) return false;
104
105  BasicBlock *PredBB = *PI++;
106  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
107    if (*PI != PredBB) {
108      PredBB = 0;       // There are multiple different predecessors...
109      break;
110    }
111
112  // Can't merge if there are multiple predecessors.
113  if (!PredBB) return false;
114  // Don't break self-loops.
115  if (PredBB == BB) return false;
116  // Don't break invokes.
117  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
118
119  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
120  BasicBlock* OnlySucc = BB;
121  for (; SI != SE; ++SI)
122    if (*SI != OnlySucc) {
123      OnlySucc = 0;     // There are multiple distinct successors!
124      break;
125    }
126
127  // Can't merge if there are multiple successors.
128  if (!OnlySucc) return false;
129
130  // Can't merge if there is PHI loop.
131  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
132    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
133      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
134        if (PN->getIncomingValue(i) == PN)
135          return false;
136    } else
137      break;
138  }
139
140  // Begin by getting rid of unneeded PHIs.
141  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
142    PN->replaceAllUsesWith(PN->getIncomingValue(0));
143    BB->getInstList().pop_front();  // Delete the phi node...
144  }
145
146  // Delete the unconditional branch from the predecessor...
147  PredBB->getInstList().pop_back();
148
149  // Move all definitions in the successor to the predecessor...
150  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
151
152  // Make all PHI nodes that referred to BB now refer to Pred as their
153  // source...
154  BB->replaceAllUsesWith(PredBB);
155
156  // Inherit predecessors name if it exists.
157  if (!PredBB->hasName())
158    PredBB->takeName(BB);
159
160  // Finally, erase the old block and update dominator info.
161  if (P) {
162    if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) {
163      DomTreeNode* DTN = DT->getNode(BB);
164      DomTreeNode* PredDTN = DT->getNode(PredBB);
165
166      if (DTN) {
167        SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
168        for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
169             DE = Children.end(); DI != DE; ++DI)
170          DT->changeImmediateDominator(*DI, PredDTN);
171
172        DT->eraseNode(BB);
173      }
174    }
175  }
176
177  BB->eraseFromParent();
178
179
180  return true;
181}
182
183/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
184/// with a value, then remove and delete the original instruction.
185///
186void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
187                                BasicBlock::iterator &BI, Value *V) {
188  Instruction &I = *BI;
189  // Replaces all of the uses of the instruction with uses of the value
190  I.replaceAllUsesWith(V);
191
192  // Make sure to propagate a name if there is one already.
193  if (I.hasName() && !V->hasName())
194    V->takeName(&I);
195
196  // Delete the unnecessary instruction now...
197  BI = BIL.erase(BI);
198}
199
200
201/// ReplaceInstWithInst - Replace the instruction specified by BI with the
202/// instruction specified by I.  The original instruction is deleted and BI is
203/// updated to point to the new instruction.
204///
205void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
206                               BasicBlock::iterator &BI, Instruction *I) {
207  assert(I->getParent() == 0 &&
208         "ReplaceInstWithInst: Instruction already inserted into basic block!");
209
210  // Insert the new instruction into the basic block...
211  BasicBlock::iterator New = BIL.insert(BI, I);
212
213  // Replace all uses of the old instruction, and delete it.
214  ReplaceInstWithValue(BIL, BI, I);
215
216  // Move BI back to point to the newly inserted instruction
217  BI = New;
218}
219
220/// ReplaceInstWithInst - Replace the instruction specified by From with the
221/// instruction specified by To.
222///
223void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
224  BasicBlock::iterator BI(From);
225  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
226}
227
228/// RemoveSuccessor - Change the specified terminator instruction such that its
229/// successor SuccNum no longer exists.  Because this reduces the outgoing
230/// degree of the current basic block, the actual terminator instruction itself
231/// may have to be changed.  In the case where the last successor of the block
232/// is deleted, a return instruction is inserted in its place which can cause a
233/// surprising change in program behavior if it is not expected.
234///
235void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
236  assert(SuccNum < TI->getNumSuccessors() &&
237         "Trying to remove a nonexistant successor!");
238
239  // If our old successor block contains any PHI nodes, remove the entry in the
240  // PHI nodes that comes from this branch...
241  //
242  BasicBlock *BB = TI->getParent();
243  TI->getSuccessor(SuccNum)->removePredecessor(BB);
244
245  TerminatorInst *NewTI = 0;
246  switch (TI->getOpcode()) {
247  case Instruction::Br:
248    // If this is a conditional branch... convert to unconditional branch.
249    if (TI->getNumSuccessors() == 2) {
250      cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
251    } else {                    // Otherwise convert to a return instruction...
252      Value *RetVal = 0;
253
254      // Create a value to return... if the function doesn't return null...
255      if (BB->getParent()->getReturnType() != Type::getVoidTy(TI->getContext()))
256        RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
257
258      // Create the return...
259      NewTI = ReturnInst::Create(TI->getContext(), RetVal);
260    }
261    break;
262
263  case Instruction::Invoke:    // Should convert to call
264  case Instruction::Switch:    // Should remove entry
265  default:
266  case Instruction::Ret:       // Cannot happen, has no successors!
267    llvm_unreachable("Unhandled terminator instruction type in RemoveSuccessor!");
268  }
269
270  if (NewTI)   // If it's a different instruction, replace.
271    ReplaceInstWithInst(TI, NewTI);
272}
273
274/// SplitEdge -  Split the edge connecting specified block. Pass P must
275/// not be NULL.
276BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
277  TerminatorInst *LatchTerm = BB->getTerminator();
278  unsigned SuccNum = 0;
279#ifndef NDEBUG
280  unsigned e = LatchTerm->getNumSuccessors();
281#endif
282  for (unsigned i = 0; ; ++i) {
283    assert(i != e && "Didn't find edge?");
284    if (LatchTerm->getSuccessor(i) == Succ) {
285      SuccNum = i;
286      break;
287    }
288  }
289
290  // If this is a critical edge, let SplitCriticalEdge do it.
291  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
292    return LatchTerm->getSuccessor(SuccNum);
293
294  // If the edge isn't critical, then BB has a single successor or Succ has a
295  // single pred.  Split the block.
296  BasicBlock::iterator SplitPoint;
297  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
298    // If the successor only has a single pred, split the top of the successor
299    // block.
300    assert(SP == BB && "CFG broken");
301    SP = NULL;
302    return SplitBlock(Succ, Succ->begin(), P);
303  } else {
304    // Otherwise, if BB has a single successor, split it at the bottom of the
305    // block.
306    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
307           "Should have a single succ!");
308    return SplitBlock(BB, BB->getTerminator(), P);
309  }
310}
311
312/// SplitBlock - Split the specified block at the specified instruction - every
313/// thing before SplitPt stays in Old and everything starting with SplitPt moves
314/// to a new block.  The two blocks are joined by an unconditional branch and
315/// the loop info is updated.
316///
317BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
318  BasicBlock::iterator SplitIt = SplitPt;
319  while (isa<PHINode>(SplitIt))
320    ++SplitIt;
321  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
322
323  // The new block lives in whichever loop the old one did. This preserves
324  // LCSSA as well, because we force the split point to be after any PHI nodes.
325  if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
326    if (Loop *L = LI->getLoopFor(Old))
327      L->addBasicBlockToLoop(New, LI->getBase());
328
329  if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>())
330    {
331      // Old dominates New. New node domiantes all other nodes dominated by Old.
332      DomTreeNode *OldNode = DT->getNode(Old);
333      std::vector<DomTreeNode *> Children;
334      for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
335           I != E; ++I)
336        Children.push_back(*I);
337
338      DomTreeNode *NewNode =   DT->addNewBlock(New,Old);
339
340      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
341             E = Children.end(); I != E; ++I)
342        DT->changeImmediateDominator(*I, NewNode);
343    }
344
345  if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
346    DF->splitBlock(Old);
347
348  return New;
349}
350
351
352/// SplitBlockPredecessors - This method transforms BB by introducing a new
353/// basic block into the function, and moving some of the predecessors of BB to
354/// be predecessors of the new block.  The new predecessors are indicated by the
355/// Preds array, which has NumPreds elements in it.  The new block is given a
356/// suffix of 'Suffix'.
357///
358/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
359/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
360/// In particular, it does not preserve LoopSimplify (because it's
361/// complicated to handle the case where one of the edges being split
362/// is an exit of a loop with other exits).
363///
364BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
365                                         BasicBlock *const *Preds,
366                                         unsigned NumPreds, const char *Suffix,
367                                         Pass *P) {
368  // Create new basic block, insert right before the original block.
369  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
370                                         BB->getParent(), BB);
371
372  // The new block unconditionally branches to the old block.
373  BranchInst *BI = BranchInst::Create(BB, NewBB);
374
375  LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
376  Loop *L = LI ? LI->getLoopFor(BB) : 0;
377  bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
378
379  // Move the edges from Preds to point to NewBB instead of BB.
380  // While here, if we need to preserve loop analyses, collect
381  // some information about how this split will affect loops.
382  bool HasLoopExit = false;
383  bool IsLoopEntry = !!L;
384  bool SplitMakesNewLoopHeader = false;
385  for (unsigned i = 0; i != NumPreds; ++i) {
386    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
387
388    if (LI) {
389      // If we need to preserve LCSSA, determine if any of
390      // the preds is a loop exit.
391      if (PreserveLCSSA)
392        if (Loop *PL = LI->getLoopFor(Preds[i]))
393          if (!PL->contains(BB))
394            HasLoopExit = true;
395      // If we need to preserve LoopInfo, note whether any of the
396      // preds crosses an interesting loop boundary.
397      if (L) {
398        if (L->contains(Preds[i]))
399          IsLoopEntry = false;
400        else
401          SplitMakesNewLoopHeader = true;
402      }
403    }
404  }
405
406  // Update dominator tree and dominator frontier if available.
407  DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
408  if (DT)
409    DT->splitBlock(NewBB);
410  if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0)
411    DF->splitBlock(NewBB);
412
413  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
414  // node becomes an incoming value for BB's phi node.  However, if the Preds
415  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
416  // account for the newly created predecessor.
417  if (NumPreds == 0) {
418    // Insert dummy values as the incoming value.
419    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
420      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
421    return NewBB;
422  }
423
424  AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
425
426  if (L) {
427    if (IsLoopEntry) {
428      if (Loop *PredLoop = LI->getLoopFor(Preds[0])) {
429        // Add the new block to the nearest enclosing loop (and not an
430        // adjacent loop).
431        while (PredLoop && !PredLoop->contains(BB))
432          PredLoop = PredLoop->getParentLoop();
433        if (PredLoop)
434          PredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
435      }
436    } else {
437      L->addBasicBlockToLoop(NewBB, LI->getBase());
438      if (SplitMakesNewLoopHeader)
439        L->moveToHeader(NewBB);
440    }
441  }
442
443  // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
444  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
445    PHINode *PN = cast<PHINode>(I++);
446
447    // Check to see if all of the values coming in are the same.  If so, we
448    // don't need to create a new PHI node, unless it's needed for LCSSA.
449    Value *InVal = 0;
450    if (!HasLoopExit) {
451      InVal = PN->getIncomingValueForBlock(Preds[0]);
452      for (unsigned i = 1; i != NumPreds; ++i)
453        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
454          InVal = 0;
455          break;
456        }
457    }
458
459    if (InVal) {
460      // If all incoming values for the new PHI would be the same, just don't
461      // make a new PHI.  Instead, just remove the incoming values from the old
462      // PHI.
463      for (unsigned i = 0; i != NumPreds; ++i)
464        PN->removeIncomingValue(Preds[i], false);
465    } else {
466      // If the values coming into the block are not the same, we need a PHI.
467      // Create the new PHI node, insert it into NewBB at the end of the block
468      PHINode *NewPHI =
469        PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
470      if (AA) AA->copyValue(PN, NewPHI);
471
472      // Move all of the PHI values for 'Preds' to the new PHI.
473      for (unsigned i = 0; i != NumPreds; ++i) {
474        Value *V = PN->removeIncomingValue(Preds[i], false);
475        NewPHI->addIncoming(V, Preds[i]);
476      }
477      InVal = NewPHI;
478    }
479
480    // Add an incoming value to the PHI node in the loop for the preheader
481    // edge.
482    PN->addIncoming(InVal, NewBB);
483  }
484
485  return NewBB;
486}
487
488/// FindFunctionBackedges - Analyze the specified function to find all of the
489/// loop backedges in the function and return them.  This is a relatively cheap
490/// (compared to computing dominators and loop info) analysis.
491///
492/// The output is added to Result, as pairs of <from,to> edge info.
493void llvm::FindFunctionBackedges(const Function &F,
494     SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
495  const BasicBlock *BB = &F.getEntryBlock();
496  if (succ_begin(BB) == succ_end(BB))
497    return;
498
499  SmallPtrSet<const BasicBlock*, 8> Visited;
500  SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
501  SmallPtrSet<const BasicBlock*, 8> InStack;
502
503  Visited.insert(BB);
504  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
505  InStack.insert(BB);
506  do {
507    std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
508    const BasicBlock *ParentBB = Top.first;
509    succ_const_iterator &I = Top.second;
510
511    bool FoundNew = false;
512    while (I != succ_end(ParentBB)) {
513      BB = *I++;
514      if (Visited.insert(BB)) {
515        FoundNew = true;
516        break;
517      }
518      // Successor is in VisitStack, it's a back edge.
519      if (InStack.count(BB))
520        Result.push_back(std::make_pair(ParentBB, BB));
521    }
522
523    if (FoundNew) {
524      // Go down one level if there is a unvisited successor.
525      InStack.insert(BB);
526      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
527    } else {
528      // Go up one level.
529      InStack.erase(VisitStack.pop_back_val().first);
530    }
531  } while (!VisitStack.empty());
532
533
534}
535
536
537
538/// AreEquivalentAddressValues - Test if A and B will obviously have the same
539/// value. This includes recognizing that %t0 and %t1 will have the same
540/// value in code like this:
541///   %t0 = getelementptr \@a, 0, 3
542///   store i32 0, i32* %t0
543///   %t1 = getelementptr \@a, 0, 3
544///   %t2 = load i32* %t1
545///
546static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
547  // Test if the values are trivially equivalent.
548  if (A == B) return true;
549
550  // Test if the values come from identical arithmetic instructions.
551  // Use isIdenticalToWhenDefined instead of isIdenticalTo because
552  // this function is only used when one address use dominates the
553  // other, which means that they'll always either have the same
554  // value or one of them will have an undefined value.
555  if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
556      isa<PHINode>(A) || isa<GetElementPtrInst>(A))
557    if (const Instruction *BI = dyn_cast<Instruction>(B))
558      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
559        return true;
560
561  // Otherwise they may not be equivalent.
562  return false;
563}
564
565/// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
566/// instruction before ScanFrom) checking to see if we have the value at the
567/// memory address *Ptr locally available within a small number of instructions.
568/// If the value is available, return it.
569///
570/// If not, return the iterator for the last validated instruction that the
571/// value would be live through.  If we scanned the entire block and didn't find
572/// something that invalidates *Ptr or provides it, ScanFrom would be left at
573/// begin() and this returns null.  ScanFrom could also be left
574///
575/// MaxInstsToScan specifies the maximum instructions to scan in the block.  If
576/// it is set to 0, it will scan the whole block. You can also optionally
577/// specify an alias analysis implementation, which makes this more precise.
578Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
579                                      BasicBlock::iterator &ScanFrom,
580                                      unsigned MaxInstsToScan,
581                                      AliasAnalysis *AA) {
582  if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
583
584  // If we're using alias analysis to disambiguate get the size of *Ptr.
585  unsigned AccessSize = 0;
586  if (AA) {
587    const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
588    AccessSize = AA->getTypeStoreSize(AccessTy);
589  }
590
591  while (ScanFrom != ScanBB->begin()) {
592    // We must ignore debug info directives when counting (otherwise they
593    // would affect codegen).
594    Instruction *Inst = --ScanFrom;
595    if (isa<DbgInfoIntrinsic>(Inst))
596      continue;
597    // We skip pointer-to-pointer bitcasts, which are NOPs.
598    // It is necessary for correctness to skip those that feed into a
599    // llvm.dbg.declare, as these are not present when debugging is off.
600    if (isa<BitCastInst>(Inst) && isa<PointerType>(Inst->getType()))
601      continue;
602
603    // Restore ScanFrom to expected value in case next test succeeds
604    ScanFrom++;
605
606    // Don't scan huge blocks.
607    if (MaxInstsToScan-- == 0) return 0;
608
609    --ScanFrom;
610    // If this is a load of Ptr, the loaded value is available.
611    if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
612      if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
613        return LI;
614
615    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
616      // If this is a store through Ptr, the value is available!
617      if (AreEquivalentAddressValues(SI->getOperand(1), Ptr))
618        return SI->getOperand(0);
619
620      // If Ptr is an alloca and this is a store to a different alloca, ignore
621      // the store.  This is a trivial form of alias analysis that is important
622      // for reg2mem'd code.
623      if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
624          (isa<AllocaInst>(SI->getOperand(1)) ||
625           isa<GlobalVariable>(SI->getOperand(1))))
626        continue;
627
628      // If we have alias analysis and it says the store won't modify the loaded
629      // value, ignore the store.
630      if (AA &&
631          (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
632        continue;
633
634      // Otherwise the store that may or may not alias the pointer, bail out.
635      ++ScanFrom;
636      return 0;
637    }
638
639    // If this is some other instruction that may clobber Ptr, bail out.
640    if (Inst->mayWriteToMemory()) {
641      // If alias analysis claims that it really won't modify the load,
642      // ignore it.
643      if (AA &&
644          (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
645        continue;
646
647      // May modify the pointer, bail out.
648      ++ScanFrom;
649      return 0;
650    }
651  }
652
653  // Got to the start of the block, we didn't find it, but are done for this
654  // block.
655  return 0;
656}
657
658/// CopyPrecedingStopPoint - If I is immediately preceded by a StopPoint,
659/// make a copy of the stoppoint before InsertPos (presumably before copying
660/// or moving I).
661void llvm::CopyPrecedingStopPoint(Instruction *I,
662                                  BasicBlock::iterator InsertPos) {
663  if (I != I->getParent()->begin()) {
664    BasicBlock::iterator BBI = I;  --BBI;
665    if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BBI)) {
666      CallInst *newDSPI = DSPI->clone();
667      newDSPI->insertBefore(InsertPos);
668    }
669  }
670}
671