BasicBlockUtils.cpp revision b0433d4b2fb66922fa3625871840ccb72c8a9dec
1//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform manipulations on basic blocks, and
11// instructions contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/BasicBlockUtils.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Constant.h"
20#include "llvm/Type.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/Analysis/DominanceFrontier.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Transforms/Utils/Local.h"
26#include "llvm/Transforms/Scalar.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/ValueHandle.h"
29#include <algorithm>
30using namespace llvm;
31
32/// DeleteDeadBlock - Delete the specified block, which must have no
33/// predecessors.
34void llvm::DeleteDeadBlock(BasicBlock *BB) {
35  assert((pred_begin(BB) == pred_end(BB) ||
36         // Can delete self loop.
37         BB->getSinglePredecessor() == BB) && "Block is not dead!");
38  TerminatorInst *BBTerm = BB->getTerminator();
39
40  // Loop through all of our successors and make sure they know that one
41  // of their predecessors is going away.
42  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
43    BBTerm->getSuccessor(i)->removePredecessor(BB);
44
45  // Zap all the instructions in the block.
46  while (!BB->empty()) {
47    Instruction &I = BB->back();
48    // If this instruction is used, replace uses with an arbitrary value.
49    // Because control flow can't get here, we don't care what we replace the
50    // value with.  Note that since this block is unreachable, and all values
51    // contained within it must dominate their uses, that all uses will
52    // eventually be removed (they are themselves dead).
53    if (!I.use_empty())
54      I.replaceAllUsesWith(UndefValue::get(I.getType()));
55    BB->getInstList().pop_back();
56  }
57
58  // Zap the block!
59  BB->eraseFromParent();
60}
61
62/// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
63/// any single-entry PHI nodes in it, fold them away.  This handles the case
64/// when all entries to the PHI nodes in a block are guaranteed equal, such as
65/// when the block has exactly one predecessor.
66void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
67  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
68    if (PN->getIncomingValue(0) != PN)
69      PN->replaceAllUsesWith(PN->getIncomingValue(0));
70    else
71      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
72    PN->eraseFromParent();
73  }
74}
75
76
77/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
78/// is dead. Also recursively delete any operands that become dead as
79/// a result. This includes tracing the def-use list from the PHI to see if
80/// it is ultimately unused or if it reaches an unused cycle.
81bool llvm::DeleteDeadPHIs(BasicBlock *BB) {
82  // Recursively deleting a PHI may cause multiple PHIs to be deleted
83  // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
84  SmallVector<WeakVH, 8> PHIs;
85  for (BasicBlock::iterator I = BB->begin();
86       PHINode *PN = dyn_cast<PHINode>(I); ++I)
87    PHIs.push_back(PN);
88
89  bool Changed = false;
90  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
91    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
92      Changed |= RecursivelyDeleteDeadPHINode(PN);
93
94  return Changed;
95}
96
97/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
98/// if possible.  The return value indicates success or failure.
99bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
100  // Don't merge away blocks who have their address taken.
101  if (BB->hasAddressTaken()) return false;
102
103  // Can't merge if there are multiple predecessors, or no predecessors.
104  BasicBlock *PredBB = BB->getUniquePredecessor();
105  if (!PredBB) return false;
106
107  // Don't break self-loops.
108  if (PredBB == BB) return false;
109  // Don't break invokes.
110  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
111
112  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
113  BasicBlock* OnlySucc = BB;
114  for (; SI != SE; ++SI)
115    if (*SI != OnlySucc) {
116      OnlySucc = 0;     // There are multiple distinct successors!
117      break;
118    }
119
120  // Can't merge if there are multiple successors.
121  if (!OnlySucc) return false;
122
123  // Can't merge if there is PHI loop.
124  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
125    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
126      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
127        if (PN->getIncomingValue(i) == PN)
128          return false;
129    } else
130      break;
131  }
132
133  // Begin by getting rid of unneeded PHIs.
134  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
135    PN->replaceAllUsesWith(PN->getIncomingValue(0));
136    BB->getInstList().pop_front();  // Delete the phi node...
137  }
138
139  // Delete the unconditional branch from the predecessor...
140  PredBB->getInstList().pop_back();
141
142  // Move all definitions in the successor to the predecessor...
143  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
144
145  // Make all PHI nodes that referred to BB now refer to Pred as their
146  // source...
147  BB->replaceAllUsesWith(PredBB);
148
149  // Inherit predecessors name if it exists.
150  if (!PredBB->hasName())
151    PredBB->takeName(BB);
152
153  // Finally, erase the old block and update dominator info.
154  if (P) {
155    if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) {
156      DomTreeNode* DTN = DT->getNode(BB);
157      DomTreeNode* PredDTN = DT->getNode(PredBB);
158
159      if (DTN) {
160        SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
161        for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
162             DE = Children.end(); DI != DE; ++DI)
163          DT->changeImmediateDominator(*DI, PredDTN);
164
165        DT->eraseNode(BB);
166      }
167    }
168  }
169
170  BB->eraseFromParent();
171
172
173  return true;
174}
175
176/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
177/// with a value, then remove and delete the original instruction.
178///
179void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
180                                BasicBlock::iterator &BI, Value *V) {
181  Instruction &I = *BI;
182  // Replaces all of the uses of the instruction with uses of the value
183  I.replaceAllUsesWith(V);
184
185  // Make sure to propagate a name if there is one already.
186  if (I.hasName() && !V->hasName())
187    V->takeName(&I);
188
189  // Delete the unnecessary instruction now...
190  BI = BIL.erase(BI);
191}
192
193
194/// ReplaceInstWithInst - Replace the instruction specified by BI with the
195/// instruction specified by I.  The original instruction is deleted and BI is
196/// updated to point to the new instruction.
197///
198void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
199                               BasicBlock::iterator &BI, Instruction *I) {
200  assert(I->getParent() == 0 &&
201         "ReplaceInstWithInst: Instruction already inserted into basic block!");
202
203  // Insert the new instruction into the basic block...
204  BasicBlock::iterator New = BIL.insert(BI, I);
205
206  // Replace all uses of the old instruction, and delete it.
207  ReplaceInstWithValue(BIL, BI, I);
208
209  // Move BI back to point to the newly inserted instruction
210  BI = New;
211}
212
213/// ReplaceInstWithInst - Replace the instruction specified by From with the
214/// instruction specified by To.
215///
216void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
217  BasicBlock::iterator BI(From);
218  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
219}
220
221/// GetSuccessorNumber - Search for the specified successor of basic block BB
222/// and return its position in the terminator instruction's list of
223/// successors.  It is an error to call this with a block that is not a
224/// successor.
225unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
226  TerminatorInst *Term = BB->getTerminator();
227#ifndef NDEBUG
228  unsigned e = Term->getNumSuccessors();
229#endif
230  for (unsigned i = 0; ; ++i) {
231    assert(i != e && "Didn't find edge?");
232    if (Term->getSuccessor(i) == Succ)
233      return i;
234  }
235  return 0;
236}
237
238/// SplitEdge -  Split the edge connecting specified block. Pass P must
239/// not be NULL.
240BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
241  unsigned SuccNum = GetSuccessorNumber(BB, Succ);
242
243  // If this is a critical edge, let SplitCriticalEdge do it.
244  TerminatorInst *LatchTerm = BB->getTerminator();
245  if (SplitCriticalEdge(LatchTerm, SuccNum, P))
246    return LatchTerm->getSuccessor(SuccNum);
247
248  // If the edge isn't critical, then BB has a single successor or Succ has a
249  // single pred.  Split the block.
250  BasicBlock::iterator SplitPoint;
251  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
252    // If the successor only has a single pred, split the top of the successor
253    // block.
254    assert(SP == BB && "CFG broken");
255    SP = NULL;
256    return SplitBlock(Succ, Succ->begin(), P);
257  }
258
259  // Otherwise, if BB has a single successor, split it at the bottom of the
260  // block.
261  assert(BB->getTerminator()->getNumSuccessors() == 1 &&
262         "Should have a single succ!");
263  return SplitBlock(BB, BB->getTerminator(), P);
264}
265
266/// SplitBlock - Split the specified block at the specified instruction - every
267/// thing before SplitPt stays in Old and everything starting with SplitPt moves
268/// to a new block.  The two blocks are joined by an unconditional branch and
269/// the loop info is updated.
270///
271BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
272  BasicBlock::iterator SplitIt = SplitPt;
273  while (isa<PHINode>(SplitIt))
274    ++SplitIt;
275  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
276
277  // The new block lives in whichever loop the old one did. This preserves
278  // LCSSA as well, because we force the split point to be after any PHI nodes.
279  if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
280    if (Loop *L = LI->getLoopFor(Old))
281      L->addBasicBlockToLoop(New, LI->getBase());
282
283  if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
284    // Old dominates New. New node dominates all other nodes dominated by Old.
285    DomTreeNode *OldNode = DT->getNode(Old);
286    std::vector<DomTreeNode *> Children;
287    for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
288         I != E; ++I)
289      Children.push_back(*I);
290
291      DomTreeNode *NewNode = DT->addNewBlock(New,Old);
292      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
293             E = Children.end(); I != E; ++I)
294        DT->changeImmediateDominator(*I, NewNode);
295  }
296
297  if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
298    DF->splitBlock(Old);
299
300  return New;
301}
302
303
304/// SplitBlockPredecessors - This method transforms BB by introducing a new
305/// basic block into the function, and moving some of the predecessors of BB to
306/// be predecessors of the new block.  The new predecessors are indicated by the
307/// Preds array, which has NumPreds elements in it.  The new block is given a
308/// suffix of 'Suffix'.
309///
310/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
311/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
312/// In particular, it does not preserve LoopSimplify (because it's
313/// complicated to handle the case where one of the edges being split
314/// is an exit of a loop with other exits).
315///
316BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
317                                         BasicBlock *const *Preds,
318                                         unsigned NumPreds, const char *Suffix,
319                                         Pass *P) {
320  // Create new basic block, insert right before the original block.
321  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
322                                         BB->getParent(), BB);
323
324  // The new block unconditionally branches to the old block.
325  BranchInst *BI = BranchInst::Create(BB, NewBB);
326
327  LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
328  Loop *L = LI ? LI->getLoopFor(BB) : 0;
329  bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
330
331  // Move the edges from Preds to point to NewBB instead of BB.
332  // While here, if we need to preserve loop analyses, collect
333  // some information about how this split will affect loops.
334  bool HasLoopExit = false;
335  bool IsLoopEntry = !!L;
336  bool SplitMakesNewLoopHeader = false;
337  for (unsigned i = 0; i != NumPreds; ++i) {
338    // This is slightly more strict than necessary; the minimum requirement
339    // is that there be no more than one indirectbr branching to BB. And
340    // all BlockAddress uses would need to be updated.
341    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
342           "Cannot split an edge from an IndirectBrInst");
343
344    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
345
346    if (LI) {
347      // If we need to preserve LCSSA, determine if any of
348      // the preds is a loop exit.
349      if (PreserveLCSSA)
350        if (Loop *PL = LI->getLoopFor(Preds[i]))
351          if (!PL->contains(BB))
352            HasLoopExit = true;
353      // If we need to preserve LoopInfo, note whether any of the
354      // preds crosses an interesting loop boundary.
355      if (L) {
356        if (L->contains(Preds[i]))
357          IsLoopEntry = false;
358        else
359          SplitMakesNewLoopHeader = true;
360      }
361    }
362  }
363
364  // Update dominator tree and dominator frontier if available.
365  DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
366  if (DT)
367    DT->splitBlock(NewBB);
368  if (DominanceFrontier *DF =
369        P ? P->getAnalysisIfAvailable<DominanceFrontier>() : 0)
370    DF->splitBlock(NewBB);
371
372  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
373  // node becomes an incoming value for BB's phi node.  However, if the Preds
374  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
375  // account for the newly created predecessor.
376  if (NumPreds == 0) {
377    // Insert dummy values as the incoming value.
378    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
379      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
380    return NewBB;
381  }
382
383  AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
384
385  if (L) {
386    if (IsLoopEntry) {
387      // Add the new block to the nearest enclosing loop (and not an
388      // adjacent loop). To find this, examine each of the predecessors and
389      // determine which loops enclose them, and select the most-nested loop
390      // which contains the loop containing the block being split.
391      Loop *InnermostPredLoop = 0;
392      for (unsigned i = 0; i != NumPreds; ++i)
393        if (Loop *PredLoop = LI->getLoopFor(Preds[i])) {
394          // Seek a loop which actually contains the block being split (to
395          // avoid adjacent loops).
396          while (PredLoop && !PredLoop->contains(BB))
397            PredLoop = PredLoop->getParentLoop();
398          // Select the most-nested of these loops which contains the block.
399          if (PredLoop &&
400              PredLoop->contains(BB) &&
401              (!InnermostPredLoop ||
402               InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
403            InnermostPredLoop = PredLoop;
404        }
405      if (InnermostPredLoop)
406        InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
407    } else {
408      L->addBasicBlockToLoop(NewBB, LI->getBase());
409      if (SplitMakesNewLoopHeader)
410        L->moveToHeader(NewBB);
411    }
412  }
413
414  // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
415  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
416    PHINode *PN = cast<PHINode>(I++);
417
418    // Check to see if all of the values coming in are the same.  If so, we
419    // don't need to create a new PHI node, unless it's needed for LCSSA.
420    Value *InVal = 0;
421    if (!HasLoopExit) {
422      InVal = PN->getIncomingValueForBlock(Preds[0]);
423      for (unsigned i = 1; i != NumPreds; ++i)
424        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
425          InVal = 0;
426          break;
427        }
428    }
429
430    if (InVal) {
431      // If all incoming values for the new PHI would be the same, just don't
432      // make a new PHI.  Instead, just remove the incoming values from the old
433      // PHI.
434      for (unsigned i = 0; i != NumPreds; ++i)
435        PN->removeIncomingValue(Preds[i], false);
436    } else {
437      // If the values coming into the block are not the same, we need a PHI.
438      // Create the new PHI node, insert it into NewBB at the end of the block
439      PHINode *NewPHI =
440        PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
441      if (AA) AA->copyValue(PN, NewPHI);
442
443      // Move all of the PHI values for 'Preds' to the new PHI.
444      for (unsigned i = 0; i != NumPreds; ++i) {
445        Value *V = PN->removeIncomingValue(Preds[i], false);
446        NewPHI->addIncoming(V, Preds[i]);
447      }
448      InVal = NewPHI;
449    }
450
451    // Add an incoming value to the PHI node in the loop for the preheader
452    // edge.
453    PN->addIncoming(InVal, NewBB);
454  }
455
456  return NewBB;
457}
458
459/// FindFunctionBackedges - Analyze the specified function to find all of the
460/// loop backedges in the function and return them.  This is a relatively cheap
461/// (compared to computing dominators and loop info) analysis.
462///
463/// The output is added to Result, as pairs of <from,to> edge info.
464void llvm::FindFunctionBackedges(const Function &F,
465     SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
466  const BasicBlock *BB = &F.getEntryBlock();
467  if (succ_begin(BB) == succ_end(BB))
468    return;
469
470  SmallPtrSet<const BasicBlock*, 8> Visited;
471  SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
472  SmallPtrSet<const BasicBlock*, 8> InStack;
473
474  Visited.insert(BB);
475  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
476  InStack.insert(BB);
477  do {
478    std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
479    const BasicBlock *ParentBB = Top.first;
480    succ_const_iterator &I = Top.second;
481
482    bool FoundNew = false;
483    while (I != succ_end(ParentBB)) {
484      BB = *I++;
485      if (Visited.insert(BB)) {
486        FoundNew = true;
487        break;
488      }
489      // Successor is in VisitStack, it's a back edge.
490      if (InStack.count(BB))
491        Result.push_back(std::make_pair(ParentBB, BB));
492    }
493
494    if (FoundNew) {
495      // Go down one level if there is a unvisited successor.
496      InStack.insert(BB);
497      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
498    } else {
499      // Go up one level.
500      InStack.erase(VisitStack.pop_back_val().first);
501    }
502  } while (!VisitStack.empty());
503
504
505}
506