BasicBlockUtils.cpp revision 71af9b07a58a264064813545889cf6473ce23de6
1//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform manipulations on basic blocks, and
11// instructions contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/BasicBlockUtils.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
18#include "llvm/Constant.h"
19#include "llvm/Type.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Target/TargetData.h"
24#include <algorithm>
25using namespace llvm;
26
27/// DeleteDeadBlock - Delete the specified block, which must have no
28/// predecessors.
29void llvm::DeleteDeadBlock(BasicBlock *BB) {
30  assert(pred_begin(BB) != pred_end(BB) && "Block is not dead!");
31  TerminatorInst *BBTerm = BB->getTerminator();
32
33  // Loop through all of our successors and make sure they know that one
34  // of their predecessors is going away.
35  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
36    BBTerm->getSuccessor(i)->removePredecessor(BB);
37
38  // Zap all the instructions in the block.
39  while (!BB->empty()) {
40    Instruction &I = BB->back();
41    // If this instruction is used, replace uses with an arbitrary value.
42    // Because control flow can't get here, we don't care what we replace the
43    // value with.  Note that since this block is unreachable, and all values
44    // contained within it must dominate their uses, that all uses will
45    // eventually be removed (they are themselves dead).
46    if (!I.use_empty())
47      I.replaceAllUsesWith(UndefValue::get(I.getType()));
48    BB->getInstList().pop_back();
49  }
50
51  // Zap the block!
52  BB->eraseFromParent();
53}
54
55/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
56/// if possible.  The return value indicates success or failure.
57bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
58  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
59  // Can't merge the entry block.
60  if (pred_begin(BB) == pred_end(BB)) return false;
61
62  BasicBlock *PredBB = *PI++;
63  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
64    if (*PI != PredBB) {
65      PredBB = 0;       // There are multiple different predecessors...
66      break;
67    }
68
69  // Can't merge if there are multiple predecessors.
70  if (!PredBB) return false;
71  // Don't break self-loops.
72  if (PredBB == BB) return false;
73  // Don't break invokes.
74  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
75
76  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
77  BasicBlock* OnlySucc = BB;
78  for (; SI != SE; ++SI)
79    if (*SI != OnlySucc) {
80      OnlySucc = 0;     // There are multiple distinct successors!
81      break;
82    }
83
84  // Can't merge if there are multiple successors.
85  if (!OnlySucc) return false;
86
87  // Can't merge if there is PHI loop.
88  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
89    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
90      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
91        if (PN->getIncomingValue(i) == PN)
92          return false;
93    } else
94      break;
95  }
96
97  // Begin by getting rid of unneeded PHIs.
98  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
99    PN->replaceAllUsesWith(PN->getIncomingValue(0));
100    BB->getInstList().pop_front();  // Delete the phi node...
101  }
102
103  // Delete the unconditional branch from the predecessor...
104  PredBB->getInstList().pop_back();
105
106  // Move all definitions in the successor to the predecessor...
107  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
108
109  // Make all PHI nodes that referred to BB now refer to Pred as their
110  // source...
111  BB->replaceAllUsesWith(PredBB);
112
113  // Inherit predecessors name if it exists.
114  if (!PredBB->hasName())
115    PredBB->takeName(BB);
116
117  // Finally, erase the old block and update dominator info.
118  if (P) {
119    if (DominatorTree* DT = P->getAnalysisToUpdate<DominatorTree>()) {
120      DomTreeNode* DTN = DT->getNode(BB);
121      DomTreeNode* PredDTN = DT->getNode(PredBB);
122
123      if (DTN) {
124        SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
125        for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
126             DE = Children.end(); DI != DE; ++DI)
127          DT->changeImmediateDominator(*DI, PredDTN);
128
129        DT->eraseNode(BB);
130      }
131    }
132  }
133
134  BB->eraseFromParent();
135
136
137  return true;
138}
139
140/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
141/// with a value, then remove and delete the original instruction.
142///
143void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
144                                BasicBlock::iterator &BI, Value *V) {
145  Instruction &I = *BI;
146  // Replaces all of the uses of the instruction with uses of the value
147  I.replaceAllUsesWith(V);
148
149  // Make sure to propagate a name if there is one already.
150  if (I.hasName() && !V->hasName())
151    V->takeName(&I);
152
153  // Delete the unnecessary instruction now...
154  BI = BIL.erase(BI);
155}
156
157
158/// ReplaceInstWithInst - Replace the instruction specified by BI with the
159/// instruction specified by I.  The original instruction is deleted and BI is
160/// updated to point to the new instruction.
161///
162void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
163                               BasicBlock::iterator &BI, Instruction *I) {
164  assert(I->getParent() == 0 &&
165         "ReplaceInstWithInst: Instruction already inserted into basic block!");
166
167  // Insert the new instruction into the basic block...
168  BasicBlock::iterator New = BIL.insert(BI, I);
169
170  // Replace all uses of the old instruction, and delete it.
171  ReplaceInstWithValue(BIL, BI, I);
172
173  // Move BI back to point to the newly inserted instruction
174  BI = New;
175}
176
177/// ReplaceInstWithInst - Replace the instruction specified by From with the
178/// instruction specified by To.
179///
180void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
181  BasicBlock::iterator BI(From);
182  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
183}
184
185/// RemoveSuccessor - Change the specified terminator instruction such that its
186/// successor SuccNum no longer exists.  Because this reduces the outgoing
187/// degree of the current basic block, the actual terminator instruction itself
188/// may have to be changed.  In the case where the last successor of the block
189/// is deleted, a return instruction is inserted in its place which can cause a
190/// surprising change in program behavior if it is not expected.
191///
192void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
193  assert(SuccNum < TI->getNumSuccessors() &&
194         "Trying to remove a nonexistant successor!");
195
196  // If our old successor block contains any PHI nodes, remove the entry in the
197  // PHI nodes that comes from this branch...
198  //
199  BasicBlock *BB = TI->getParent();
200  TI->getSuccessor(SuccNum)->removePredecessor(BB);
201
202  TerminatorInst *NewTI = 0;
203  switch (TI->getOpcode()) {
204  case Instruction::Br:
205    // If this is a conditional branch... convert to unconditional branch.
206    if (TI->getNumSuccessors() == 2) {
207      cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
208    } else {                    // Otherwise convert to a return instruction...
209      Value *RetVal = 0;
210
211      // Create a value to return... if the function doesn't return null...
212      if (BB->getParent()->getReturnType() != Type::VoidTy)
213        RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
214
215      // Create the return...
216      NewTI = ReturnInst::Create(RetVal);
217    }
218    break;
219
220  case Instruction::Invoke:    // Should convert to call
221  case Instruction::Switch:    // Should remove entry
222  default:
223  case Instruction::Ret:       // Cannot happen, has no successors!
224    assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
225    abort();
226  }
227
228  if (NewTI)   // If it's a different instruction, replace.
229    ReplaceInstWithInst(TI, NewTI);
230}
231
232/// SplitEdge -  Split the edge connecting specified block. Pass P must
233/// not be NULL.
234BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
235  TerminatorInst *LatchTerm = BB->getTerminator();
236  unsigned SuccNum = 0;
237#ifndef NDEBUG
238  unsigned e = LatchTerm->getNumSuccessors();
239#endif
240  for (unsigned i = 0; ; ++i) {
241    assert(i != e && "Didn't find edge?");
242    if (LatchTerm->getSuccessor(i) == Succ) {
243      SuccNum = i;
244      break;
245    }
246  }
247
248  // If this is a critical edge, let SplitCriticalEdge do it.
249  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
250    return LatchTerm->getSuccessor(SuccNum);
251
252  // If the edge isn't critical, then BB has a single successor or Succ has a
253  // single pred.  Split the block.
254  BasicBlock::iterator SplitPoint;
255  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
256    // If the successor only has a single pred, split the top of the successor
257    // block.
258    assert(SP == BB && "CFG broken");
259    SP = NULL;
260    return SplitBlock(Succ, Succ->begin(), P);
261  } else {
262    // Otherwise, if BB has a single successor, split it at the bottom of the
263    // block.
264    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
265           "Should have a single succ!");
266    return SplitBlock(BB, BB->getTerminator(), P);
267  }
268}
269
270/// SplitBlock - Split the specified block at the specified instruction - every
271/// thing before SplitPt stays in Old and everything starting with SplitPt moves
272/// to a new block.  The two blocks are joined by an unconditional branch and
273/// the loop info is updated.
274///
275BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
276  BasicBlock::iterator SplitIt = SplitPt;
277  while (isa<PHINode>(SplitIt))
278    ++SplitIt;
279  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
280
281  // The new block lives in whichever loop the old one did.
282  if (LoopInfo* LI = P->getAnalysisToUpdate<LoopInfo>())
283    if (Loop *L = LI->getLoopFor(Old))
284      L->addBasicBlockToLoop(New, LI->getBase());
285
286  if (DominatorTree *DT = P->getAnalysisToUpdate<DominatorTree>())
287    {
288      // Old dominates New. New node domiantes all other nodes dominated by Old.
289      DomTreeNode *OldNode = DT->getNode(Old);
290      std::vector<DomTreeNode *> Children;
291      for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
292           I != E; ++I)
293        Children.push_back(*I);
294
295      DomTreeNode *NewNode =   DT->addNewBlock(New,Old);
296
297      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
298             E = Children.end(); I != E; ++I)
299        DT->changeImmediateDominator(*I, NewNode);
300    }
301
302  if (DominanceFrontier *DF = P->getAnalysisToUpdate<DominanceFrontier>())
303    DF->splitBlock(Old);
304
305  return New;
306}
307
308
309/// SplitBlockPredecessors - This method transforms BB by introducing a new
310/// basic block into the function, and moving some of the predecessors of BB to
311/// be predecessors of the new block.  The new predecessors are indicated by the
312/// Preds array, which has NumPreds elements in it.  The new block is given a
313/// suffix of 'Suffix'.
314///
315/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
316/// DominanceFrontier, but no other analyses.
317BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
318                                         BasicBlock *const *Preds,
319                                         unsigned NumPreds, const char *Suffix,
320                                         Pass *P) {
321  // Create new basic block, insert right before the original block.
322  BasicBlock *NewBB =
323    BasicBlock::Create(BB->getName()+Suffix, BB->getParent(), BB);
324
325  // The new block unconditionally branches to the old block.
326  BranchInst *BI = BranchInst::Create(BB, NewBB);
327
328  // Move the edges from Preds to point to NewBB instead of BB.
329  for (unsigned i = 0; i != NumPreds; ++i)
330    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
331
332  // Update dominator tree and dominator frontier if available.
333  DominatorTree *DT = P ? P->getAnalysisToUpdate<DominatorTree>() : 0;
334  if (DT)
335    DT->splitBlock(NewBB);
336  if (DominanceFrontier *DF = P ? P->getAnalysisToUpdate<DominanceFrontier>():0)
337    DF->splitBlock(NewBB);
338  AliasAnalysis *AA = P ? P->getAnalysisToUpdate<AliasAnalysis>() : 0;
339
340
341  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
342  // node becomes an incoming value for BB's phi node.  However, if the Preds
343  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
344  // account for the newly created predecessor.
345  if (NumPreds == 0) {
346    // Insert dummy values as the incoming value.
347    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
348      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
349    return NewBB;
350  }
351
352  // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
353  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
354    PHINode *PN = cast<PHINode>(I++);
355
356    // Check to see if all of the values coming in are the same.  If so, we
357    // don't need to create a new PHI node.
358    Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
359    for (unsigned i = 1; i != NumPreds; ++i)
360      if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
361        InVal = 0;
362        break;
363      }
364
365    if (InVal) {
366      // If all incoming values for the new PHI would be the same, just don't
367      // make a new PHI.  Instead, just remove the incoming values from the old
368      // PHI.
369      for (unsigned i = 0; i != NumPreds; ++i)
370        PN->removeIncomingValue(Preds[i], false);
371    } else {
372      // If the values coming into the block are not the same, we need a PHI.
373      // Create the new PHI node, insert it into NewBB at the end of the block
374      PHINode *NewPHI =
375        PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
376      if (AA) AA->copyValue(PN, NewPHI);
377
378      // Move all of the PHI values for 'Preds' to the new PHI.
379      for (unsigned i = 0; i != NumPreds; ++i) {
380        Value *V = PN->removeIncomingValue(Preds[i], false);
381        NewPHI->addIncoming(V, Preds[i]);
382      }
383      InVal = NewPHI;
384    }
385
386    // Add an incoming value to the PHI node in the loop for the preheader
387    // edge.
388    PN->addIncoming(InVal, NewBB);
389
390    // Check to see if we can eliminate this phi node.
391    if (Value *V = PN->hasConstantValue(DT != 0)) {
392      Instruction *I = dyn_cast<Instruction>(V);
393      if (!I || DT == 0 || DT->dominates(I, PN)) {
394        PN->replaceAllUsesWith(V);
395        if (AA) AA->deleteValue(PN);
396        PN->eraseFromParent();
397      }
398    }
399  }
400
401  return NewBB;
402}
403
404/// AreEquivalentAddressValues - Test if A and B will obviously have the same
405/// value. This includes recognizing that %t0 and %t1 will have the same
406/// value in code like this:
407///   %t0 = getelementptr @a, 0, 3
408///   store i32 0, i32* %t0
409///   %t1 = getelementptr @a, 0, 3
410///   %t2 = load i32* %t1
411///
412static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
413  // Test if the values are trivially equivalent.
414  if (A == B) return true;
415
416  // Test if the values come form identical arithmetic instructions.
417  if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
418      isa<PHINode>(A) || isa<GetElementPtrInst>(A))
419    if (const Instruction *BI = dyn_cast<Instruction>(B))
420      if (cast<Instruction>(A)->isIdenticalTo(BI))
421        return true;
422
423  // Otherwise they may not be equivalent.
424  return false;
425}
426
427/// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
428/// instruction before ScanFrom) checking to see if we have the value at the
429/// memory address *Ptr locally available within a small number of instructions.
430/// If the value is available, return it.
431///
432/// If not, return the iterator for the last validated instruction that the
433/// value would be live through.  If we scanned the entire block and didn't find
434/// something that invalidates *Ptr or provides it, ScanFrom would be left at
435/// begin() and this returns null.  ScanFrom could also be left
436///
437/// MaxInstsToScan specifies the maximum instructions to scan in the block.  If
438/// it is set to 0, it will scan the whole block. You can also optionally
439/// specify an alias analysis implementation, which makes this more precise.
440Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
441                                      BasicBlock::iterator &ScanFrom,
442                                      unsigned MaxInstsToScan,
443                                      AliasAnalysis *AA) {
444  if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
445
446  // If we're using alias analysis to disambiguate get the size of *Ptr.
447  unsigned AccessSize = 0;
448  if (AA) {
449    const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
450    AccessSize = AA->getTargetData().getTypeStoreSizeInBits(AccessTy);
451  }
452
453  while (ScanFrom != ScanBB->begin()) {
454    // Don't scan huge blocks.
455    if (MaxInstsToScan-- == 0) return 0;
456
457    Instruction *Inst = --ScanFrom;
458
459    // If this is a load of Ptr, the loaded value is available.
460    if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
461      if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
462        return LI;
463
464    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
465      // If this is a store through Ptr, the value is available!
466      if (AreEquivalentAddressValues(SI->getOperand(1), Ptr))
467        return SI->getOperand(0);
468
469      // If Ptr is an alloca and this is a store to a different alloca, ignore
470      // the store.  This is a trivial form of alias analysis that is important
471      // for reg2mem'd code.
472      if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
473          (isa<AllocaInst>(SI->getOperand(1)) ||
474           isa<GlobalVariable>(SI->getOperand(1))))
475        continue;
476
477      // If we have alias analysis and it says the store won't modify the loaded
478      // value, ignore the store.
479      if (AA &&
480          (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
481        continue;
482
483      // Otherwise the store that may or may not alias the pointer, bail out.
484      ++ScanFrom;
485      return 0;
486    }
487
488    // If this is some other instruction that may clobber Ptr, bail out.
489    if (Inst->mayWriteToMemory()) {
490      // If alias analysis claims that it really won't modify the load,
491      // ignore it.
492      if (AA &&
493          (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
494        continue;
495
496      // May modify the pointer, bail out.
497      ++ScanFrom;
498      return 0;
499    }
500  }
501
502  // Got to the start of the block, we didn't find it, but are done for this
503  // block.
504  return 0;
505}
506