BasicBlockUtils.cpp revision 841a14753175bb9a02a8f5286ffe03d050b0da26
16acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
26acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn//
36acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn//                     The LLVM Compiler Infrastructure
46acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn//
56acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn// This file is distributed under the University of Illinois Open Source
66acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn// License. See LICENSE.TXT for details.
76acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn//
86acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn//===----------------------------------------------------------------------===//
96acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn//
106acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn// This family of functions perform manipulations on basic blocks, and
116acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn// instructions contained within basic blocks.
126acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn//
136acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn//===----------------------------------------------------------------------===//
146acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
156acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/Transforms/Utils/BasicBlockUtils.h"
166acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/Function.h"
176acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/Instructions.h"
186acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/IntrinsicInst.h"
196acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/LLVMContext.h"
206acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/Constant.h"
216acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/Type.h"
226acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/Analysis/AliasAnalysis.h"
236acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/Analysis/LoopInfo.h"
246acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/Analysis/Dominators.h"
256acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/Target/TargetData.h"
266acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/Transforms/Utils/Local.h"
276acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/Transforms/Scalar.h"
286acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/Support/ErrorHandling.h"
296acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include "llvm/Support/ValueHandle.h"
306acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#include <algorithm>
316acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Rennusing namespace llvm;
326acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
336acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// DeleteDeadBlock - Delete the specified block, which must have no
346acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// predecessors.
356acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Rennvoid llvm::DeleteDeadBlock(BasicBlock *BB) {
366acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  assert((pred_begin(BB) == pred_end(BB) ||
376acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn         // Can delete self loop.
386acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn         BB->getSinglePredecessor() == BB) && "Block is not dead!");
396acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  TerminatorInst *BBTerm = BB->getTerminator();
406acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
416acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Loop through all of our successors and make sure they know that one
426acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // of their predecessors is going away.
436acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
446acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    BBTerm->getSuccessor(i)->removePredecessor(BB);
456acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
466acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Zap all the instructions in the block.
476acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  while (!BB->empty()) {
486acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    Instruction &I = BB->back();
496acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    // If this instruction is used, replace uses with an arbitrary value.
506acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    // Because control flow can't get here, we don't care what we replace the
516acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    // value with.  Note that since this block is unreachable, and all values
526acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    // contained within it must dominate their uses, that all uses will
536acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    // eventually be removed (they are themselves dead).
546acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    if (!I.use_empty())
556acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      I.replaceAllUsesWith(UndefValue::get(I.getType()));
566acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    BB->getInstList().pop_back();
576acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  }
586acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
596acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Zap the block!
606acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  BB->eraseFromParent();
616acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn}
626acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
636acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
646acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// any single-entry PHI nodes in it, fold them away.  This handles the case
656acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// when all entries to the PHI nodes in a block are guaranteed equal, such as
666acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// when the block has exactly one predecessor.
676acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Rennvoid llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
686acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (!isa<PHINode>(BB->begin()))
696acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    return;
706acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
716acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
726acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    if (PN->getIncomingValue(0) != PN)
736acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      PN->replaceAllUsesWith(PN->getIncomingValue(0));
746acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    else
756acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
766acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    PN->eraseFromParent();
776acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  }
786acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn}
796acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
806acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
816acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
826acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// is dead. Also recursively delete any operands that become dead as
836acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// a result. This includes tracing the def-use list from the PHI to see if
846acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// it is ultimately unused or if it reaches an unused cycle.
856acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Rennvoid llvm::DeleteDeadPHIs(BasicBlock *BB) {
866acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Recursively deleting a PHI may cause multiple PHIs to be deleted
876acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
886acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  SmallVector<WeakVH, 8> PHIs;
896acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  for (BasicBlock::iterator I = BB->begin();
906acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn       PHINode *PN = dyn_cast<PHINode>(I); ++I)
916acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    PHIs.push_back(PN);
926acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
936acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
946acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
956acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      RecursivelyDeleteDeadPHINode(PN);
966acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn}
976acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
986acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
996acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// if possible.  The return value indicates success or failure.
1006acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Rennbool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
1016acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1026acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Can't merge the entry block.
1036acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (pred_begin(BB) == pred_end(BB)) return false;
1046acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1056acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  BasicBlock *PredBB = *PI++;
1066acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
1076acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    if (*PI != PredBB) {
1086acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      PredBB = 0;       // There are multiple different predecessors...
1096acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      break;
1106acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    }
1116acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1126acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Can't merge if there are multiple predecessors.
1136acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (!PredBB) return false;
1146acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Don't break self-loops.
1156acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (PredBB == BB) return false;
1166acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Don't break invokes.
1176acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
1186acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1196acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
1206acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  BasicBlock* OnlySucc = BB;
1216acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  for (; SI != SE; ++SI)
1226acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    if (*SI != OnlySucc) {
1236acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      OnlySucc = 0;     // There are multiple distinct successors!
1246acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      break;
1256acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    }
1266acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1276acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Can't merge if there are multiple successors.
1286acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (!OnlySucc) return false;
1296acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1306acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Can't merge if there is PHI loop.
1316acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
1326acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
1336acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1346acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn        if (PN->getIncomingValue(i) == PN)
1356acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn          return false;
1366acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    } else
1376acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      break;
1386acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  }
1396acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1406acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Begin by getting rid of unneeded PHIs.
1416acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1426acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    PN->replaceAllUsesWith(PN->getIncomingValue(0));
1436acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    BB->getInstList().pop_front();  // Delete the phi node...
1446acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  }
1456acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1466acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Delete the unconditional branch from the predecessor...
1476acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  PredBB->getInstList().pop_back();
1486acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1496acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Move all definitions in the successor to the predecessor...
1506acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
1516acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1526acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Make all PHI nodes that referred to BB now refer to Pred as their
1536acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // source...
1546acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  BB->replaceAllUsesWith(PredBB);
1556acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1566acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Inherit predecessors name if it exists.
1576acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (!PredBB->hasName())
1586acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    PredBB->takeName(BB);
1596acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1606acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Finally, erase the old block and update dominator info.
1616acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (P) {
1626acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) {
1636acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      DomTreeNode* DTN = DT->getNode(BB);
1646acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      DomTreeNode* PredDTN = DT->getNode(PredBB);
1656acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1666acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      if (DTN) {
1676acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn        SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
1686acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn        for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
1696acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn             DE = Children.end(); DI != DE; ++DI)
1706acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn          DT->changeImmediateDominator(*DI, PredDTN);
1716acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1726acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn        DT->eraseNode(BB);
1736acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      }
1746acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    }
1756acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  }
1766acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1776acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  BB->eraseFromParent();
1786acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1796acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1806acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  return true;
1816acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn}
1826acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1836acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
1846acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// with a value, then remove and delete the original instruction.
1856acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn///
1866acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Rennvoid llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
1876acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn                                BasicBlock::iterator &BI, Value *V) {
1886acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  Instruction &I = *BI;
1896acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Replaces all of the uses of the instruction with uses of the value
1906acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  I.replaceAllUsesWith(V);
1916acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1926acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Make sure to propagate a name if there is one already.
1936acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (I.hasName() && !V->hasName())
1946acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    V->takeName(&I);
1956acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
1966acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Delete the unnecessary instruction now...
1976acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  BI = BIL.erase(BI);
1986acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn}
1996acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2006acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2016acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// ReplaceInstWithInst - Replace the instruction specified by BI with the
2026acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// instruction specified by I.  The original instruction is deleted and BI is
2036acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// updated to point to the new instruction.
2046acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn///
2056acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Rennvoid llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
2066acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn                               BasicBlock::iterator &BI, Instruction *I) {
2076acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  assert(I->getParent() == 0 &&
2086acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn         "ReplaceInstWithInst: Instruction already inserted into basic block!");
2096acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2106acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Insert the new instruction into the basic block...
2116acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  BasicBlock::iterator New = BIL.insert(BI, I);
2126acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2136acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Replace all uses of the old instruction, and delete it.
2146acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  ReplaceInstWithValue(BIL, BI, I);
2156acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2166acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // Move BI back to point to the newly inserted instruction
2176acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  BI = New;
2186acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn}
2196acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2206acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// ReplaceInstWithInst - Replace the instruction specified by From with the
2216acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// instruction specified by To.
2226acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn///
2236acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Rennvoid llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
2246acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  BasicBlock::iterator BI(From);
2256acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
2266acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn}
2276acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2286acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// RemoveSuccessor - Change the specified terminator instruction such that its
2296acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// successor SuccNum no longer exists.  Because this reduces the outgoing
2306acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// degree of the current basic block, the actual terminator instruction itself
2316acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// may have to be changed.  In the case where the last successor of the block
2326acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// is deleted, a return instruction is inserted in its place which can cause a
2336acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// surprising change in program behavior if it is not expected.
2346acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn///
2356acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Rennvoid llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
2366acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  assert(SuccNum < TI->getNumSuccessors() &&
2376acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn         "Trying to remove a nonexistant successor!");
2386acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2396acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // If our old successor block contains any PHI nodes, remove the entry in the
2406acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // PHI nodes that comes from this branch...
2416acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  //
2426acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  BasicBlock *BB = TI->getParent();
2436acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  TI->getSuccessor(SuccNum)->removePredecessor(BB);
2446acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2456acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  TerminatorInst *NewTI = 0;
2466acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  switch (TI->getOpcode()) {
2476acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  case Instruction::Br:
2486acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    // If this is a conditional branch... convert to unconditional branch.
2496acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    if (TI->getNumSuccessors() == 2) {
2506acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
2516acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    } else {                    // Otherwise convert to a return instruction...
2526acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      Value *RetVal = 0;
2536acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2546acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      // Create a value to return... if the function doesn't return null...
2556acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      if (BB->getParent()->getReturnType() != Type::getVoidTy(TI->getContext()))
2566acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn        RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
2576acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2586acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      // Create the return...
2596acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      NewTI = ReturnInst::Create(TI->getContext(), RetVal);
2606acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    }
2616acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    break;
2626acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2636acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  case Instruction::Invoke:    // Should convert to call
2646acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  case Instruction::Switch:    // Should remove entry
2656acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  default:
2666acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  case Instruction::Ret:       // Cannot happen, has no successors!
2676acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    llvm_unreachable("Unhandled terminator instruction type in RemoveSuccessor!");
2686acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  }
2696acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2706acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (NewTI)   // If it's a different instruction, replace.
2716acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    ReplaceInstWithInst(TI, NewTI);
2726acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn}
2736acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2746acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// SplitEdge -  Split the edge connecting specified block. Pass P must
2756acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// not be NULL.
2766acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius RennBasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
2776acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  TerminatorInst *LatchTerm = BB->getTerminator();
2786acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  unsigned SuccNum = 0;
2796acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#ifndef NDEBUG
2806acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  unsigned e = LatchTerm->getNumSuccessors();
2816acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn#endif
2826acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  for (unsigned i = 0; ; ++i) {
2836acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    assert(i != e && "Didn't find edge?");
2846acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    if (LatchTerm->getSuccessor(i) == Succ) {
2856acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      SuccNum = i;
2866acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      break;
2876acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    }
2886acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  }
2896acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2906acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // If this is a critical edge, let SplitCriticalEdge do it.
2916acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
2926acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    return LatchTerm->getSuccessor(SuccNum);
2936acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
2946acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // If the edge isn't critical, then BB has a single successor or Succ has a
2956acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // single pred.  Split the block.
2966acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  BasicBlock::iterator SplitPoint;
2976acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
2986acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    // If the successor only has a single pred, split the top of the successor
2996acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    // block.
3006acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    assert(SP == BB && "CFG broken");
3016acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    SP = NULL;
3026acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    return SplitBlock(Succ, Succ->begin(), P);
3036acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  } else {
3046acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    // Otherwise, if BB has a single successor, split it at the bottom of the
3056acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    // block.
3066acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
3076acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn           "Should have a single succ!");
3086acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    return SplitBlock(BB, BB->getTerminator(), P);
3096acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  }
3106acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn}
3116acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
3126acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// SplitBlock - Split the specified block at the specified instruction - every
3136acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// thing before SplitPt stays in Old and everything starting with SplitPt moves
3146acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// to a new block.  The two blocks are joined by an unconditional branch and
3156acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn/// the loop info is updated.
3166acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn///
3176acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius RennBasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
3186acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  BasicBlock::iterator SplitIt = SplitPt;
3196acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  while (isa<PHINode>(SplitIt))
3206acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    ++SplitIt;
3216acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
3226acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
3236acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // The new block lives in whichever loop the old one did. This preserves
3246acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  // LCSSA as well, because we force the split point to be after any PHI nodes.
3256acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
3266acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    if (Loop *L = LI->getLoopFor(Old))
3276acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      L->addBasicBlockToLoop(New, LI->getBase());
3286acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
3296acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>())
3306acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    {
3316acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      // Old dominates New. New node domiantes all other nodes dominated by Old.
3326acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      DomTreeNode *OldNode = DT->getNode(Old);
3336acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      std::vector<DomTreeNode *> Children;
3346acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
3356acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn           I != E; ++I)
3366acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn        Children.push_back(*I);
3376acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
3386acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      DomTreeNode *NewNode =   DT->addNewBlock(New,Old);
3396acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
3406acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
3416acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn             E = Children.end(); I != E; ++I)
3426acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn        DT->changeImmediateDominator(*I, NewNode);
3436acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    }
3446acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn
3456acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn  if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
3466acb9a7ea3d7564944e12cbc73a857b88c1301eeMarius Renn    DF->splitBlock(Old);
347
348  return New;
349}
350
351
352/// SplitBlockPredecessors - This method transforms BB by introducing a new
353/// basic block into the function, and moving some of the predecessors of BB to
354/// be predecessors of the new block.  The new predecessors are indicated by the
355/// Preds array, which has NumPreds elements in it.  The new block is given a
356/// suffix of 'Suffix'.
357///
358/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
359/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
360/// In particular, it does not preserve LoopSimplify (because it's
361/// complicated to handle the case where one of the edges being split
362/// is an exit of a loop with other exits).
363///
364BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
365                                         BasicBlock *const *Preds,
366                                         unsigned NumPreds, const char *Suffix,
367                                         Pass *P) {
368  // Create new basic block, insert right before the original block.
369  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
370                                         BB->getParent(), BB);
371
372  // The new block unconditionally branches to the old block.
373  BranchInst *BI = BranchInst::Create(BB, NewBB);
374
375  LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
376  Loop *L = LI ? LI->getLoopFor(BB) : 0;
377  bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
378
379  // Move the edges from Preds to point to NewBB instead of BB.
380  // While here, if we need to preserve loop analyses, collect
381  // some information about how this split will affect loops.
382  bool HasLoopExit = false;
383  bool IsLoopEntry = !!L;
384  bool SplitMakesNewLoopHeader = false;
385  for (unsigned i = 0; i != NumPreds; ++i) {
386    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
387
388    if (LI) {
389      // If we need to preserve LCSSA, determine if any of
390      // the preds is a loop exit.
391      if (PreserveLCSSA)
392        if (Loop *PL = LI->getLoopFor(Preds[i]))
393          if (!PL->contains(BB))
394            HasLoopExit = true;
395      // If we need to preserve LoopInfo, note whether any of the
396      // preds crosses an interesting loop boundary.
397      if (L) {
398        if (L->contains(Preds[i]))
399          IsLoopEntry = false;
400        else
401          SplitMakesNewLoopHeader = true;
402      }
403    }
404  }
405
406  // Update dominator tree and dominator frontier if available.
407  DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
408  if (DT)
409    DT->splitBlock(NewBB);
410  if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0)
411    DF->splitBlock(NewBB);
412
413  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
414  // node becomes an incoming value for BB's phi node.  However, if the Preds
415  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
416  // account for the newly created predecessor.
417  if (NumPreds == 0) {
418    // Insert dummy values as the incoming value.
419    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
420      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
421    return NewBB;
422  }
423
424  AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
425
426  if (L) {
427    if (IsLoopEntry) {
428      // Add the new block to the nearest enclosing loop (and not an
429      // adjacent loop). To find this, examine each of the predecessors and
430      // determine which loops enclose them, and select the most-nested loop
431      // which contains the loop containing the block being split.
432      Loop *InnermostPredLoop = 0;
433      for (unsigned i = 0; i != NumPreds; ++i)
434        if (Loop *PredLoop = LI->getLoopFor(Preds[i])) {
435          // Seek a loop which actually contains the block being split (to
436          // avoid adjacent loops).
437          while (PredLoop && !PredLoop->contains(BB))
438            PredLoop = PredLoop->getParentLoop();
439          // Select the most-nested of these loops which contains the block.
440          if (PredLoop &&
441              PredLoop->contains(BB) &&
442              (!InnermostPredLoop ||
443               InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
444            InnermostPredLoop = PredLoop;
445        }
446      if (InnermostPredLoop)
447        InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
448    } else {
449      L->addBasicBlockToLoop(NewBB, LI->getBase());
450      if (SplitMakesNewLoopHeader)
451        L->moveToHeader(NewBB);
452    }
453  }
454
455  // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
456  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
457    PHINode *PN = cast<PHINode>(I++);
458
459    // Check to see if all of the values coming in are the same.  If so, we
460    // don't need to create a new PHI node, unless it's needed for LCSSA.
461    Value *InVal = 0;
462    if (!HasLoopExit) {
463      InVal = PN->getIncomingValueForBlock(Preds[0]);
464      for (unsigned i = 1; i != NumPreds; ++i)
465        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
466          InVal = 0;
467          break;
468        }
469    }
470
471    if (InVal) {
472      // If all incoming values for the new PHI would be the same, just don't
473      // make a new PHI.  Instead, just remove the incoming values from the old
474      // PHI.
475      for (unsigned i = 0; i != NumPreds; ++i)
476        PN->removeIncomingValue(Preds[i], false);
477    } else {
478      // If the values coming into the block are not the same, we need a PHI.
479      // Create the new PHI node, insert it into NewBB at the end of the block
480      PHINode *NewPHI =
481        PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
482      if (AA) AA->copyValue(PN, NewPHI);
483
484      // Move all of the PHI values for 'Preds' to the new PHI.
485      for (unsigned i = 0; i != NumPreds; ++i) {
486        Value *V = PN->removeIncomingValue(Preds[i], false);
487        NewPHI->addIncoming(V, Preds[i]);
488      }
489      InVal = NewPHI;
490    }
491
492    // Add an incoming value to the PHI node in the loop for the preheader
493    // edge.
494    PN->addIncoming(InVal, NewBB);
495  }
496
497  return NewBB;
498}
499
500/// FindFunctionBackedges - Analyze the specified function to find all of the
501/// loop backedges in the function and return them.  This is a relatively cheap
502/// (compared to computing dominators and loop info) analysis.
503///
504/// The output is added to Result, as pairs of <from,to> edge info.
505void llvm::FindFunctionBackedges(const Function &F,
506     SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
507  const BasicBlock *BB = &F.getEntryBlock();
508  if (succ_begin(BB) == succ_end(BB))
509    return;
510
511  SmallPtrSet<const BasicBlock*, 8> Visited;
512  SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
513  SmallPtrSet<const BasicBlock*, 8> InStack;
514
515  Visited.insert(BB);
516  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
517  InStack.insert(BB);
518  do {
519    std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
520    const BasicBlock *ParentBB = Top.first;
521    succ_const_iterator &I = Top.second;
522
523    bool FoundNew = false;
524    while (I != succ_end(ParentBB)) {
525      BB = *I++;
526      if (Visited.insert(BB)) {
527        FoundNew = true;
528        break;
529      }
530      // Successor is in VisitStack, it's a back edge.
531      if (InStack.count(BB))
532        Result.push_back(std::make_pair(ParentBB, BB));
533    }
534
535    if (FoundNew) {
536      // Go down one level if there is a unvisited successor.
537      InStack.insert(BB);
538      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
539    } else {
540      // Go up one level.
541      InStack.erase(VisitStack.pop_back_val().first);
542    }
543  } while (!VisitStack.empty());
544
545
546}
547
548
549
550/// AreEquivalentAddressValues - Test if A and B will obviously have the same
551/// value. This includes recognizing that %t0 and %t1 will have the same
552/// value in code like this:
553///   %t0 = getelementptr \@a, 0, 3
554///   store i32 0, i32* %t0
555///   %t1 = getelementptr \@a, 0, 3
556///   %t2 = load i32* %t1
557///
558static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
559  // Test if the values are trivially equivalent.
560  if (A == B) return true;
561
562  // Test if the values come from identical arithmetic instructions.
563  // Use isIdenticalToWhenDefined instead of isIdenticalTo because
564  // this function is only used when one address use dominates the
565  // other, which means that they'll always either have the same
566  // value or one of them will have an undefined value.
567  if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
568      isa<PHINode>(A) || isa<GetElementPtrInst>(A))
569    if (const Instruction *BI = dyn_cast<Instruction>(B))
570      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
571        return true;
572
573  // Otherwise they may not be equivalent.
574  return false;
575}
576
577/// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
578/// instruction before ScanFrom) checking to see if we have the value at the
579/// memory address *Ptr locally available within a small number of instructions.
580/// If the value is available, return it.
581///
582/// If not, return the iterator for the last validated instruction that the
583/// value would be live through.  If we scanned the entire block and didn't find
584/// something that invalidates *Ptr or provides it, ScanFrom would be left at
585/// begin() and this returns null.  ScanFrom could also be left
586///
587/// MaxInstsToScan specifies the maximum instructions to scan in the block.  If
588/// it is set to 0, it will scan the whole block. You can also optionally
589/// specify an alias analysis implementation, which makes this more precise.
590Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
591                                      BasicBlock::iterator &ScanFrom,
592                                      unsigned MaxInstsToScan,
593                                      AliasAnalysis *AA) {
594  if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
595
596  // If we're using alias analysis to disambiguate get the size of *Ptr.
597  unsigned AccessSize = 0;
598  if (AA) {
599    const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
600    AccessSize = AA->getTypeStoreSize(AccessTy);
601  }
602
603  while (ScanFrom != ScanBB->begin()) {
604    // We must ignore debug info directives when counting (otherwise they
605    // would affect codegen).
606    Instruction *Inst = --ScanFrom;
607    if (isa<DbgInfoIntrinsic>(Inst))
608      continue;
609    // We skip pointer-to-pointer bitcasts, which are NOPs.
610    // It is necessary for correctness to skip those that feed into a
611    // llvm.dbg.declare, as these are not present when debugging is off.
612    if (isa<BitCastInst>(Inst) && isa<PointerType>(Inst->getType()))
613      continue;
614
615    // Restore ScanFrom to expected value in case next test succeeds
616    ScanFrom++;
617
618    // Don't scan huge blocks.
619    if (MaxInstsToScan-- == 0) return 0;
620
621    --ScanFrom;
622    // If this is a load of Ptr, the loaded value is available.
623    if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
624      if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
625        return LI;
626
627    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
628      // If this is a store through Ptr, the value is available!
629      if (AreEquivalentAddressValues(SI->getOperand(1), Ptr))
630        return SI->getOperand(0);
631
632      // If Ptr is an alloca and this is a store to a different alloca, ignore
633      // the store.  This is a trivial form of alias analysis that is important
634      // for reg2mem'd code.
635      if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
636          (isa<AllocaInst>(SI->getOperand(1)) ||
637           isa<GlobalVariable>(SI->getOperand(1))))
638        continue;
639
640      // If we have alias analysis and it says the store won't modify the loaded
641      // value, ignore the store.
642      if (AA &&
643          (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
644        continue;
645
646      // Otherwise the store that may or may not alias the pointer, bail out.
647      ++ScanFrom;
648      return 0;
649    }
650
651    // If this is some other instruction that may clobber Ptr, bail out.
652    if (Inst->mayWriteToMemory()) {
653      // If alias analysis claims that it really won't modify the load,
654      // ignore it.
655      if (AA &&
656          (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
657        continue;
658
659      // May modify the pointer, bail out.
660      ++ScanFrom;
661      return 0;
662    }
663  }
664
665  // Got to the start of the block, we didn't find it, but are done for this
666  // block.
667  return 0;
668}
669
670/// CopyPrecedingStopPoint - If I is immediately preceded by a StopPoint,
671/// make a copy of the stoppoint before InsertPos (presumably before copying
672/// or moving I).
673void llvm::CopyPrecedingStopPoint(Instruction *I,
674                                  BasicBlock::iterator InsertPos) {
675  if (I != I->getParent()->begin()) {
676    BasicBlock::iterator BBI = I;  --BBI;
677    if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BBI)) {
678      CallInst *newDSPI = DSPI->clone();
679      newDSPI->insertBefore(InsertPos);
680    }
681  }
682}
683