BasicBlockUtils.cpp revision dc85f8ab808aec2f673262f5145eda58538cfb26
1//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform manipulations on basic blocks, and
11// instructions contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/BasicBlockUtils.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Constant.h"
20#include "llvm/Type.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/Analysis/DominanceFrontier.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Transforms/Utils/Local.h"
26#include "llvm/Transforms/Scalar.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/ValueHandle.h"
29#include <algorithm>
30using namespace llvm;
31
32/// DeleteDeadBlock - Delete the specified block, which must have no
33/// predecessors.
34void llvm::DeleteDeadBlock(BasicBlock *BB) {
35  assert((pred_begin(BB) == pred_end(BB) ||
36         // Can delete self loop.
37         BB->getSinglePredecessor() == BB) && "Block is not dead!");
38  TerminatorInst *BBTerm = BB->getTerminator();
39
40  // Loop through all of our successors and make sure they know that one
41  // of their predecessors is going away.
42  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
43    BBTerm->getSuccessor(i)->removePredecessor(BB);
44
45  // Zap all the instructions in the block.
46  while (!BB->empty()) {
47    Instruction &I = BB->back();
48    // If this instruction is used, replace uses with an arbitrary value.
49    // Because control flow can't get here, we don't care what we replace the
50    // value with.  Note that since this block is unreachable, and all values
51    // contained within it must dominate their uses, that all uses will
52    // eventually be removed (they are themselves dead).
53    if (!I.use_empty())
54      I.replaceAllUsesWith(UndefValue::get(I.getType()));
55    BB->getInstList().pop_back();
56  }
57
58  // Zap the block!
59  BB->eraseFromParent();
60}
61
62/// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
63/// any single-entry PHI nodes in it, fold them away.  This handles the case
64/// when all entries to the PHI nodes in a block are guaranteed equal, such as
65/// when the block has exactly one predecessor.
66void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
67  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
68    if (PN->getIncomingValue(0) != PN)
69      PN->replaceAllUsesWith(PN->getIncomingValue(0));
70    else
71      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
72    PN->eraseFromParent();
73  }
74}
75
76
77/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
78/// is dead. Also recursively delete any operands that become dead as
79/// a result. This includes tracing the def-use list from the PHI to see if
80/// it is ultimately unused or if it reaches an unused cycle.
81bool llvm::DeleteDeadPHIs(BasicBlock *BB) {
82  // Recursively deleting a PHI may cause multiple PHIs to be deleted
83  // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
84  SmallVector<WeakVH, 8> PHIs;
85  for (BasicBlock::iterator I = BB->begin();
86       PHINode *PN = dyn_cast<PHINode>(I); ++I)
87    PHIs.push_back(PN);
88
89  bool Changed = false;
90  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
91    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
92      Changed |= RecursivelyDeleteDeadPHINode(PN);
93
94  return Changed;
95}
96
97/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
98/// if possible.  The return value indicates success or failure.
99bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
100  // Don't merge away blocks who have their address taken.
101  if (BB->hasAddressTaken()) return false;
102
103  // Can't merge if there are multiple predecessors, or no predecessors.
104  BasicBlock *PredBB = BB->getUniquePredecessor();
105  if (!PredBB) return false;
106
107  // Don't break self-loops.
108  if (PredBB == BB) return false;
109  // Don't break invokes.
110  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
111
112  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
113  BasicBlock *OnlySucc = BB;
114  for (; SI != SE; ++SI)
115    if (*SI != OnlySucc) {
116      OnlySucc = 0;     // There are multiple distinct successors!
117      break;
118    }
119
120  // Can't merge if there are multiple successors.
121  if (!OnlySucc) return false;
122
123  // Can't merge if there is PHI loop.
124  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
125    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
126      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
127        if (PN->getIncomingValue(i) == PN)
128          return false;
129    } else
130      break;
131  }
132
133  // Begin by getting rid of unneeded PHIs.
134  if (isa<PHINode>(BB->front()))
135    FoldSingleEntryPHINodes(BB);
136
137  // Delete the unconditional branch from the predecessor...
138  PredBB->getInstList().pop_back();
139
140  // Move all definitions in the successor to the predecessor...
141  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
142
143  // Make all PHI nodes that referred to BB now refer to Pred as their
144  // source...
145  BB->replaceAllUsesWith(PredBB);
146
147  // Inherit predecessors name if it exists.
148  if (!PredBB->hasName())
149    PredBB->takeName(BB);
150
151  // Finally, erase the old block and update dominator info.
152  if (P) {
153    if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
154      if (DomTreeNode *DTN = DT->getNode(BB)) {
155        DomTreeNode *PredDTN = DT->getNode(PredBB);
156        SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
157        for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
158             DE = Children.end(); DI != DE; ++DI)
159          DT->changeImmediateDominator(*DI, PredDTN);
160
161        DT->eraseNode(BB);
162      }
163
164      if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
165        LI->removeBlock(BB);
166    }
167  }
168
169  BB->eraseFromParent();
170  return true;
171}
172
173/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
174/// with a value, then remove and delete the original instruction.
175///
176void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
177                                BasicBlock::iterator &BI, Value *V) {
178  Instruction &I = *BI;
179  // Replaces all of the uses of the instruction with uses of the value
180  I.replaceAllUsesWith(V);
181
182  // Make sure to propagate a name if there is one already.
183  if (I.hasName() && !V->hasName())
184    V->takeName(&I);
185
186  // Delete the unnecessary instruction now...
187  BI = BIL.erase(BI);
188}
189
190
191/// ReplaceInstWithInst - Replace the instruction specified by BI with the
192/// instruction specified by I.  The original instruction is deleted and BI is
193/// updated to point to the new instruction.
194///
195void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
196                               BasicBlock::iterator &BI, Instruction *I) {
197  assert(I->getParent() == 0 &&
198         "ReplaceInstWithInst: Instruction already inserted into basic block!");
199
200  // Insert the new instruction into the basic block...
201  BasicBlock::iterator New = BIL.insert(BI, I);
202
203  // Replace all uses of the old instruction, and delete it.
204  ReplaceInstWithValue(BIL, BI, I);
205
206  // Move BI back to point to the newly inserted instruction
207  BI = New;
208}
209
210/// ReplaceInstWithInst - Replace the instruction specified by From with the
211/// instruction specified by To.
212///
213void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
214  BasicBlock::iterator BI(From);
215  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
216}
217
218/// GetSuccessorNumber - Search for the specified successor of basic block BB
219/// and return its position in the terminator instruction's list of
220/// successors.  It is an error to call this with a block that is not a
221/// successor.
222unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
223  TerminatorInst *Term = BB->getTerminator();
224#ifndef NDEBUG
225  unsigned e = Term->getNumSuccessors();
226#endif
227  for (unsigned i = 0; ; ++i) {
228    assert(i != e && "Didn't find edge?");
229    if (Term->getSuccessor(i) == Succ)
230      return i;
231  }
232  return 0;
233}
234
235/// SplitEdge -  Split the edge connecting specified block. Pass P must
236/// not be NULL.
237BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
238  unsigned SuccNum = GetSuccessorNumber(BB, Succ);
239
240  // If this is a critical edge, let SplitCriticalEdge do it.
241  TerminatorInst *LatchTerm = BB->getTerminator();
242  if (SplitCriticalEdge(LatchTerm, SuccNum, P))
243    return LatchTerm->getSuccessor(SuccNum);
244
245  // If the edge isn't critical, then BB has a single successor or Succ has a
246  // single pred.  Split the block.
247  BasicBlock::iterator SplitPoint;
248  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
249    // If the successor only has a single pred, split the top of the successor
250    // block.
251    assert(SP == BB && "CFG broken");
252    SP = NULL;
253    return SplitBlock(Succ, Succ->begin(), P);
254  }
255
256  // Otherwise, if BB has a single successor, split it at the bottom of the
257  // block.
258  assert(BB->getTerminator()->getNumSuccessors() == 1 &&
259         "Should have a single succ!");
260  return SplitBlock(BB, BB->getTerminator(), P);
261}
262
263/// SplitBlock - Split the specified block at the specified instruction - every
264/// thing before SplitPt stays in Old and everything starting with SplitPt moves
265/// to a new block.  The two blocks are joined by an unconditional branch and
266/// the loop info is updated.
267///
268BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
269  BasicBlock::iterator SplitIt = SplitPt;
270  while (isa<PHINode>(SplitIt))
271    ++SplitIt;
272  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
273
274  // The new block lives in whichever loop the old one did. This preserves
275  // LCSSA as well, because we force the split point to be after any PHI nodes.
276  if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
277    if (Loop *L = LI->getLoopFor(Old))
278      L->addBasicBlockToLoop(New, LI->getBase());
279
280  if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
281    // Old dominates New. New node dominates all other nodes dominated by Old.
282    DomTreeNode *OldNode = DT->getNode(Old);
283    std::vector<DomTreeNode *> Children;
284    for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
285         I != E; ++I)
286      Children.push_back(*I);
287
288      DomTreeNode *NewNode = DT->addNewBlock(New,Old);
289      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
290             E = Children.end(); I != E; ++I)
291        DT->changeImmediateDominator(*I, NewNode);
292  }
293
294  if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
295    DF->splitBlock(Old);
296
297  return New;
298}
299
300
301/// SplitBlockPredecessors - This method transforms BB by introducing a new
302/// basic block into the function, and moving some of the predecessors of BB to
303/// be predecessors of the new block.  The new predecessors are indicated by the
304/// Preds array, which has NumPreds elements in it.  The new block is given a
305/// suffix of 'Suffix'.
306///
307/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
308/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
309/// In particular, it does not preserve LoopSimplify (because it's
310/// complicated to handle the case where one of the edges being split
311/// is an exit of a loop with other exits).
312///
313BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
314                                         BasicBlock *const *Preds,
315                                         unsigned NumPreds, const char *Suffix,
316                                         Pass *P) {
317  // Create new basic block, insert right before the original block.
318  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
319                                         BB->getParent(), BB);
320
321  // The new block unconditionally branches to the old block.
322  BranchInst *BI = BranchInst::Create(BB, NewBB);
323
324  LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
325  Loop *L = LI ? LI->getLoopFor(BB) : 0;
326  bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
327
328  // Move the edges from Preds to point to NewBB instead of BB.
329  // While here, if we need to preserve loop analyses, collect
330  // some information about how this split will affect loops.
331  bool HasLoopExit = false;
332  bool IsLoopEntry = !!L;
333  bool SplitMakesNewLoopHeader = false;
334  for (unsigned i = 0; i != NumPreds; ++i) {
335    // This is slightly more strict than necessary; the minimum requirement
336    // is that there be no more than one indirectbr branching to BB. And
337    // all BlockAddress uses would need to be updated.
338    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
339           "Cannot split an edge from an IndirectBrInst");
340
341    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
342
343    if (LI) {
344      // If we need to preserve LCSSA, determine if any of
345      // the preds is a loop exit.
346      if (PreserveLCSSA)
347        if (Loop *PL = LI->getLoopFor(Preds[i]))
348          if (!PL->contains(BB))
349            HasLoopExit = true;
350      // If we need to preserve LoopInfo, note whether any of the
351      // preds crosses an interesting loop boundary.
352      if (L) {
353        if (L->contains(Preds[i]))
354          IsLoopEntry = false;
355        else
356          SplitMakesNewLoopHeader = true;
357      }
358    }
359  }
360
361  // Update dominator tree and dominator frontier if available.
362  DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
363  if (DT)
364    DT->splitBlock(NewBB);
365  if (DominanceFrontier *DF =
366        P ? P->getAnalysisIfAvailable<DominanceFrontier>() : 0)
367    DF->splitBlock(NewBB);
368
369  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
370  // node becomes an incoming value for BB's phi node.  However, if the Preds
371  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
372  // account for the newly created predecessor.
373  if (NumPreds == 0) {
374    // Insert dummy values as the incoming value.
375    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
376      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
377    return NewBB;
378  }
379
380  AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
381
382  if (L) {
383    if (IsLoopEntry) {
384      // Add the new block to the nearest enclosing loop (and not an
385      // adjacent loop). To find this, examine each of the predecessors and
386      // determine which loops enclose them, and select the most-nested loop
387      // which contains the loop containing the block being split.
388      Loop *InnermostPredLoop = 0;
389      for (unsigned i = 0; i != NumPreds; ++i)
390        if (Loop *PredLoop = LI->getLoopFor(Preds[i])) {
391          // Seek a loop which actually contains the block being split (to
392          // avoid adjacent loops).
393          while (PredLoop && !PredLoop->contains(BB))
394            PredLoop = PredLoop->getParentLoop();
395          // Select the most-nested of these loops which contains the block.
396          if (PredLoop &&
397              PredLoop->contains(BB) &&
398              (!InnermostPredLoop ||
399               InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
400            InnermostPredLoop = PredLoop;
401        }
402      if (InnermostPredLoop)
403        InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
404    } else {
405      L->addBasicBlockToLoop(NewBB, LI->getBase());
406      if (SplitMakesNewLoopHeader)
407        L->moveToHeader(NewBB);
408    }
409  }
410
411  // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
412  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
413    PHINode *PN = cast<PHINode>(I++);
414
415    // Check to see if all of the values coming in are the same.  If so, we
416    // don't need to create a new PHI node, unless it's needed for LCSSA.
417    Value *InVal = 0;
418    if (!HasLoopExit) {
419      InVal = PN->getIncomingValueForBlock(Preds[0]);
420      for (unsigned i = 1; i != NumPreds; ++i)
421        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
422          InVal = 0;
423          break;
424        }
425    }
426
427    if (InVal) {
428      // If all incoming values for the new PHI would be the same, just don't
429      // make a new PHI.  Instead, just remove the incoming values from the old
430      // PHI.
431      for (unsigned i = 0; i != NumPreds; ++i)
432        PN->removeIncomingValue(Preds[i], false);
433    } else {
434      // If the values coming into the block are not the same, we need a PHI.
435      // Create the new PHI node, insert it into NewBB at the end of the block
436      PHINode *NewPHI =
437        PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
438      if (AA) AA->copyValue(PN, NewPHI);
439
440      // Move all of the PHI values for 'Preds' to the new PHI.
441      for (unsigned i = 0; i != NumPreds; ++i) {
442        Value *V = PN->removeIncomingValue(Preds[i], false);
443        NewPHI->addIncoming(V, Preds[i]);
444      }
445      InVal = NewPHI;
446    }
447
448    // Add an incoming value to the PHI node in the loop for the preheader
449    // edge.
450    PN->addIncoming(InVal, NewBB);
451  }
452
453  return NewBB;
454}
455
456/// FindFunctionBackedges - Analyze the specified function to find all of the
457/// loop backedges in the function and return them.  This is a relatively cheap
458/// (compared to computing dominators and loop info) analysis.
459///
460/// The output is added to Result, as pairs of <from,to> edge info.
461void llvm::FindFunctionBackedges(const Function &F,
462     SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
463  const BasicBlock *BB = &F.getEntryBlock();
464  if (succ_begin(BB) == succ_end(BB))
465    return;
466
467  SmallPtrSet<const BasicBlock*, 8> Visited;
468  SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
469  SmallPtrSet<const BasicBlock*, 8> InStack;
470
471  Visited.insert(BB);
472  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
473  InStack.insert(BB);
474  do {
475    std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
476    const BasicBlock *ParentBB = Top.first;
477    succ_const_iterator &I = Top.second;
478
479    bool FoundNew = false;
480    while (I != succ_end(ParentBB)) {
481      BB = *I++;
482      if (Visited.insert(BB)) {
483        FoundNew = true;
484        break;
485      }
486      // Successor is in VisitStack, it's a back edge.
487      if (InStack.count(BB))
488        Result.push_back(std::make_pair(ParentBB, BB));
489    }
490
491    if (FoundNew) {
492      // Go down one level if there is a unvisited successor.
493      InStack.insert(BB);
494      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
495    } else {
496      // Go up one level.
497      InStack.erase(VisitStack.pop_back_val().first);
498    }
499  } while (!VisitStack.empty());
500
501
502}
503