BasicBlockUtils.cpp revision 882029269e0cf4b497993b8e9a754429ef035fac
1//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform manipulations on basic blocks, and
11// instructions contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/BasicBlockUtils.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Constant.h"
21#include "llvm/Type.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Transforms/Utils/Local.h"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/ValueHandle.h"
30#include <algorithm>
31using namespace llvm;
32
33/// DeleteDeadBlock - Delete the specified block, which must have no
34/// predecessors.
35void llvm::DeleteDeadBlock(BasicBlock *BB) {
36  assert((pred_begin(BB) == pred_end(BB) ||
37         // Can delete self loop.
38         BB->getSinglePredecessor() == BB) && "Block is not dead!");
39  TerminatorInst *BBTerm = BB->getTerminator();
40
41  // Loop through all of our successors and make sure they know that one
42  // of their predecessors is going away.
43  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
44    BBTerm->getSuccessor(i)->removePredecessor(BB);
45
46  // Zap all the instructions in the block.
47  while (!BB->empty()) {
48    Instruction &I = BB->back();
49    // If this instruction is used, replace uses with an arbitrary value.
50    // Because control flow can't get here, we don't care what we replace the
51    // value with.  Note that since this block is unreachable, and all values
52    // contained within it must dominate their uses, that all uses will
53    // eventually be removed (they are themselves dead).
54    if (!I.use_empty())
55      I.replaceAllUsesWith(UndefValue::get(I.getType()));
56    BB->getInstList().pop_back();
57  }
58
59  // Zap the block!
60  BB->eraseFromParent();
61}
62
63/// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
64/// any single-entry PHI nodes in it, fold them away.  This handles the case
65/// when all entries to the PHI nodes in a block are guaranteed equal, such as
66/// when the block has exactly one predecessor.
67void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
68  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
69    if (PN->getIncomingValue(0) != PN)
70      PN->replaceAllUsesWith(PN->getIncomingValue(0));
71    else
72      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
73    PN->eraseFromParent();
74  }
75}
76
77
78/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
79/// is dead. Also recursively delete any operands that become dead as
80/// a result. This includes tracing the def-use list from the PHI to see if
81/// it is ultimately unused or if it reaches an unused cycle.
82void llvm::DeleteDeadPHIs(BasicBlock *BB) {
83  // Recursively deleting a PHI may cause multiple PHIs to be deleted
84  // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
85  SmallVector<WeakVH, 8> PHIs;
86  for (BasicBlock::iterator I = BB->begin();
87       PHINode *PN = dyn_cast<PHINode>(I); ++I)
88    PHIs.push_back(PN);
89
90  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
91    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
92      RecursivelyDeleteDeadPHINode(PN);
93}
94
95/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
96/// if possible.  The return value indicates success or failure.
97bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
98  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
99  // Can't merge the entry block.  Don't merge away blocks who have their
100  // address taken: this is a bug if the predecessor block is the entry node
101  // (because we'd end up taking the address of the entry) and undesirable in
102  // any case.
103  if (pred_begin(BB) == pred_end(BB) ||
104      BB->hasAddressTaken()) return false;
105
106  BasicBlock *PredBB = *PI++;
107  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
108    if (*PI != PredBB) {
109      PredBB = 0;       // There are multiple different predecessors...
110      break;
111    }
112
113  // Can't merge if there are multiple predecessors.
114  if (!PredBB) return false;
115  // Don't break self-loops.
116  if (PredBB == BB) return false;
117  // Don't break invokes.
118  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
119
120  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
121  BasicBlock* OnlySucc = BB;
122  for (; SI != SE; ++SI)
123    if (*SI != OnlySucc) {
124      OnlySucc = 0;     // There are multiple distinct successors!
125      break;
126    }
127
128  // Can't merge if there are multiple successors.
129  if (!OnlySucc) return false;
130
131  // Can't merge if there is PHI loop.
132  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
133    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
134      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
135        if (PN->getIncomingValue(i) == PN)
136          return false;
137    } else
138      break;
139  }
140
141  // Begin by getting rid of unneeded PHIs.
142  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
143    PN->replaceAllUsesWith(PN->getIncomingValue(0));
144    BB->getInstList().pop_front();  // Delete the phi node...
145  }
146
147  // Delete the unconditional branch from the predecessor...
148  PredBB->getInstList().pop_back();
149
150  // Move all definitions in the successor to the predecessor...
151  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
152
153  // Make all PHI nodes that referred to BB now refer to Pred as their
154  // source...
155  BB->replaceAllUsesWith(PredBB);
156
157  // Inherit predecessors name if it exists.
158  if (!PredBB->hasName())
159    PredBB->takeName(BB);
160
161  // Finally, erase the old block and update dominator info.
162  if (P) {
163    if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) {
164      DomTreeNode* DTN = DT->getNode(BB);
165      DomTreeNode* PredDTN = DT->getNode(PredBB);
166
167      if (DTN) {
168        SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
169        for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
170             DE = Children.end(); DI != DE; ++DI)
171          DT->changeImmediateDominator(*DI, PredDTN);
172
173        DT->eraseNode(BB);
174      }
175    }
176  }
177
178  BB->eraseFromParent();
179
180
181  return true;
182}
183
184/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
185/// with a value, then remove and delete the original instruction.
186///
187void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
188                                BasicBlock::iterator &BI, Value *V) {
189  Instruction &I = *BI;
190  // Replaces all of the uses of the instruction with uses of the value
191  I.replaceAllUsesWith(V);
192
193  // Make sure to propagate a name if there is one already.
194  if (I.hasName() && !V->hasName())
195    V->takeName(&I);
196
197  // Delete the unnecessary instruction now...
198  BI = BIL.erase(BI);
199}
200
201
202/// ReplaceInstWithInst - Replace the instruction specified by BI with the
203/// instruction specified by I.  The original instruction is deleted and BI is
204/// updated to point to the new instruction.
205///
206void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
207                               BasicBlock::iterator &BI, Instruction *I) {
208  assert(I->getParent() == 0 &&
209         "ReplaceInstWithInst: Instruction already inserted into basic block!");
210
211  // Insert the new instruction into the basic block...
212  BasicBlock::iterator New = BIL.insert(BI, I);
213
214  // Replace all uses of the old instruction, and delete it.
215  ReplaceInstWithValue(BIL, BI, I);
216
217  // Move BI back to point to the newly inserted instruction
218  BI = New;
219}
220
221/// ReplaceInstWithInst - Replace the instruction specified by From with the
222/// instruction specified by To.
223///
224void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
225  BasicBlock::iterator BI(From);
226  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
227}
228
229/// RemoveSuccessor - Change the specified terminator instruction such that its
230/// successor SuccNum no longer exists.  Because this reduces the outgoing
231/// degree of the current basic block, the actual terminator instruction itself
232/// may have to be changed.  In the case where the last successor of the block
233/// is deleted, a return instruction is inserted in its place which can cause a
234/// surprising change in program behavior if it is not expected.
235///
236void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
237  assert(SuccNum < TI->getNumSuccessors() &&
238         "Trying to remove a nonexistant successor!");
239
240  // If our old successor block contains any PHI nodes, remove the entry in the
241  // PHI nodes that comes from this branch...
242  //
243  BasicBlock *BB = TI->getParent();
244  TI->getSuccessor(SuccNum)->removePredecessor(BB);
245
246  TerminatorInst *NewTI = 0;
247  switch (TI->getOpcode()) {
248  case Instruction::Br:
249    // If this is a conditional branch... convert to unconditional branch.
250    if (TI->getNumSuccessors() == 2) {
251      cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
252    } else {                    // Otherwise convert to a return instruction...
253      Value *RetVal = 0;
254
255      // Create a value to return... if the function doesn't return null...
256      if (BB->getParent()->getReturnType() != Type::getVoidTy(TI->getContext()))
257        RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
258
259      // Create the return...
260      NewTI = ReturnInst::Create(TI->getContext(), RetVal);
261    }
262    break;
263
264  case Instruction::Invoke:    // Should convert to call
265  case Instruction::Switch:    // Should remove entry
266  default:
267  case Instruction::Ret:       // Cannot happen, has no successors!
268    llvm_unreachable("Unhandled terminator instruction type in RemoveSuccessor!");
269  }
270
271  if (NewTI)   // If it's a different instruction, replace.
272    ReplaceInstWithInst(TI, NewTI);
273}
274
275/// SplitEdge -  Split the edge connecting specified block. Pass P must
276/// not be NULL.
277BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
278  assert(!isa<IndirectBrInst>(BB->getTerminator()) &&
279         "Cannot split an edge from an IndirectBrInst");
280  TerminatorInst *LatchTerm = BB->getTerminator();
281  unsigned SuccNum = 0;
282#ifndef NDEBUG
283  unsigned e = LatchTerm->getNumSuccessors();
284#endif
285  for (unsigned i = 0; ; ++i) {
286    assert(i != e && "Didn't find edge?");
287    if (LatchTerm->getSuccessor(i) == Succ) {
288      SuccNum = i;
289      break;
290    }
291  }
292
293  // If this is a critical edge, let SplitCriticalEdge do it.
294  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
295    return LatchTerm->getSuccessor(SuccNum);
296
297  // If the edge isn't critical, then BB has a single successor or Succ has a
298  // single pred.  Split the block.
299  BasicBlock::iterator SplitPoint;
300  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
301    // If the successor only has a single pred, split the top of the successor
302    // block.
303    assert(SP == BB && "CFG broken");
304    SP = NULL;
305    return SplitBlock(Succ, Succ->begin(), P);
306  } else {
307    // Otherwise, if BB has a single successor, split it at the bottom of the
308    // block.
309    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
310           "Should have a single succ!");
311    return SplitBlock(BB, BB->getTerminator(), P);
312  }
313}
314
315/// SplitBlock - Split the specified block at the specified instruction - every
316/// thing before SplitPt stays in Old and everything starting with SplitPt moves
317/// to a new block.  The two blocks are joined by an unconditional branch and
318/// the loop info is updated.
319///
320BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
321  BasicBlock::iterator SplitIt = SplitPt;
322  while (isa<PHINode>(SplitIt))
323    ++SplitIt;
324  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
325
326  // The new block lives in whichever loop the old one did. This preserves
327  // LCSSA as well, because we force the split point to be after any PHI nodes.
328  if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
329    if (Loop *L = LI->getLoopFor(Old))
330      L->addBasicBlockToLoop(New, LI->getBase());
331
332  if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>())
333    {
334      // Old dominates New. New node domiantes all other nodes dominated by Old.
335      DomTreeNode *OldNode = DT->getNode(Old);
336      std::vector<DomTreeNode *> Children;
337      for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
338           I != E; ++I)
339        Children.push_back(*I);
340
341      DomTreeNode *NewNode =   DT->addNewBlock(New,Old);
342
343      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
344             E = Children.end(); I != E; ++I)
345        DT->changeImmediateDominator(*I, NewNode);
346    }
347
348  if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
349    DF->splitBlock(Old);
350
351  return New;
352}
353
354
355/// SplitBlockPredecessors - This method transforms BB by introducing a new
356/// basic block into the function, and moving some of the predecessors of BB to
357/// be predecessors of the new block.  The new predecessors are indicated by the
358/// Preds array, which has NumPreds elements in it.  The new block is given a
359/// suffix of 'Suffix'.
360///
361/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
362/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
363/// In particular, it does not preserve LoopSimplify (because it's
364/// complicated to handle the case where one of the edges being split
365/// is an exit of a loop with other exits).
366///
367BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
368                                         BasicBlock *const *Preds,
369                                         unsigned NumPreds, const char *Suffix,
370                                         Pass *P) {
371  // Create new basic block, insert right before the original block.
372  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
373                                         BB->getParent(), BB);
374
375  // The new block unconditionally branches to the old block.
376  BranchInst *BI = BranchInst::Create(BB, NewBB);
377
378  LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
379  Loop *L = LI ? LI->getLoopFor(BB) : 0;
380  bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
381
382  // Move the edges from Preds to point to NewBB instead of BB.
383  // While here, if we need to preserve loop analyses, collect
384  // some information about how this split will affect loops.
385  bool HasLoopExit = false;
386  bool IsLoopEntry = !!L;
387  bool SplitMakesNewLoopHeader = false;
388  for (unsigned i = 0; i != NumPreds; ++i) {
389    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
390
391    if (LI) {
392      // If we need to preserve LCSSA, determine if any of
393      // the preds is a loop exit.
394      if (PreserveLCSSA)
395        if (Loop *PL = LI->getLoopFor(Preds[i]))
396          if (!PL->contains(BB))
397            HasLoopExit = true;
398      // If we need to preserve LoopInfo, note whether any of the
399      // preds crosses an interesting loop boundary.
400      if (L) {
401        if (L->contains(Preds[i]))
402          IsLoopEntry = false;
403        else
404          SplitMakesNewLoopHeader = true;
405      }
406    }
407  }
408
409  // Update dominator tree and dominator frontier if available.
410  DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
411  if (DT)
412    DT->splitBlock(NewBB);
413  if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0)
414    DF->splitBlock(NewBB);
415
416  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
417  // node becomes an incoming value for BB's phi node.  However, if the Preds
418  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
419  // account for the newly created predecessor.
420  if (NumPreds == 0) {
421    // Insert dummy values as the incoming value.
422    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
423      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
424    return NewBB;
425  }
426
427  AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
428
429  if (L) {
430    if (IsLoopEntry) {
431      // Add the new block to the nearest enclosing loop (and not an
432      // adjacent loop). To find this, examine each of the predecessors and
433      // determine which loops enclose them, and select the most-nested loop
434      // which contains the loop containing the block being split.
435      Loop *InnermostPredLoop = 0;
436      for (unsigned i = 0; i != NumPreds; ++i)
437        if (Loop *PredLoop = LI->getLoopFor(Preds[i])) {
438          // Seek a loop which actually contains the block being split (to
439          // avoid adjacent loops).
440          while (PredLoop && !PredLoop->contains(BB))
441            PredLoop = PredLoop->getParentLoop();
442          // Select the most-nested of these loops which contains the block.
443          if (PredLoop &&
444              PredLoop->contains(BB) &&
445              (!InnermostPredLoop ||
446               InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
447            InnermostPredLoop = PredLoop;
448        }
449      if (InnermostPredLoop)
450        InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
451    } else {
452      L->addBasicBlockToLoop(NewBB, LI->getBase());
453      if (SplitMakesNewLoopHeader)
454        L->moveToHeader(NewBB);
455    }
456  }
457
458  // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
459  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
460    PHINode *PN = cast<PHINode>(I++);
461
462    // Check to see if all of the values coming in are the same.  If so, we
463    // don't need to create a new PHI node, unless it's needed for LCSSA.
464    Value *InVal = 0;
465    if (!HasLoopExit) {
466      InVal = PN->getIncomingValueForBlock(Preds[0]);
467      for (unsigned i = 1; i != NumPreds; ++i)
468        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
469          InVal = 0;
470          break;
471        }
472    }
473
474    if (InVal) {
475      // If all incoming values for the new PHI would be the same, just don't
476      // make a new PHI.  Instead, just remove the incoming values from the old
477      // PHI.
478      for (unsigned i = 0; i != NumPreds; ++i)
479        PN->removeIncomingValue(Preds[i], false);
480    } else {
481      // If the values coming into the block are not the same, we need a PHI.
482      // Create the new PHI node, insert it into NewBB at the end of the block
483      PHINode *NewPHI =
484        PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
485      if (AA) AA->copyValue(PN, NewPHI);
486
487      // Move all of the PHI values for 'Preds' to the new PHI.
488      for (unsigned i = 0; i != NumPreds; ++i) {
489        Value *V = PN->removeIncomingValue(Preds[i], false);
490        NewPHI->addIncoming(V, Preds[i]);
491      }
492      InVal = NewPHI;
493    }
494
495    // Add an incoming value to the PHI node in the loop for the preheader
496    // edge.
497    PN->addIncoming(InVal, NewBB);
498  }
499
500  return NewBB;
501}
502
503/// FindFunctionBackedges - Analyze the specified function to find all of the
504/// loop backedges in the function and return them.  This is a relatively cheap
505/// (compared to computing dominators and loop info) analysis.
506///
507/// The output is added to Result, as pairs of <from,to> edge info.
508void llvm::FindFunctionBackedges(const Function &F,
509     SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
510  const BasicBlock *BB = &F.getEntryBlock();
511  if (succ_begin(BB) == succ_end(BB))
512    return;
513
514  SmallPtrSet<const BasicBlock*, 8> Visited;
515  SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
516  SmallPtrSet<const BasicBlock*, 8> InStack;
517
518  Visited.insert(BB);
519  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
520  InStack.insert(BB);
521  do {
522    std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
523    const BasicBlock *ParentBB = Top.first;
524    succ_const_iterator &I = Top.second;
525
526    bool FoundNew = false;
527    while (I != succ_end(ParentBB)) {
528      BB = *I++;
529      if (Visited.insert(BB)) {
530        FoundNew = true;
531        break;
532      }
533      // Successor is in VisitStack, it's a back edge.
534      if (InStack.count(BB))
535        Result.push_back(std::make_pair(ParentBB, BB));
536    }
537
538    if (FoundNew) {
539      // Go down one level if there is a unvisited successor.
540      InStack.insert(BB);
541      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
542    } else {
543      // Go up one level.
544      InStack.erase(VisitStack.pop_back_val().first);
545    }
546  } while (!VisitStack.empty());
547
548
549}
550
551
552
553/// AreEquivalentAddressValues - Test if A and B will obviously have the same
554/// value. This includes recognizing that %t0 and %t1 will have the same
555/// value in code like this:
556///   %t0 = getelementptr \@a, 0, 3
557///   store i32 0, i32* %t0
558///   %t1 = getelementptr \@a, 0, 3
559///   %t2 = load i32* %t1
560///
561static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
562  // Test if the values are trivially equivalent.
563  if (A == B) return true;
564
565  // Test if the values come from identical arithmetic instructions.
566  // Use isIdenticalToWhenDefined instead of isIdenticalTo because
567  // this function is only used when one address use dominates the
568  // other, which means that they'll always either have the same
569  // value or one of them will have an undefined value.
570  if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
571      isa<PHINode>(A) || isa<GetElementPtrInst>(A))
572    if (const Instruction *BI = dyn_cast<Instruction>(B))
573      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
574        return true;
575
576  // Otherwise they may not be equivalent.
577  return false;
578}
579
580/// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
581/// instruction before ScanFrom) checking to see if we have the value at the
582/// memory address *Ptr locally available within a small number of instructions.
583/// If the value is available, return it.
584///
585/// If not, return the iterator for the last validated instruction that the
586/// value would be live through.  If we scanned the entire block and didn't find
587/// something that invalidates *Ptr or provides it, ScanFrom would be left at
588/// begin() and this returns null.  ScanFrom could also be left
589///
590/// MaxInstsToScan specifies the maximum instructions to scan in the block.  If
591/// it is set to 0, it will scan the whole block. You can also optionally
592/// specify an alias analysis implementation, which makes this more precise.
593Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
594                                      BasicBlock::iterator &ScanFrom,
595                                      unsigned MaxInstsToScan,
596                                      AliasAnalysis *AA) {
597  if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
598
599  // If we're using alias analysis to disambiguate get the size of *Ptr.
600  unsigned AccessSize = 0;
601  if (AA) {
602    const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
603    AccessSize = AA->getTypeStoreSize(AccessTy);
604  }
605
606  while (ScanFrom != ScanBB->begin()) {
607    // We must ignore debug info directives when counting (otherwise they
608    // would affect codegen).
609    Instruction *Inst = --ScanFrom;
610    if (isa<DbgInfoIntrinsic>(Inst))
611      continue;
612    // We skip pointer-to-pointer bitcasts, which are NOPs.
613    // It is necessary for correctness to skip those that feed into a
614    // llvm.dbg.declare, as these are not present when debugging is off.
615    if (isa<BitCastInst>(Inst) && isa<PointerType>(Inst->getType()))
616      continue;
617
618    // Restore ScanFrom to expected value in case next test succeeds
619    ScanFrom++;
620
621    // Don't scan huge blocks.
622    if (MaxInstsToScan-- == 0) return 0;
623
624    --ScanFrom;
625    // If this is a load of Ptr, the loaded value is available.
626    if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
627      if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
628        return LI;
629
630    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
631      // If this is a store through Ptr, the value is available!
632      if (AreEquivalentAddressValues(SI->getOperand(1), Ptr))
633        return SI->getOperand(0);
634
635      // If Ptr is an alloca and this is a store to a different alloca, ignore
636      // the store.  This is a trivial form of alias analysis that is important
637      // for reg2mem'd code.
638      if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
639          (isa<AllocaInst>(SI->getOperand(1)) ||
640           isa<GlobalVariable>(SI->getOperand(1))))
641        continue;
642
643      // If we have alias analysis and it says the store won't modify the loaded
644      // value, ignore the store.
645      if (AA &&
646          (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
647        continue;
648
649      // Otherwise the store that may or may not alias the pointer, bail out.
650      ++ScanFrom;
651      return 0;
652    }
653
654    // If this is some other instruction that may clobber Ptr, bail out.
655    if (Inst->mayWriteToMemory()) {
656      // If alias analysis claims that it really won't modify the load,
657      // ignore it.
658      if (AA &&
659          (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
660        continue;
661
662      // May modify the pointer, bail out.
663      ++ScanFrom;
664      return 0;
665    }
666  }
667
668  // Got to the start of the block, we didn't find it, but are done for this
669  // block.
670  return 0;
671}
672
673/// CopyPrecedingStopPoint - If I is immediately preceded by a StopPoint,
674/// make a copy of the stoppoint before InsertPos (presumably before copying
675/// or moving I).
676void llvm::CopyPrecedingStopPoint(Instruction *I,
677                                  BasicBlock::iterator InsertPos) {
678  if (I != I->getParent()->begin()) {
679    BasicBlock::iterator BBI = I;  --BBI;
680    if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BBI)) {
681      CallInst *newDSPI = cast<CallInst>(DSPI->clone());
682      newDSPI->insertBefore(InsertPos);
683    }
684  }
685}
686